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Interaction between rarefaction wave and viscous fingering in a Langmuir adsorbed solute
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The evolution of dissolved species in a porous medium is determined by its adsorption on the porous
matrix through the classical advection-diffusion processes. The extent to which the adsorption affects the
solute propagation in applications related to chromatography and contaminant transport is largely dependent
upon the adsorption isotherm. Here, we examine the influence of a nonlinear Langmuir adsorbed solute on
its propagation dynamics. Interfacial deformations can also be induced by classical viscous fingering (VF)
instability that develops when a less viscous fluid displaces a more viscous one. We present numerical simulations
of an initially step-up concentration profile of the solute that capture a rarefaction/diffusive wave solution
due to the nonlinearity introduced through Langmuir adsorption and variety of pattern-forming behaviors of
the solute dissolved in the displaced fluid. The fluid velocity is governed by Darcy’s law, coupled with the
advection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity
of the fluids. Numerical simulations are performed using the Fourier pseudospectral method to investigate and
illustrate the role played by VF and Langmuir adsorption in the development of the patterns of the interface. We
show that the solute transport proceeds by the formation of a rarefaction wave results in the enhanced spreading
of the solute. Interestingly we obtained a nonmonotonic behavior in the onset of VF, which depends on the
adsorption parameters and existence of an optimal value of such adsorption constant is obtained near b = 1, for
which the most delayed VF is observed. Hence, it can be concluded that the rarefaction wave formation stands
out to be an effective tool for controlling the VF dynamics.

DOI: 10.1103/PhysRevE.101.033101

I. INTRODUCTION

Despite the range of significant applications of solute trans-
port in a porous medium, including improved oil recovery [1],
contaminant transport [2,3], and CO2 sequestration [4], the
long-term fate of nuclear waste repositories, secure storage of
carbon dioxide, the qualitative behavior of the contaminant
mixing in the soil-water system, remain uncertain [5]. The
experiments on separation columns [6], field studies on soil-
water contamination [2] have shown that the transport is
characterized by the early breakthrough of the solute, tailing
of the concentration at later times and in many cases virtually
immobile peak concentration [7]. Thus, transport cannot be
described by a traditional advection-dispersion formulation
only; instead, other theories, including the interaction of the
solute with the porous medium via adsorption [8], noncon-
ventional stresses at the interface [9], or reaction between
the components [10,11], have been employed to describe the
evolution of dissolved species over time. There have been
various studies on the adsorption phenomena in the porous
medium related to applications in enhanced oil recovery, CO2

capture, and contaminant transport [3,12–14]. There have
been linear and nonlinear equilibrium models developed to
describe the adsorption kinetics [15]. However, the under-
standing of adsorption effects on the transport of the solute
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is scant partially because of the limited experimental data
and computationally challenging because of the complexity
introduced by a nonlinear adsorption isotherms and they
are of several types depending on the adsorbent and ad-
sorbate (e.g., Langmuir Isotherm, Freundlich Isotherm, Toth
Isotherm, Langmuir-Freundlich Isotherm, etc.) [6,16–18]. In
view of this, we devote this article to the computational study
of the transport behavior of the solute undergoing nonlinear
adsorption of Langmuir type, defined as

cs = Kcm

(1 + bcm)
, (1)

where cs and cm are the stationary and mobile phase solute
concentrations, K is the equilibrium constant, and b is the
nonlinear adsorption parameter.

For the nonlinear adsorption of Langmuir type, the pioneer-
ing work of De Vault (1943) [19] showed that if the initial
concentration increases along the direction of flow, it results
in a highly dispersed concentration profile which otherwise is
self-sharpening for decreasing initial concentration. The self-
sharpening wavefront is called shock wave in the ideal case
and a shock layer when accompanied by diffusion. Whereas,
the nonsharpening wave fronts tend to attain a proportionate
pattern called a rarefaction wave [8]. The formation of these
nonlinear waves is because of the fact that the Langmuir
adsorption results in the advection and the dispersion rate of
the solute to be a function of the concentration [12]. Edström
et al. [20] have demonstrated experimentally the influence of
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Langmuir adsorption on the deformation of the peak shape
of the solute in a reverse phase chromatography column
(RPLC). In an application related to flow of polymers with
retention depending upon the solute concentration (as in the
case of Langmuir adsorption), Dominguez et al. [21] have
performed experiments to illustrate the solute peak shapes
showing occurrence of highly diffused and sharpened con-
centration profiles. There have been theoretical studies on the
influence of Langmuir adsorption on the shock wave front
properties which infer that self-sharpening effect is enhanced
with the increase in retention of the solute in the porous matrix
[22–24]. However, as per our knowledge, there has not been a
single theoretical study reported on the influence of nonlinear
adsorption on the rarefaction wave front spreading, which is
the main objective of the present model.

Nevertheless, in processes like chromatography [25], CO2

sequestration [26], and groundwater contamination [27], the
viscosity difference between the interplaying fluids play a
significant role. Variations in the viscosities of the solutions
flowing in porous media may result in the development of
an instability at the solution interface [28]. The instability
manifests itself in the form of finger-shaped intrusions of
the less viscous fluid solution into the more viscous one
and referred to as viscous fingering instability [29]. Thus,
in addition to the interaction of the fluids with the porous
matrix via adsorption, viscous fingering comes into play too.
The Langmuir adsorption coupled with the viscosity contrast
between the displacing and displaced fluid makes the model
more complex to solve. There have already been various
studies on the influence of the viscous fingering on a lin-
early adsorbed solute. In this regard, the experimental results
considering these two effects have clearly shown that the
adsorption reduces the effect of VF on the solute propagation
[30] and theoretically have been verified by Mishra et al. [31].
The study of the influence of retention of the solute on the
fingering dynamics is carried out in different scenarios for
instance linearly adsorbed solute passively following sample
solvent [32] or with variable retention inside the sample
solvent [33–35].

Zhou et al. [36] recently reported that polymer flooding is
very effective for enhanced heavy oil recovery methods. The
polymer flooding process involves the injection of polymer-
water solutions followed by water injection that results into
the miscible VF interface of the water and polymer-thickened-
water due to the existence of viscosity gradient between them.
Also, it is well known that the polymer can adsorb into the
porous matrix following the Langmuir isotherm [37,38]. Since
it has higher concentration than the water, a rarefaction wave
solution can be formed and existence of such solutions is well
reported in the literature of enhanced oil recovery processes
[39]. In another application of preparative scale size exclusion
chromatography the solution of high molecular weight poly-
mers are more viscous and with higher concentration than the
mobile phase. The sample mixture does not dilute during the
elution. In these processes VF significantly affects the peak
shapes [40]. Also, in the cases of high molecular protein sep-
aration or in supercritical fluid chromatography, it is clearly
observed that the adsorption isotherm of the solute/analyte
on the porous bed affects the peak profiles [41,42]. Since
the concentration profile is a step-up type the experimental

FIG. 1. Schematic of the system.

observation of Enmark et al. [42] clearly shown a tailing
phenomena of the peak shape and it is known as a diffusive
wave in the chromatography literature. This nonlinear wave
type is known as rarefaction wave in the other porous media
applications, e.g., chemical enhanced oil recovery and con-
taminant transport processes, the detail about such phenomena
in porous media applications are explained by Sheng [17],
Berkowitz et al. [16], Allen III et al. [43], and in several other
articles in chromatography literature [12,44,45].

Recently, Rana et al. [22] have analyzed the influence of
VF and the shock layer wave front of the solute undergoing
Langmuir adsorption. The results show significant change
in spatiotemporal behavior of the solute dynamics, which,
depending on the values of the adsorption parameters results
in an earlier onset of instability and vanishing of the shock
layer. Further, Rana et al. [46,47] studied the effects of Lang-
muir and anti-Langmuir adsorption on the band broadening
for a finite width sample and investigated the interaction of
both nonlinear waves and its influence on VF dynamics, in
which one interface was with rarefaction wave and other
one with shock layer. However, the influence of VF on the
rarefaction wave solution on the semi-infinite interface is
yet to be understood, as this could be useful to analyze the
frontal dynamics of chromatographic separation applications
as explained earlier as well as oil recovery and contaminant
transport processes where control of VF is crucial for the
output of the process. In the present study, we examine the
influence of VF and rarefaction wave front formed due to
Langmuir adsorption, on the transport dynamics of the solute.
Our numerical simulation results have been able to provide
insights into the effect of the adsorption parameters on the
spreading of the rarefaction wave and further its influence
on the onset of VF instability. We have found an optimal
adsorption parameter b for having the most delayed onset
of VF for different log mobility ratio R. Recently, different
techniques have been investigated to control the VF instability
[48,49] and we observe that the rarefaction wave formation
stands out to be an effective tool.

II. MATHEMATICAL MODEL

The setup we considered is depicted in Fig. 1. The flow
is in the longitudinal direction, where a fluid of viscosity
μ1 with cm = 0 is displacing a fluid of viscosity μ2 (>μ1)
with cm = c0. In the moving reference frame, moving with
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injection velocity U , the nondimensional governing equations
for two-dimensional displacement of the concentration in a
miscible, incompressible fluid system are [46]

∇ · u = 0, (2)

∇p = −μ(cm)(u + ex ), (3)
(

1 + k

(1 + bcm)2

)
∂cm

∂t
− k

(1 + bcm)2

∂cm

∂x
+ u · ∇cm

= ∂2cm

∂x2
+ ∂2cm

∂y2
. (4)

Here ex is unit vector in axial direction, u = (u, v) is the
velocity field, p is the pressure, k is the retention parameter,
and μ(cm) is the viscosity of the fluid depending on the mobile
phase solute concentration as

μ(cm) = eRcm , (5)

where R = ln(μ2/μ1) is the log-mobility ratio. With μ1 <

μ2, R > 0, hence the flow is unstable resulting in VF insta-
bility. However, with μ1 � μ2, i.e., for R � 0, the proposed
model shows a stable displacement [50].

A. Initial and Boundary conditions

The initial condition (t = 0) for mobile phase solute con-
centration cm is

cm(x, y) =
{

0, for x < 0
1, for x � 0 ∀y. (6)

The boundary conditions are

(u, v) = (1, 0),
∂cm

∂x
= 0 ∀y as |x| → ∞, (7)

∂v

∂y
= 0,

∂cm

∂y
= 0, ∀x at the transverse boundaries. (8)

The analytical solution of the unidimensional solute transport
equation in the ideal case exists and the characteristic solution
with step-up initial solute concentration shows formation of
expanding waves (for details, see the Appendix). However,
to understand the overall dynamics of the adsorbed solute,
a full nonlinear set of equations [Eqs. (2)–(4)] needs to be
solved numerically. In what follows, a brief description of the
numerical simulation technique to handle the full nonlinear
problem is followed by discussion of the results obtained for
stable and unstable displacements.

B. Numerical analysis

The nonlinear dynamics of the concentration cm(x, y) for
the proposed model are examined in a computational domain
of size L × L′. Using stream function ψ (x, y) as (u, v) =
(∂ψ/∂y,−∂ψ/∂x), the governing Eqs. (2)–(4), after applying
the stream function-vorticity formulation and using Eq. (5),
become

∇2ψ = −ω, (9)

ω = R

(
∂ψ

∂x

∂cm

∂x
+ ∂ψ

∂y

∂cm

∂y
+ ∂cm

∂y

)
, (10)

(
1 + k

(1 + bcm)2

)
∂cm

∂t
− k

(1 + bcm)2

∂cm

∂x
+ ∂ψ

∂y

∂cm

∂x

− ∂ψ

∂x

∂cm

∂y
= ∂2cm

∂x2
+ ∂2cm

∂y2
. (11)

The above set of governing Eqs. (9)–(11) are solved by
using Fourier-pseudo spectral method [51], which requires
periodic boundary conditions (for details, cf. Ref. [22]). In the
proposed problem periodicity can be applied in the transverse
direction, without loss of generality. However, in the longitu-
dinal direction, the periodic extension of the concentration on
the right of the computational domain is included [52,53]. A
resolution of 2048 × 256 is used throughout this study with
a time step of dt = 0.2 and spatial step size of dx = dy = 4.
In numerical scheme the initial condition of step-up mobile
phase concentration is implemented by setting cm = 0 and
cm = 1 with an intermediate value as 1/2 − Ar, where r is
random number between 0 and 1 and A is the amplitude
of noise of order 10−3. We start our analysis in Sec. III
by examining the influence of Langmuir adsorption on the
concentration when there is no viscosity difference between
the interplaying fluids (R = 0). Next, in Sec. IV the influence
of viscous fingering (R �= 0) on the concentration cm(x, y)
is discussed. The parameter values are so chosen, that the
dynamics of the concentration under the effect of Langmuir
adsorption is apparent.

III. NONLINEAR DYNAMICS: VISCOUSLY STABLE

In Fig. 2 the propagation dynamics of the mobile phase
solute concentration is shown for linear (b = 0) and Langmuir
(b = 5) adsorption configuration with R = 0, i.e., both the
displacing and displaced fluids having the same viscosity.
In Fig. 2(a) the initial mobile phase concentration is shown,
where the red color depicts cm = 0 and blue color depicts
cm = 1. Since simulations are performed in a moving frame
of reference, the miscible interface moves in the upstream
direction. For b = 0, Fig. 2(b) shows pure diffusing profiles,
whereas for b = 5 [Fig. 2(c)] the miscible interface is highly
diffused.

In the following we explain the choice of the adsorption
parameters k and b in our simulations. The Langmuir ad-
sorption constant b is an empirical constant, in dimensional
form of b̂, the unit is the reciprocal of the unit of saturation
solute concentration csat, i.e., b̂ = K/csat, where K is the
equilibrium constant and k = FK , where F is the phase ratio
volume of solute in the stationary and mobile phases, the
detail explanations are given in Rana et al. [46]. If b = 0,
then the adsorption becomes linear; for b < 0 adsorption is
unfavorable and for 0 < b < ∞ adsorption is favorable [18].
In the experiments, the Langmuir constant b are chosen to
fit the data for finding the isotherms with different mobile
phases and they are found to vary from O(10−1) to O(103)
[17,54]. Ali and Ben Mahmud [55] performed an experi-
ment for adsorption of hydrolyzed polyacrylamide (HPAM)
polymer on standstone surface and found that such Langmuir
constants can depend on the salinity and varies from 9.64 to
29.67 L/g in dimensional scale corresponding to the increas-
ing of salinity from 0 to 4 wt %. Recently, in an oil recovery
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FIG. 2. (a–c) Concentration fields cm(x, y) with R = 0, k = 0.2, (a) initial concentration at t = 0, (b) for b = 0 (Linear adsorption), and
(c) b = 5 (Langmuir adsorption). (d) The corresponding transversely averaged concentration profiles c̄m(x, t ) for b = 0 (blue lines), error
function solutions away from the step-up curve at t = 0 and b = 5 (red lines), rarefaction solutions where the part of the curve with higher
concentrations are near to the step-up curve at t = 0.

problem Falode and Afolabi [56] have considered the adsorp-
tion constant k as 6.5, 13.5, 20 for different clay mineral
Kaolinite, Illite, and Montmorillonite, respectively, and the
constant b as 100. Therefore, we conclude that considering
the constant b > 0 and upto a O(102) is sufficient enough to
study the effects of the Langmuir adsorption and we show in
the following that when b → 100, the VF dynamics reach to
an asymptotic spreading.

To better understand the propagation dynamics of the
concentration, the transversely averaged concentration profile
of cm(x, y) is calculated as [57]

c̄m(x, t ) = 1

L′

∫
0

L′

cm(x, y, t )dy

and is plotted in Fig. 2(d). The average profile c̄m(x, t )
for b = 0 depicts the error function solution, however, for
Langmuir adsorption with b = 5, the concentration profile
forms a highly stretched wave called as rarefaction wave [see
Fig. 2(d)]. The experiments performed by Dominguez et al.
[21] and Edstörm et al. [20] have shown the occurrence of
such highly diffused fronts of the retained solute in applica-
tions related to polymer transport and chromatography (see
Figs. 3 and 4 in Ref. [21] and Fig. 3 in Ref. [20]). Thus,
these experimental results are in good comparison with our
theoretical model.

This significant change in the dispersive regime of the
Langmuir adsorbed solute is due to the variation in advection
and dispersion rates with solute concentration cm. The axial
propagating velocity of the Langmuir adsorbed solute in the
upstream direction is k/[k + (1 + bcm)2] [can be deduced
from Eq. (11)], whereas the linear adsorbed solute (b = 0)
propagates with k/(1 + k) velocity. The dependence of the
advection speed of the solute on its concentration cm results
in changing the propagation dynamics of the solute. It is
clearly observed that for b �= 0 advection speed decreases
with an increase in cm. Hence, in comparison to higher

concentration the lower concentrations are advecting faster
in the upstream direction, which leads to the formation of
an expanding wave. Further, it is essential to analyze the
influence of the Langmuir adsorption on the dispersion rate
of the concentration. From Eq. (11), the dispersion rate is
obtained as [(1 + bcm)2]/[k + (1 + bcm)2]. It is observed that
for b �= 0 dispersion rate increases with increase in average
concentration c̄m. Therefore, the low concentration regions are
advecting more and dispersing less, whereas high concentra-
tion regions show an opposite trend. This scenario is clearly
observed in Fig. 2(b) (dashed red lines), where higher concen-
trations are dispersed more and less advected in comparison to
the lower ones. The experimental profiles for the supercritical
fluid chromatography by Enmark et al. [42] shows the forma-
tion of stretched waves for the Langmuir adsorbed solute and
thus are in good agreement with our numerical results.

A. Effects of adsorption parameter b

To understand the effect of increasing value b on the
dispersive regime of the miscible interface, the concentration
cm(x, y) for different values of b are shown in Fig. 3. The
interfacial concentration profiles show the dispersive region
of the solute first increasing with b [see Fig. 3(a) for b =
0.1, 1] and then decreasing (for b = 10). Thus, the spreading
of the solute concentration is varying nonmonotonically with
b. In Fig. 3(b) the corresponding averaged concentrations,
c̄m(x, t ) are shown for different values of b at a fixed time
t = 104. For b � 1 the concentration profiles are observed to
be expanding with b, but with a compression toward the lower
concentration zone for b > 1. The dependence of the advec-
tion and dispersion rate on the concentration and adsorption
parameter b, leads to such dynamics. Since the advection rate
decreases with increase in b the concentration profile shown
in Fig. 3(b) shows the front for larger b to be least advected
in the upstream direction. Furthermore, as the dispersion
rate increases with increase in b, therefore the concentration
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FIG. 3. (a) The mobile phase solute concentration cm(x, y) fields with R = 0, k = 0.2 for different values of b at a fixed time t = 104.
(b) The corresponding transversely averaged concentration profile c̄m(x, t ).

profiles shown in Fig. 3(b) is more dispersed for larger values
of b in comparison to lower values of b. Moreover, since the
advection and dispersion are also functions of concentration
hence, as described in the previous section, the spreading is
varying with the concentration as well. In order to analyze
the effect of b on the spreading of the solute we quantify the
spreading length in the next section

B. Evolution of the spreading length

The quantification of the spreading length, Lm, of c̄m(x, t )
is a good measure to analyze the influence of b. The spreading
length is quantified as the length of the interval in which
0.001 < c̄m(x, t ) < 0.999. The spreading length Lm is shown
in inset Fig. 4 for different values of b with k = 0.2, R = 0. It
is observed that Lm increases with increase in b, but decreases
eventually for b > 20. In Fig. 4 we plotted Lm as a function of
b, at a fixed time t = 104. It is observed that the increment in
Lm is more for smaller b, however, as b increases the increment
reduces and then eventually decreases.

The spreading length results are anti-synergetic, because
the rarefaction wave front formed due to Langmuir adsorption
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10
50

FIG. 4. The spreading length Lm as a function of b at a fixed time
t = 104. Inset: Evolution of the spreading length Lm for different
values of b (from below b = 0, 0.1, 0.5, 50, and 10), with R =
0, k = 0.2.

is expected to always expand the concentration profile. Since,
the solute spreading occurs because of the influence of the
advection and dispersion, to explain the counterintuitive result
of nonmonotonicity in the spreading dynamics, we again
take a close inspection of the two scenarios, advection and
dispersion rate. It is observed that the dispersion rate increases
with b but the advection speed decreases. Thus, the spreading
of the concentration for large b, is due to dispersion only,
whereas for small b the advection rate is the main cause of
spreading. Hence, a threshold is reached at b � 20, where Lm

starts decreasing. This is due to the fact that for sufficiently
large values of b, here b = 20, the axial advection speed
reduces significantly [advection speed = k/[k + (1 + bcm)2]],
which results in decrease in spreading of the solute. More-
over, as b → ∞ the solute transport equation approaches no-
adsorption case which depicts solute spreading ∝ t1/2 [57].

IV. NONLINEAR DYNAMICS: VISCOUS FINGERING
EFFECTS

In applications related to chromatography, enhanced oil
recovery, CO2 sequestration, the mobility gradients developed
due to the variation in the viscosity of the interplaying fluids
results in the occurrence of viscous fingering instability that
significantly changes the solute propagation [52]. Our aim
is to investigate the influence of rarefaction wave on the
occurrence of VF instability and thus to use it as a tool to
manipulate the instability dynamics.

A. Influence of adsorption parameter b

To investigate the influence of Langmuir adsorption on
the viscous fingering dynamics, the log mobility ratio is
chosen as R = 1. The concentration density profiles, cm(x, y),
depicting the fingering dynamics with R = 1 for different
values of b are plotted in Fig. 5. It is clearly observed that
fingering dynamics in the Langmuir adsorbed solute (b �= 0)
is quite different from the linearly adsorbed solute (b = 0).
For b = 1 [Fig. 5(b)], the concentration fields show delay in
formation of fingers in comparison to b = 0 [Fig. 5(a)]. As
already explained in Fig. 3, the Langmuir adsorption leads to
expansion of the concentration front. This spreading results
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FIG. 5. The concentration plots for R = 1, k = 0.2 and (a) b = 0, (b) b = 1, (c) b = 50.

in decreasing the concentration gradient across the miscible
interface between the displaced and displacing fluids. As a
consequence, the effective viscosity gradient decreases along
the interface, which leads to delay in the onset of VF. Hence,
the fingering pattern can be observed to be delayed for b = 1
in comparison to b = 0. Thus, the presence of the rarefaction
wave can weaken the finger formation. However, for b = 50
[Fig. 5(c)], contrasting dynamics in the form of sharp fingers
are observed, which appear early in comparison to b = 1. For
b = 0 the onset of fingering is around t = 3000 [Fig. 5(a)].
However, as stated earlier onset is observed to delay for b = 1,
showing fingering pattern at t = 6000 [Fig. 5(b)].

However, for b = 50 the fingering dynamics are observed
early at time t = 2400, whereas at this time b = 0 shows
no fingering pattern. Thus, viscous fingering dynamics are
observed earlier for large b in comparison to b = 0. This
is because, the concentration is compressed for large values
of b (>10) (see Fig. 4) thus resulting in creating a higher
concentration gradient along the miscible interface which
favors the viscous fingering instability. Moreover, for b → ∞
Eq. (11) reduces to the case of no-adsorption and for b = 0
it reduces to linear adsorption. Thus, from Mishra et al. [58],
the onset for linear adsorption is delayed by 1/(1 + k) times
the onset for no-adsorption case. Therefore, in our case for
b = 50 the onset of VF is observed earlier in comparison to
b = 0. Hence, the instability can be manipulated (delayed or
early) by controlling the nonlinear adsorption parameter b.
To compare the dynamics of the concentration for different
values of b at a fixed time, the concentration contours for
cm = 0.17, 0.34, 0.51, 0.68, and 0.85 are shown in Fig. 6
for different values of b at a fixed time t = 4000 for R = 1
and k = 0.2. The change in fingering dynamics with b can
be clearly understood from this figure. For b = 0, rigorous
fingering dynamics are seen in the concentration contours.
However, with b �= 0 the fingers are suppressed because of
the rarefaction wave formation. But, again strong fingers are
seen for b = 5 in comparison to b = 1.

B. Transversely averaged concentration profiles

Another significant dynamic change is that, with Langmuir
adsorption the concentration front is not distorted symmetri-
cally by the fingers, unlike the case of b = 0. The transversely

averaged concentration profile c̄m(x, t ) plotted in Fig. 7 for
b = 1 and b = 5 with R = 1 clearly shows the difference in
the distortions at the interface. In Fig. 7(a) the concentration
profile shows distortions toward the higher concentration re-
gion. While for b = 5 [Fig. 7(b)] the interface is distorted to-
ward both high and low concentrations. For b = 1 the fingers
are unable to intrude much in the low concentration zone and
are propagating mostly toward the higher concentration zone.
However, these dynamics of the fingering pattern disappear
for b > 1, for instance for b = 5, the fingers in the dispersive
zone intrude both toward high as well as low concentration
zones. The evolution profiles obtained by Enmark et al. [42]
for the Langmuir adsorbed solute with the viscous fingering
instability matches well with the instability profile obtained
by our numerical simulations.

To explain this interesting dynamic of change in the distor-
tion pattern at the interface with b, we trace the concentration
c̄m(x, t ) corresponding to the inflection point for R = 0. Since
the inflection point refers to the value of x, where the concen-
tration c̄m(x, t ) changes slope from increasing to decreasing

b=0

b=5

b=1

b=0.5

FIG. 6. The contour plots of the concentration at fixed t = 4000,
for R = 1, k = 0.2 for different values of b, showing nonmono-
tonicity in the fingering pattern. The contour lines correspond to
cm = 0.17, 0.34, 0.51, 0.68, and 0.85.
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FIG. 7. The transversely average concentration profile c̄m(x, t ) with R = 1, k = 0.2 for (a) b = 1, (b) b = 5.

and thus is obtained as a peak in the spatial evolution of
dc̄m/dx. The concentration corresponding to the inflection
point is referred as cmi , whose evolution with time gives
a view about the change of the value of the concentration
when its gradient is large. In Fig. 8, cmi is plotted as a
function of time for different values of b. It shows that for
b = 0, the inflection point always lay near the mid value of
concentration and it does not evolve with time. However, for
0 < b � 1 a sudden shift of the inflection point toward the
higher concentration is observed. As a consequence, for b = 0
a higher concentration gradient always lies toward the mean
value of the concentration. Thus, for linear adsorption, as soon
as there is viscosity contrast between the interplaying fluids,
i.e., R > 0, the fingers are able to easily intrude toward both
the high and low concentration zones. Whereas, for b �= 0
high concentration gradient is toward the larger values of cm

that gives rise to the existence of a higher viscosity gradient at
that location. Hence, in Langmuir adsorption fingers are able
to intrude in the higher concentration zone only. This scenario
can be clearly observed from Fig. 7(a). However, for b > 1
the inflection points again revert back to the mean value of
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FIG. 8. The temporal evolution of concentration corresponding
to the inflexion point, cmi for different values of b with R = 0,

k = 0.2.

the concentration. This implies that a higher concentration
gradient again moves back toward the mean value of the
concentration. Thus, resulting in the existence of a higher vis-
cosity gradient at the corresponding location. Hence, fingers
intrude toward both the high and low concentration zones
[see Fig. 7(b)]. The analysis of the influence of Langmuir
adsorption parameter b on the onset time of VF is discussed
in the following section.

C. Onset time of fingering

To evaluate the onset time of VF tvf, we compute the
interfacial length, I (t ), which measures the temporal variation
of the axial and transverse gradients of the concentration. It is
defined as [59]

I (t ) =
∫ L′

0

∫ L

0

(
∂cm

∂x

)2

+
(

∂cm

∂y

)2

dxdy. (12)

I (t ) is plotted in Fig. 9(a) for R = 1, k = 0.2 for differ-
ent values of b. The onset time tvf is defined as when I (t )
increases by 5% from its constant value in the dispersive
regime (i.e., R = 0 which is equal to the dimensionless width
L′ of the computational domain). In Fig. 9(a), it is shown that
for 0 < b < 1 the time of deviation of I (t ), from its value
corresponding to R = 0, increases with b. However, for b > 1
an opposite scenario is observed, i.e., I (t ) starts deviating
early with increasing b. The onset time calculated for different
values of b from Fig. 9(a) is plotted in Fig. 9(b) as a function
of b. It clearly shows onset time tvf increases until b = 1 [see
inset Fig. 9(b)], but then again start decreasing. This change
in trend of onset time of VF is because the spreading of the
concentration due to advection rate decreases for large values
of b. This aids in creating the steep concentration gradient
which further results in early onset of VF for b > 1. An
important observation is that the onset time tvf for b > 10
is even below from the corresponding value for b = 0. This
observation is consistent, as for large values of b, we approach
toward the no-adsorption case where onset of VF varies as
(1 + k) times earlier than linear adsorption b = 0 (cf. Mishra
et al. [58]).

Thus, rarefaction wave can speed up or slow down the
fingering instability, depending upon the adsorption parameter
b. With a curve fitting done in MATLAB using “cftool,” the
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FIG. 9. (a) Temporal evolution of interfacial length, I (t ), with R = 1, k = 0.2 for different values of b and compared with the ideal case
of stable displacement. (b) Onset time of VF, tvf, for different values of b with R = 1, k = 0.2. It shows a nonmonotonicity with respect to b.
Inset: Zoomed in tvf showing local maxima at b � 1.

onset time of VF for different values of b with R = 1, k =
0.2 is found to follow Gaussian function having equation
a1b(1/1.3)exp(−b/2) + a2, where a1 = 1342, a2 = 1076. In
the next section we discuss the influence of increase in log
mobility ratio R on the onset time tvf of viscous fingering.

D. Influence of log mobility ratio R

Here, the focus is to investigate the influence of log mo-
bility ratio R on the fingering dynamics of the concentration.
For that purpose, the concentration contours are plotted in
Fig. 10(a) for different values of R with b = 5, k = 0.2 at a
fixed time t = 2000. The concentration contours show that for
R = 1, there are no fingers observed till this time. However,
for larger values of R, the intense viscous fingering patterns
are observed. The convective motion due to high mobility
ratio, overtakes the rarefaction dynamics very early. Hence
the rigorous fingering patterns are observed for R = 2 and
3. Further, we examine the influence of R on tvf for different
values of b. The onset time tvf is calculated from interfacial
length, the same way as that described in a previous Sec. IV C.
The onset time tvf is plotted in Fig. 10(b) as a function of b
for different values of R. Clearly, irrespective of R, the onset
time tvf shows nonmonotonicity with a global maximum near

b = 1. The most delayed onset is always in the vicinity of
b = 1. The significant difference is observed in the variation in
tvf with b for different R. The variation of tvf i.e., the difference
between the onset time for most delayed and most early
viscous fingering is decreasing with R. This can be clearly
observed from visual comparison of the peak height of tvf for
R = 1 with R = 2 or 3. Thus, large variation in the onset time
of viscous fingering is observed for R = 1 and this difference
decreases with increasing R. We also observed that tvf for very
large values of b is lesser even from b = 0. In Fig. 10(b) the tvf

for R = 3 with b = 10 is lesser than the corresponding value
with b = 0.

V. CONCLUSIONS

In this article the solute transport related to its adsorption
on the porous medium is analyzed. Surface adsorption of
solute has been widely studied, and this mechanism can be
simplified using an isotherm equation which can be linear as
well as nonlinear. The objective of this article was to analyze
analytically and numerically, the displacement of miscible flu-
ids with nonlinear adsorption of solute, where the initial con-
centration is a step-up profile. The analytical solution obtained
by the method of characteristics for a unidirectional model
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R = 3

0 1 2 3 4 5 6 7 8 9 10
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10
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10
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b

t v
f
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FIG. 10. (a) The concentration contour for different values of R, with b = 5, k = 0.2 at a fixed time t = 2000. The contour lines correspond
to cm = 0.25, 0.5, 0.75, and 1. (b) Onset time of viscous fingering tvf as a function of b for different values of R with k = 0.2.
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reveals the formation of rarefaction wave front as a result of
hyperbolicity in the mass balance equation. To analyze the
influence of the Langmuir adsorption in a stable as well as an
unstable case, the set of governing equations in 2D are solved
numerically using a Fourier-pseudo spectral method. It is
found that for R = 0, the advection and dispersion rate being
a function of the concentration cm, results in the formation
of nonsharpening waves which enhance the spreading. Thus,
the spreading of the concentration increase with increase in b.
However, it eventually decreases for large values of b, as the
adsorption model approaches the no-adsorption case. Thus, it
is concluded that the dynamics of the system are determined
by the value of adsorption parameter b. Furthermore, it is
shown that the flow development can be fully characterised
by examining the influence of advection and dispersion rate
on the transverse averaged concentration profiles.

The interesting dynamics are observed when there is vis-
cosity contrast between the displacing fluid and the solute,
along with the Langmuir adsorption of an initially step-up
profile, giving rise to the interaction of VF and the rarefaction
wave front to each other due to coupling between them.
Such step-up concentration profile with the viscosity gradients
solutions is very much useful for investigating the separation
performance of high molecular weight protein samples, in
polymer flooding or understanding the spreading of contam-
inants [17,42,55,60]. The analysis of the fingering dynamics
with Langmuir adsorption, shows that the onset of instability
in this semi-infinite domain, unlike to finite extent of the
solute, is delayed for b � 1. Whereas, for b > 1 the onset time
of VF start decreasing with b. This scenario is independent
of the log mobility ratio R. However, for large values of b
the onset time is observed to be earlier in comparison to
b = 0. Thus, rarefaction wave can slow down or speed up the
instability phenomena depending upon b. The spatiotemporal
analysis shows the formation of lesser number of fingers in
the Langmuir adsorbed solute. The merging is also reduced in
comparison to linear adsorption along with disappearance of
splitting phenomena for R = 1. These observations is different
than the case studied in the literature when there is a finite
extent of solute exist. Due to the finiteness of sample, the
rarefaction wave can spread the sample to the left and the

existence of shock layer from the frontal interface affects the
VF dynamics of the rear interface. Since the log-mobility
ratio reduces with time due to the finiteness, so the effect
of such mobility ratio on the rarefaction wave cannot be
the same as explained in this paper, in which no transient
dynamics of the mobility ratio exist. The implication of these
observations is that for practical purposes, rarefaction wave
can be introduced to attain stability in a system for a long time
which can be useful in the frontal analysis of chromatographic
separation. The other interesting conclusion from this study is
that the rarefaction wave formation with the most optimized
adsorption parameter, means a mode of modifying the surface
of porous matrix, can be an effective tool for controlling the
VF dynamics.

APPENDIX: THE ANALYTIC RAREFACTION PROFILE

The unidimensional transport equation of the solute trans-
port, with Langmuir adsorption isotherm and in the absence
of diffusion is

∂

∂t

(
1 + k

(1 + bcm)

)
cm + ∂cm

∂x
= 0. (A1)

Equation (A1) can be simplified to obtain

∂cm

∂t
+ f (cm)

∂cm

∂x
= 0, (A2)

where f (cm) = (1+bcm )2

k+(1+bcm )2 . This is a first-order hyperbolic par-
tial differential equation associated with the initial condition

cm(x) =
{

0, for x < 0,

1, for x � 0.
(A3)

The family of characteristics for Eq. (A2) is given by

cm = cm(x0), (A4)

where, x = x0 + B(x0)t, (A5)

and B(x0) = f [cm(x0)]. Since the slope of the characteristic
is a function of concentration cm, the concentration profile is
propagating with a variable speed. For Langmuir adsorption
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FIG. 11. (a) Characteristics showing formation of rarefaction wave for k = 1, b = 1. (b) The corresponding rarefaction wave solution of
the concentration cm at t = 1.
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with b > 0 the slope of characteristics gives

dB

dcm
= 2bk(1 + bcm)

[k + (1 + bcm)2]2
> 0. (A6)

This implies that slope of characteristics B(cm) is an increas-
ing function of cm. Hence, the higher concentration of cm

moves faster than lower concentration. Now with the initial
condition of step-up profile [Eq. (A3)], expanding character-
istics giving rise to a rarefaction wave are obtained. The cor-
responding characteristics obtained from Eq. (A4) are shown
in Fig. 11(a) for k = 1, b = 1. Clearly, the characteristics are
expanding and a rarefaction zone is formed.

The solution of Eq. (A2) is then given by

cm(x, t ) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x/t < 1
(1+k) ,

( cm
1−cm

)1/2−1

b , for 1
(1+k) � x/t � (1+b)2

k+(1+b)2 ,

1, for x/t > (1+b)2

k+(1+b)2 .

This solution is plotted in Fig. 11(b) for k = 1, b = 1, show-
ing the formation of nonsharpening wave. Occasionally, this
solution is referred to as a rarefaction wave as it expands with
time.
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