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Morphological transformation of the process zone at the tip of a propagating crack. I. Simulation
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Stress concentration at a crack tip engenders a process zone, a small domain containing a phase, different
from that in the bulk of the solid. We demonstrate that this zone at the tip of a propagating crack exhibits
a morphological transformation with an increase of the crack velocity. The concave zone shape with an
invagination in its back that is characteristic of a slow crack transforms into a droplet-shaped convex zone
upon exceeding a critical velocity value, vG. In this latter case, a metastable wake follows the propagating zone.
We obtained this result by computer simulation of a crack propagating in a solid exhibiting a first-order phase
transformation.
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I. INTRODUCTION

The traditional approach to the description of the fracture
was developed in the first half of the last century. It was
formulated in terms of simplified mathematical models of
cracks as a generalization of macroscopic observations of
the fracture. In brittle solids, the cracks were regarded as
mathematical cuts in the otherwise homogeneous solid. In
plastic ones, pertinent dislocation structures were added to the
description (such as in the models of Barenblatt and Dugdale
[1,2]).

However, new experimental data that emerged over the
last few decades forces one to revise this point of view.
The existence, at the tips of cracks, of small, nanometer- to
micrometer-sized domains with specific properties (referred
to as process zones) has been established in many materials
previously assumed to be brittle. Within the process zones,
linearity typically fails and dissipation takes place.

This progress is based on the employment of modern in-
struments of the last generation, such as high-resolution syn-
chrotron scattering (HRTEM) [3], high-angle annular dark-
field scanning transmission electron microscopy [4], electron
nanodiffraction [5], scanning electron microscopy combined
with electron backscatter diffraction [6,7], and high-resolution
x-ray microdiffraction [8]. These techniques enable one to
directly obtain the locations of the atoms.

In addition, methods providing an accurate determination
of the configuration of the process zone have been developed,
such as digital image correlation [9,10], Raman mapping [11],
atomic force microscopy [12,13], infrared tomography [14],
and nanoindentation [15], to name a few.

These methods demonstrate that the crystal structure of the
process zone often differs from the one thereout. In this paper,
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the phase of the process zone we refer to as the daughter
phase, while that of the matrix is referred to as the mother
phase.

Transformations of the crystal structure within the process
zone have been discovered in materials of various chemical
compositions and crystal structures. It has been found in met-
als such as iron [16] and molybdenum [5], in steels [2,7,17],
in the nitinol [8,9,18,19] as well as in other shape-memory
alloys, such as Cu-Al-Ni [20], Cr-Ni [21], Ni-Al [22,23], and
Ni-Mn-Ga [24], in titanium [25] and its alloys [26], as well as
in metallic glasses [27].

In dielectrics this phenomenon has been observed in sap-
phire [28], in silicon [29], in ferroelectric monocrystals and
ceramics [11,12,30,31], in diamonds [32], in the 2D nanocrys-
tal molybdenum tungsten diselenide MoWSe2 [33], as well as
in high-Tc superconductors [34]. It has also been discovered
in polymers [35] and in resins [36].

Computer simulations also reveal transformations of the
crystal structure within the process zones. Such simulations
have been reported to be performed for iron [37], silicon [38],
titanium [39], tantalum [40], zirconium [41], UO2 [42], and
nitinol [43].

In early experiments on ZrO2 [44,45], the transformational
process zone has been detected by the so-called “postmortem”
study. One observed a wake, a long-lived layer on the crack
surface after fracture. The layer had the thickness in the
micrometer range and contained a monoclinic phase, while
the bulk of the solid consisted of the tetragonal phase. Before
fracture, the ZrO2 samples stayed in the tetragonal phase.
More details on the observation of wakes can be found
in the reviews [45–47]. Wakes have also been observed in
PZT ceramics [30,31], in sapphire [28], in stishovite [48], in
silica and borosilicate glass [49], under thermal fracture of
diamonds [32], in polycrystalline silicon [50], in high-density
polyethylene [51], in nitinol [52], in single crystals CuAlNi
and Ni-Mn-Ga with the shape-memory effect [20,24], in TRIP
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steels [53,54], in antiferroelectric ceramics [11], in poly-
crystalline ferroelectric PZT [55], in high-Tc superconductors
YBCO and BSCCO [34], in metallic glass Zr-Ti-Cu-Nb-Be
[56], and in the 2D crystal MoWSe2 [33].

The direct electron microscope observation of the forma-
tion of a wake behind a propagating crack in a martensite-
austenite alloy has been reported in [57], and it has been
studied by mechano-luminiscence in ZrO2 [58].

One has reliably established that the formation of the wake
correlates with a considerable improvement of the solid frac-
ture toughness, referred to as the transformation toughness
[45], giving rise to a keen interest in this phenomenon.

Pioneered by McMeeking and Evans [59] and Budiansky
[60] and followed by a large number of researchers [45], the
formation of the process zone has been discussed within the
continuum mechanical approach. This approach is based on
three implicit assumptions: that the transformational process
zone only differs from the rest of the solid by (i) its elastic
modulus, (ii) the spontaneous strain engendered by the phase
transformation, and (iii) that it can eventually divide into
domains (in various communities also referred to as twins
or variants). The continuum mechanical approach ignores all
other degrees of freedom eventually describing the process
zone.

The physical interpretation was as follows. The emergence
of the daughter phase exhibiting a dilatation becomes en-
ergetically favorable under the influence of great stretching
stresses. Therefore, it is thermodynamically stable at the tip
of the crack, where such stresses are localized. In the course
of the growth of the crack, the stress behind the tip vanishes.
The material in this part of the zone finds itself in a metastable
state. On the one hand, the energy of this metastable state
contributes to the fracture energy, as was first discussed by
Antolovich [61] to explain the transformation toughening
effect in TRIP steels [2,45,53,62]. On the other hand, the less
dense wake material generates compressive stress exerted on
the crack surfaces. One should subtract the latter from the
contribution of the external load to the stress intensity factor
[59]. There is a long-lasting discussion of whether or not
these two approaches represent the same mechanism [45]. Not
entering this discussion let us observe that both mechanisms
contribute to the fracture toughness, KIC , in some materials the
contribution being considerable. They, for example, yield the
increase of KIC in stishovite [48] and ZrO2 [63] by an order of
magnitude.

The formation of the transformational process zone in
solids of various types along with the effect of the transforma-
tion toughening shows that it is a typical, rather than a specific,
phenomenon. The universality of the existence of a process
zone and its effect on the fracture toughness suggests that one
should regard it within a universal theoretical approach.

One can divide brittle materials into two classes. The
first of them consists of materials with the process zone,
exhibiting an essentially elastic nonlinearity. Such a process
zone exhibits a fast, nonlinear wave dynamics characterized
by the (nonlinear) sound velocity, c. Since V < c the zone
behind the crack tip collapses, and the wake cannot develop.
One observes such zones in brittle gels [64], polymers [35],
resins [36], stishovite [48], ferroelastic crystals, and some
martensites.

In the second class, another intrinsic degree of freedom,
the order parameter, exhibits a nonlinearity, while the elas-
tically nonlinear zone is small and can be disregarded. It
is essential that the order parameter is different from the
strain. Its dynamics is dissipative. Typically, it is slower than
the sound velocity, and the wake can form. Most materials
exhibiting local stress-induced phase transformations belong
to the second class.

As an approach, enabling one to model process zones in
the second class of materials, we have put forward a field-
theoretical formalism regarding process zones as domains
with local phase transitions [57,65–70]. For the description of
the process zone, this formalism introduces an n-component
field of the order parameter η = (η1, η2, . . . , ηn). The latter
is related to n degrees of freedom determining the differ-
ence in the crystal structure between the process zone and
the matrix [69]. Let us stress that while in a small class
of the so-called proper ferroelastic local phase transitions,
some combinations of the strain tensor components, indeed,
represent the order parameter, in all the other much more
numerous cases the order parameter field is different from the
strain tensor. In this case, the mentioned n-component degree
of freedom represents a primary order parameter exhibiting
its intrinsic static and dynamic behavior. The strain tensor, in
this case, plays the role of the secondary order parameter that
follows the primary one and modifies its effect. Together, they
exhaustively describe the state and dynamics of the process
zone.

In this paper we study the simplest case of a one-
component order parameter (n = 1). In general, regarding the
formation of the process zone, one recognizes that the local
phase transitions often (though not always) correspond to the
bulk phase transitions. That is, the phase diagram of the solid
shows the mother phase, but also typically contains the same
phase that shows up in the process zone, the daughter phase.

One classifies bulk phase transitions by their order.
Second-order bulk phase transitions exhibit a continuous,
piecewise smooth dependence of the order parameter on
external thermodynamic quantities, such as the temperature
η = η(T ). The point of discontinuity of the first derivative of
the η(T ) dependence takes place at the Curie temperature Tc.
However, one rarely meets true second-order phase transitions
in nature.

Most phase transitions are first order [71]. First-order bulk
transitions have a discontinuity of their order parameters η =
η(T ) as the function of temperature at the point of the first-
order phase transition. Besides, first-order phase transitions
exhibit hysteresis, i.e., a region in the phase diagram of the
solid in which two (or more) bulk phases can coexist, one of
them being stable, and the others metastable. Typically, it has
a width of about 1 to 10 K [71], although in some materials,
such as metals exhibiting martensitic transformations, the
hysteresis may be much wider [72].

The order of the bulk transitions, first order or second
order, manifests itself in the behavior of the process zone. To
highlight this correspondence, we specify below the process
zone engendered by the phase transition of the first or of the
second order, or merely, a first or a second order zone.

The zone engendered by a second-order transition emerges
gradually with the increase of the stress intensity factor. Due
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to its continuity, the description of the second-order zone is
mathematically simple, admitting the application of bifurca-
tion theory. The latter enabled us to develop its analytical
theory [69].

What emerge at crack tips in a much larger number of
solids are first-order zones. Such zones emerge stepwise and
exhibit hysteresis. It is in this case that the formation of a
metastable wake becomes possible.

One can address the first-order process zone exhibiting
a metastable wake within the field-theoretical approach. In
[70] we briefly reported the results of simulating the first-
order process zone at the tip of a propagating crack. During
the simulations, we observed that with increasing crack tip
velocity the shape of the process zone changes, passing from
concave to convex.

In this paper, we communicate a detailed analysis of this
problem. We report simulations of the process zone at the
tip of a crack propagating with a constant velocity, the zone
being engendered by a first-order transition. We described
the zone using the relaxation method of computation. In the
case of the first-order zone it exhibited, however, peculiarities
also discussed in this paper. We study the dynamic behavior
of the process zone at different positions of the solid in its
phase diagram and crack velocities. We demonstrate that the
morphological transformation of the zone takes place at a
specific velocity, VG, depending on the position in the solid
phase diagram. At small crack velocities, everywhere in the
phase diagram, the process zone appears to be concave. Its
shape resembles a distorted cardioid. A concave zone exhibits
no wake. As soon as the velocity reaches VG, the invagination
in the zone vanishes. At this point, a morphological transfor-
mation of the zone takes place. Above this velocity, V > VG,
the shape of the zone changes to one resembling a droplet. In
this case, a metastable wake with an approximately triangular
shape follows the zone. Upon exceeding a critical velocity,
Vcr, the process zone vanishes, and a bare crack propagates at
velocity V > Vcr.

The paper is organized as follows. In Sec. II we discuss the
equation of motion of a first-order process zone. In Sec. III we
describe the phase diagram of the process zone and indicate
the region where the formation of a wake is possible. It is
in this region that we performed the simulations we report in
Sec. IV. Section V is devoted to the discussion. Appendix A
gives full details of the derivation of the equation solved in the
paper. Appendix B discusses the peculiarities of the relaxation
method met in this problem and lists the technical details of
the simulations.

The present paper is the first part of our communication. In
part II [73] we analyze the geometrical parameters obtained
from our simulations, derive analytical relations for these
parameters, and compare them with the simulation results. We
further apply these relations to discuss the experimental data
and classify possible scenarios of the propagation of a crack.

II. EQUATION OF MOTION FOR THE ORDER
PARAMETER

A. Free energy and dissipation function

The evolution of the order parameter, η = η(X,Y, t ), over
time gives rise to the energy dissipation described by the

dissipation function D:

D = κ

2

∫
�

(
∂η

∂t

)2

d�, (1)

where κ is the kinetic constant and t is the time. Since both
the order parameter and the displacement vector only depend
on the in-plane coordinates X and Y and are Z independent
the integration runs over the plane: d� = dXdY , R = (X,Y )
is the in-plane radius vector, � is the infinite plane. We assign
all the bulk integrals used here to the unit length in the Z
direction.

The dissipation function (1) corresponds to a quasibrittle
solid, where deviations from ideal brittleness are only due to
the phase transformation. Accordingly, the dissipation func-
tion includes no terms related to the strain rates. Thus, we
assume that there is no dissipation due to plastic deformation.

The order parameter η(R, t ) �= 0 contributes to the solid’s
free energy, F:

F = F0 +
∫

�

�(η, ε)d�, (2)

where F0 is the free energy of a plate containing a crack
without a process zone, � = �(η, ε) is the free energy density
of the process zone, and ε ≡ εik is the strain tensor:

εik = 1

2

(
∂ui

∂Xk
+ ∂uk

∂Xi

)
.

Here ui = ui(X,Y, t ), also denoted as u(R, t ), is the displace-
ment vector. It should not be confused with the rescaled order
parameter, u(x, y, τ ), used in the following.

One can write down the free energy density in the follow-
ing form:

�(η, ε) = �pt(η) + �el(ε) + Aη2εii. (3)

Here the function �pt(η) denotes the part responsible for
the phase transition. We address the simplest case, a phase
transition described by a one-component order parameter, η.
This case catches the essential features of the formation of a
process zone. One can represent �pt(η) as a polynomial in
terms of even powers of the order parameter and its gradient.
Since we aim to describe a first-order transition, the polyno-
mial is, at least, of the sixth order:

�pt = g

2
(∇η)2 + α

2
η2 + β0

4
η4 + γ

6
η6. (4)

Here ∇η is the order parameter gradient, while g > 0 and
γ > 0 are the parameters of the Landau potential (2). If β0 <

0 the potential (4) describes the first-order phase transition.
We address this case in the present paper. Expression (4)
coincides with the classical Landau potential describing a bulk
phase transition. The Landau theory assumes that only the
factor α depends on the temperature: α = α0(T − Tc), where
α0 > 0 is a constant, T is the temperature, and Tc is the Curie
temperature [74]. A derivation of the expansion (4) and its
detailed discussion can be found in, e.g., [75].

�el(ε) is the elastic part of the free energy density, and here
we use the elastically isotropic approximation:

�el = Eσ

2(1 + σ )(1 − 2σ )
ε2

ii + E

2(1 + σ )
ε2

ik, (5)
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where E is Young’s modulus, σ is the Poisson ratio (which
should not be confused with the stress tensor σ ≡ σik), and
μ = E/2(1 + σ ) is the shear modulus.

Finally, the contribution Aη2εii to (3) takes into account the
interaction between the strain and order parameter fields. Let
us note that the form of the interaction term Aη2εii in (3) im-
plies that the phase transition only gives rise to a spontaneous
dilatation. That is, a variation of its volume always follows
the phase transition in the solid. Whether it is an increase in
the volume or a decrease depends on the sign of the striction
constant A. For A > 0, the process zone only emerges at a
temperature below that of the bulk phase transition, while for
A < 0, it emerges above the phase transition line [68]. It is this
latter case, A < 0, that we focus on here. Within the process
zone, a spontaneous dilatation generates stress referred to as
spontaneous stress.

A spontaneous dilatation is always the case when the phase
transition is described by a one-component order parameter,
which is what we address in this paper. More complex cases
involving a multicomponent order parameter and ones gener-
ating a spontaneous shear we considered elsewhere [69].

The parameters of the Landau potential g, α0, β0, Tc, and
A related to the phase transformation together with the elastic
constants E and σ constitute a set of material constants of
the solid controlling its phase transformations and fracture
behavior.

B. Equation of motion

The free energy (2) and the dissipation function (1) en-
able one to derive a system of equations of motion on the
order parameter, η(R, t ), and the displacement vector, u(R, t ).
Making use of the elastic Green’s function, one eliminates the
variables u(R, t ) and its derivatives from the system resulting
in a single dynamic equation in terms of η(R, t ):

κ
∂η

∂t
= gη − [α − U (R, t )]η − βη3 − γ η5, (6)

where U (R, t ) accounts for the effect on the order parameter
of the strain field generated by the crack tip.

Let us study the crack propagating with a constant velocity,
V . In this paper, we do not study conditions of formation of
such a regime; neither are we interested in the analysis of the
eventual formation of its instabilities. This limitation allows
us to avoid considering the equation of the crack motion [76]
and straightforwardly conclude that the strain tensor depends
on coordinates and time as εi j (R, t ) = εi j (X − V t,Y ).

We further assume V � c which allows us to disregard
“relativistic” corrections. Later on (in the discussion to part
II of this work [73]), we justify this assumption by estimates
of the characteristic velocities.

One finds

U (R, t ) = B cos(θ/2)

[(X − V t )2 + Y 2]1/4
, (7)

where θ = arctan(Y/X ) and

B = 4|A|(1 + σ )(1 − 2σ )KI

E
√

2π
. (8)

We refer the reader to Appendix A for details of the derivation
of Eq. (6).

Equation (6) admits, however, a further simplification.
Namely, one can pass from the independent dimensional vari-
ables R, t and the dependent dimensional variable, η(R, t ), to
the dimensionless coordinates: x, y, and the dimensionless
time, τ , as well as a dimensionless order parameter, u =
u(r, τ ) = u(x − vt, y) (see Appendix A). One comes to the
equation

u + 21/3v × ∂u

∂x
− [a − Ũ (x, y)]u + bu3 − u5 = 0 (9)

with the boundary condition u|∂� = 0. Here u = ∂2u/∂x2 +
∂2u/∂y2 is the Laplace operator in terms of the dimensionless
coordinates x and y. The function Ũ (x, y) describes the effect
of the crack tip stress on the order parameter in the rescaled
equation:

Ũ (x, y) = [(x2 + y2)1/2 + x]1/2

(x2 + y2)1/2
≡

√
2 cos(θ/2)√

r
, (10)

where r =
√

x2 + y2 and θ = arctan(y/x). The rescaled equa-
tion (9) only depends on three dimensionless control parame-
ters, a, b, and the dimensionless velocity v. They are related
to the original parameters as follows:

a = 22/3g1/3

B4/3
α, b = 21/3g1/6

B2/3γ 1/2
|β|, v = κ

(2g)1/3B2/3
V.

(11)
Let us stress that formally Eq. (9) includes no dependence on
time. For this reason, it is referred to as static in the following
text.

Let us observe that formally one can obtain the equation
of motion (9) from the dissipation function and free energy
written in terms of the rescaled variables:

D′ = 1

2

∫ (
∂u

∂τ

)2

dxdy, F′ =
∫

�eff(u)dxdy. (12)

Its density, �eff(u), has the form

�eff(u) = 1
2 (∇u)2 + 1

2 [a − Ũ (x, y)]u2 − 1
4 bu4 + 1

6 u6, (13)

where we always regard u as a function of the coordinates
x and y. Further, ∇u is the dimensionless gradient of the
rescaled order parameter: ∇u = (∂u/∂x, ∂u/∂y).

III. THE BULK PHASE DIAGRAM

Let us briefly recall the bulk phase diagram of a solid
with an unloaded crack (B = 0). It is generated by �h, the
homogeneous part of the free energy density, �eff (13):

�h(u) = 1
2 au2 − 1

4 bu4 + 1
6 u6, (14)

also referred to as the Landau potential. One can construct this
phase diagram in the coordinates a and b. Both parameters
can be regarded as functions of a pair of thermodynamic
parameters, such as temperature, T , and Z , where Z can be
any other thermodynamic parameter, such as the hydrostatic
pressure, the concentration of a component in a solid solution,
the electric or magnetic field intensity, and so on. Thus, the
dependence a(T, Z ) and b(T, Z ) one can understand as a
mapping of the plane (b, a) onto the plane (Z, T ).

A standard analysis [75] of the potential (14) requires
looking for its minimum: ∂�h(u)/∂u = 0, ∂2�h(u)/∂u2 > 0,
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FIG. 1. Phase diagram of the Landau potential (14) in the (b, a)
plane. The dashed line shows the upper spinodal (18); the solid black
line is the binodal (20). The pure mother phase occupies region I, the
pure daughter phase is situated within region II, while they coexist
in the hysteresis regions III and IV (shaded). The insets show the
dependence of the potential, �h = �h(u). (a) and (b): In the mother
and daughter phases, respectively. (c) and (d): In the hysteresis area.
We placed dots at the points where the simulation has been done at
b = 1 and a = 0.24 (diamond), 0.23 (hexagon), 0.22 (square), and
0.2 (triangle).

which yields the equation of state

au − bu3 + u5 = 0, (15)

exhibiting three possible solutions. The trivial one describes
the mother phase:

um = 0. (16)

The two others describe the daughter phase:

ud = ±
√

b + (b2 − 4a)1/2

2
. (17)

This solution only exists as long as it corresponds to a min-
imum of the Landau potential (∂�h/∂u = 0, ∂2�h/∂u2 > 0).
As soon as this minimum transforms into the inflection point
(∂�h/∂u = ∂2�h/∂u2 = 0), the solution becomes unstable.
The phase diagram line corresponding to the inflection point
is referred to as the spinodal. The spinodals, therefore, bound
the regions of the existence of the phases. One finds two such
spinodals: upper and lower. The upper spinodal, a = aup(b),
is expressed as

aup = b2/4. (18)

It is shown by the dashed blue line in the phase diagram Fig. 1.
The lower spinodal, a = alow(b), has the form

alow = 0. (19)

In the phase diagram (Fig. 1), it is shown by the line coincid-
ing with the b axis at b > 0.

Above the upper spinodal (region I in Fig. 1) the depen-
dence of the Landau potential, �h, on the order parameter,
u, has a single minimum u = 0. This dependence is shown
in the inset (a) in Fig. 1. This implies that only the mother
phase exists for a > aup. The Landau potential below the
lower spinodal is shown in the inset (b) of Fig. 1. In this case,
it only has minima (17) corresponding to the daughter phase.
This means that for a < 0 (region II in Fig. 1), the mother
phase does not exist.

Between these two lines (regions III and IV in Fig. 1) the
Landau potential has a minimum at both u = 0 and u = ud,
as shown in Fig. 1, insets (c) and (d). This part of the phase
diagram represents the hysteresis region, where the phases
coexist.

One can find the condition that the mother and the daughter
minima are equally pronounced, �h(ud) = �h(0), yielding

ab = 3b2

16
. (20)

This line is referred to as the binodal or the first-order transi-
tion line by different communities.

Below this line, but above the lower spinodal (region
III in Fig. 1), the minima of the daughter phase are more
pronounced than the one of the mother phase [Fig. 1, inset
(c)]. In this case, the daughter phase is thermodynamically
stable, while the mother phase is metastable. Below ab, the
whole bulk of the solid transforms into the daughter phase.
In this region, for A < 0 (the only case that we address in
this paper), the order parameter distribution in the vicinity
of the crack tip is, nevertheless, inhomogeneous. It, however,
everywhere only corresponds to the daughter phase. Analysis
of the inhomogeneous daughter phase is outside the scope of
this paper.

In region IV in Fig. 1, for ab < a < aup the minimum u = 0
corresponding to the mother phase is more pronounced than
those (17) describing the daughter phase. In this case, it is
the mother phase that is stable, while the daughter phase is
metastable.

The phase diagram Fig. 1 was discussed above in terms
of the dimensionless parameters a and b to bring it into
accordance with the solution of Eq. (9) depending on the same
parameters. Let us, however, note that the phase diagram in the
parameters (−β, α) of the original Landau potential (4) has
qualitatively the same form, with the upper spinodal expressed
by α = β2/4γ , the lower spinodal by α = 0, and the binodal
by α = 3β2/16γ .

In this paper, we study the propagation of a crack in a
solid that dwells in region IV of the phase diagram, where
the daughter phase can only exist in a metastable state. In all
calculations we put b = 1. With this value the upper spinodal
aup = 0.25, while the binodal value is ab = 3/16 ≈ 0.188.
The dots in Fig. 1 at b = 1 show the points at the different
values of a at which the simulations have been done: a =
0.24 (the blue disk), 0.23 (the green diamond), 0.22 (the red
square), and 0.2 (the brown triangle), the first point lying close
to the upper spinodal, while the last lies close to the binodal.

IV. PROCESS ZONE AT THE TIP OF A CRACK

We simulated Eq. (9) using the relaxation method (see
Appendix B) with the finite-element method applying the
COMSOL 5.3 software. We took b = 1 and multiple values
of the dimensionless velocity, v, in the interval 0 � v � 1.2,
while the parameter a takes four values: 0.2, 0.22, 0.23,
and 0.24. The results for all these values of a qualitatively
resemble one another, only differing in size and proportion.
For this reason, in most cases, we show the images obtained
with a = 0.24, for various v.
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FIG. 2. Process zone at the tip of the motionless crack at various
a values: (i) a = 0.22, (ii) a = 0.23, and (iii) a = 0.24.

A. A zone at the tip of the motionless crack

Figure 2 shows the process zones at the tips of the mo-
tionless cracks at a = 0.22 (i), 0.23 (ii), and 0.24 (iii). The
straight lines behind the zone indicate the position of the crack
surfaces. We have shown the zones close to one another to
enable the comparison of their shapes and configurations.

Here and in the following the coordinates x and y in Fig. 2
are given in dimensionless units. One dimensionless unit
corresponds to the characteristic length λ0 (see Appendix A).
One finds estimates of the possible value of the characteristic
length along with discussion in part II [73].

One observes that the zone size strongly depends on the
value of the parameter a and rapidly increases upon approach-
ing the binodal. Let us point out an invagination in the rear part
of the zone where the zone meets the crack surfaces.

Figure 3(a) shows the contour of the process zone at the tip
of the motionless crack within the example of a = 0.24. We
obtained the contour as points of the crest of the distribution
(∇u)2 corresponding to the middle of the kink. Though on
a large scale the zone shape closely resembles a cardioid, it
differs from the latter in fine details. Especially important is
the shape of the contour in the rear part of the interface, close
to the crack surface [Fig. 3(b)]. In the case a = 0.24 it meets
the crack surface (y = 0) at x ≈ −18.85, rather than at x = 0,
as should take place in the case of the cardioid. The analogous
situation takes place also for other a values. In all cases we
observed a finite setback x < 0. In detail the setback at v = 0
is summarized in part II [73].

B. A slowly propagating crack

Figure 4 shows the process zones at the tips of slowly
propagating cracks at a = 0.22 (i), 0.23 (ii), and 0.24 (iii).
Since the shapes of the zones strongly depend on a, we
have chosen different velocities such that the zones’ shape
corresponds to those typical for the small crack tip speed.
Thus, the zone indicated by (i) propagates with the velocity
v = 0.08, while those marked by (ii) and (iii) move with
v = 0.16.

We have chosen the view enabling one to better see
the invaginations in the rear part of the zones consider-
ably increased in comparison with the motionless crack-zone
complex.

Figure 5 shows the example of the evolution with in-
creasing the velocity, v, of the spatial distribution of the

FIG. 3. (a) The contour of the interface of the motionless process
zone (a = 0.24). Only the upper semiplane is shown. Red dots
indicate the points of the contour corresponding to the points of the
crest of (∇u)2. The blue circle indicates the rear part of the contour.
(b) The blown-up view of the rear part of the same contour in the
close vicinity of the x axis.

dimensionless order parameter, u, at a = 0.24. Figure 5(a)
shows the zone at the tip of a motionless crack, while panels
(b)–(d) display those for the crack with a gradually increasing
velocity. The crack spans along the semi-infinite line y = 0,
−∞ < x − vτ � 0, with its tip in the origin of the coordi-
nates. The velocities of the crack propagation for the order
parameter distributions shown in Fig. 5 are (a) v = 0, (b)
v = 0.159, (c) v = 0.238, and (d) v = 0.254. As will be clear
later, all of these are below the velocity corresponding to

FIG. 4. Process zones at the tips of slowly propagating cracks at
various a values: (i) a = 0.22, (ii) a = 0.23, and (iii) a = 0.24.
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FIG. 5. The distribution of the order parameter, u(x − vτ, y), within the process zone at a = 0.24, b = 1, and (a) v = 0, (b) v = 0.159,
(c) v = 0.238, and (d) v = 0.254. The red lines behind the distribution schematically indicate the positions of the crack surfaces.

the morphological transformation, vG, the velocity v = 0.254
[Fig. 5(d)] being only slightly smaller than vG.

The simulation results show the following general prop-
erties of the order parameter distribution in the vicinity of
the crack tip characterizing a first-order process zone: Far
from the process zone, the order parameter is zero. At the
boundary of the zone, it exhibits a steep kink passing into
an almost plane “roof” [Figs. 5(a)–5(d)]. Figure 6(a) shows a
cross section of all the order parameter distributions displayed
in Fig. 5. The cross section is made along the plane y = 0. One
can distinguish two different “roofs.” One of them, indicated
by the arrow α in Fig. 6(a), belongs to the leading zone part.
This leading roof, with a height, u1, between 0.79 and 1.2, has
a shallow slope of ∼10−3 to ∼10−4. The former estimate of
the slope we obtained in the case of the steepest, narrowest
zone, while the latter one is for the case of the widest, most
shallow one. That is, the order parameter in this region gently
increases with decreasing distance to the crack tip at (0,0). In
most of this region, it does not exceed u = 1. A peak reaching
the value of u = 1.2 is visible in the close vicinity of the
crack tip.

The roof, indicated by the arrow β, is situated behind the
crack tip. It thus belongs to the trailing part of the zone. It
forms an almost flat plateau with a height of u2 ≈ 0.8 and
negligibly small slope. Let us stress that the values u1 and
u2 given above are valid for a = 0.24. In general, u1 and u2

depend on a and b, as we discuss in detail in part II [73].
Figure 6(a) also shows that the heights, u1,2, of the roof are

not sensitive to the speed of the tip of the crack. The size of
the zone, in contrast, decreases with increasing velocity of the
crack tip. The latter is visible in Fig. 6(b), where we show the
zone boundaries in the upper half plane y > 0.

At low crack tip speeds, the zone contour represents a
deformed cardioid, as if the process zone at a motionless

FIG. 6. (a) A cross section of the zone along the line y = 0 at
a = 0.24, b = 1. The arrow α indicates the “roof” of the leading part
of the distribution with the height u1, while β points out its trailing
part. Here the roof height is u2. (b) The zone boundary in the upper
half plane y > 0. The circles [panel (a)] and the contour (i) [panel
(b)] correspond to the velocity value v = 0, the squares and contour
(ii) to 0.159, the diamonds and contour (iii) to 0.238, and the triangles
and contour (iv) to 0.254.
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FIG. 7. (a)–(c) Order parameter distribution at the tip of a crack propagating with the velocity of the morphological transformation, vG,
equal to 0.264 at a = 0.24 (a), 0.22 at a = 0.23 (b), and 0.149 at a = 0.22 (c). The red lines behind the distribution schematically show
the position of the crack surfaces. (d) The zone boundary contours (at y > 0) of the zones propagating with the transformation velocities:
(i) corresponds to the image (a), (ii) to (b), and (iii) to (c). The arrows indicate the end of the trailing zone, where the zone boundary is
perpendicular to the y axis.

crack tip were decreased in its size and stretched somewhat
backward. The point where the zone boundary hits the crack
surface, y = 0, is also shifted backward to some value at
(−l, 0), the distance l = l (v) increasing with the velocity. The
zone exhibits an invagination in its rear part. The depth of
the invagination, however, depends on the crack tip velocity,
and gradually vanishes upon approaching vG [see Fig. 6(b),
contour (iv)].

To avoid a misunderstanding, let us make it clear that the
distribution shown in Fig. 6(a) is taken along the line y = 0
and, thus, passes through the invagination. The end point of
the roof β shown in Fig. 6(a) is taken at the crack surface
and has the coordinates (−l, 0). It lies behind the crack tip
x − vτ = 0, y = 0. The length l > 0 is equal to the distance
from the deepest point of the invagination (−l, 0) to the crack
tip (0,0). In contrast, the size of the distribution’s “petals” may
be greater, and the x projection of the coordinate of the back
point of the petal, xa, of the distribution is larger than l in its
absolute value, as can be made clear by comparing Fig. 6(a)
with Fig. 6(b).

C. The morphological transition

As soon as the crack tip velocity reaches a certain value,
vG, the order parameter distribution loses its concavity. The
back part of the zone boundary becomes perpendicular to the
y axis. In the cases of a = 0.22, 0.23, and 0.24 the distribution
u(x − vτ, y) is shown in Figs. 7(a)–7(c). It is at this value of
the crack tip velocity that the morphological transformation
takes place.

The velocities of the morphological transformation, vG,
depend on the place on the phase diagram. Since we fixed b =
1 this manifests itself in the dependence on a. We summarize
the values vG(a) in Table I.

Figure 7(d) displays the boundaries of zones propagating
with the velocities of the morphological transformation for the
cases shown in Figs. 7(a)–7(c). The arrows indicate the rear
portions of the boundaries, where they are flat and normal to
the y axis.

D. Process zone at the tip of a fast-propagating crack

As soon as the velocity exceeds vG, the zone becomes
convex. Figure 8 shows the overcritical configurations of the
process zone at different velocities. The zone takes the form
of a droplet with a pointed end. This droplet is considerably
stretched out along the x axis.

The dependence of the geometry of the zone on the velocity
of the crack tip is visible in Fig. 9(a), which shows the con-
tours of the process zone for the order parameter distributions
displayed in Figs. 9(a)–9(d). The contour (i) corresponds to
Fig. 9(a), the contour (ii) to (b), (iii) to (c), and (iv) to (d). One
can see that the size of the zone decreases with increasing
velocity.

TABLE I. Velocities of the morphological transition.

a 0.22 0.23 0.24
vG 0.149 0.220 0.264
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FIG. 8. Order parameter distribution around the tip of a crack propagating with velocity exceeding vG. The simulation results with a =
0.24, b = 1 are shown. The panel (a) shows the configuration slightly above the transition v ≈ 0.294, (b) v ≈ 0.4, (c) v ≈ 0.63, and (d) shows
the distribution at v ≈ 1.03, close to the critical velocity at which the zone vanishes. The solid red lines schematically indicate the position of
the crack surfaces.

FIG. 9. (a) The boundaries of the process zones shown in Fig. 8.
(b) Cross sections of the distributions of the order parameter shown
in Fig. 8 along the crack (y = 0). α indicates the “roof” with height
u1 in front of the crack tip, and β indicates the one with height u2

behind it. The distribution shown in Fig. 8(a) corresponds to the line
indicated by (i), (b) to that indicated by (ii), (c) to that by (iii), and
(d) corresponds to (iv).

As in the previous case, one finds a distribution with two
roofs: the one indicated by the arrow α [Fig. 9(b)] has a height
of u1 ≈ 0.99, is located in front of the crack tip, and exhibits
a small slope varying between 5 × 10−3 and 2 × 10−2. This
slope only becomes pronounced, forming a small peak, in
close vicinity (0 � x − vτ � 10) to the crack tip. The rear
roof (indicated by the arrow β) has a height of u2 ≈ 0.776
and a negligibly small slope of ∼10−4 up to the kink region.

It is also essential to understand how the configurations of
the order parameter distributions vary depending on the place
in the phase diagram at a fixed velocity. Figure 10 shows such
distributions obtained with the velocity v ≈ 0.79. We placed
the distributions close to one another for comparison. One can
see that for a approaching the binodal, the dimension of the
distribution in the x direction dramatically increases. Some
limited growth takes place also with the so-called zone height
traditionally understood as the maximum zone dimension in
the y direction.

To understand, how the roofs of the distributions depend
on the distance a − ab from the binodal, it is convenient to
analyze the cross sections of the order parameter distributions
shown in Fig. 10. Figure 11 displays such cross sections.

One can see that in approaching the binodal, the roof
height, u2, slightly increases, which we summarize in the
second line of Table II.

The second line of Table II shows the values of the roof
height, u2, at the rear part of the distribution for various
values of the parameter a. One observes that values of u2 are
independent of the velocity. The third line of the same table
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FIG. 10. Comparison of the configurations of the zone-wake
complexes propagating with the same velocity exceeding vG but at
different distances from the binodal. (i) a = 0.24, (ii) a = 0.23, (iii)
a = 0.22, and (iv) a = 0.20. Approaching the binodal, ab ≈ 0.18, the
length of the wake dramatically increases, the “roof” height of the
u = u(x − vτ, y) distribution staying the same. The solid red lines
indicate the positions of the surfaces of the cracks.

presents the values of the order parameter in the daughter
phase (17) at b = 1 for various a. One finds a close agreement
between u2 and ud.

E. The width of the phase boundaries

Another interesting question is the width of the interface
boundaries. The latter one can study by observing the behav-
ior of (∇u)2 which is close to zero everywhere, except the
close vicinity to the kink. At the kink, the function (∇u)2

exhibits a bell-shaped function.
Figure 12 shows the behavior of (∇u)2 in the utmost

leading zone part for a = 0.24 for different velocities: v =
0.24, 0.40, 0.56, 0.79, and 0.95. We fitted the points obtained
from the simulation by the Gaussian curve. The fitting yields
the wall thicknesses d ≈ 3.66, 3.26, 3.94, 2.36, and 2.26
correspondingly. One concludes that the wall thickness is
always much more narrow than the zone size. The same
situation takes place in the cases of other a values.

FIG. 11. Cross section of the order parameter distributions
shown in Fig. 10 along the line y = 0. (i) a = 0.24, (ii) a = 0.23,
(iii) a = 0.22, and (iv) a = 0.20.

TABLE II. Variation of the “roof” height.

a 0.2 0.22 0.23 0.24
u2 0.85 0.82 0.81 0.79
ud 0.85 0.82 0.80 0.78

F. The critical velocity

As soon as the velocity exceeds a certain value, vcr, the
process zone vanishes stepwise. Figure 13 compares three
zone-wake complexes for the same value of a = 0.2 with
three gradually increasing values of the velocity: (a) v =
1.032, (b) 1.111, and (c) 1.184. The last is the closest to the
critical velocity value that we succeeded in obtaining. Under a
further velocity increase, the solution is within the numerical
noise. One can see that with the increase of the velocity
from v = 1.032 to v = 1.184, the wake length, l , dramatically
decreases. The zone height, h, and width, r, also decrease,
although not as much as the wake length. It is important to
note that the height of the u(x − vτ, y) distribution exhibits
no variation up to the critical velocity.

V. DISCUSSION

A. Field-theoretical description of the process zone

One can only regard the process zone as a specific domain
provided some of its properties differ from those in bulk. The
process zone often exhibits a qualitative difference from the
bulk, such as the difference in its chemical composition, its
crystal structure (for example, cubic, tetragonal, or mono-
clinic lattice structures as in the case of ZrO2 [45]), its elec-
tronic structure (such as metal or isolator as in VO2, exciton
condensate or exciton gas, normal or superconductive states
[34]), or its magnetic structure (paramagnetic, ferromagnetic,
antiferromagnetic). All the above structures (as well as those
we did not mention here) are related to internal degrees of
freedom. They activate locally in the vicinity of the crack tip
due to the high stress.

One can divide all such internal degrees of freedom into
two classes. To the first class belong the ones characterized

FIG. 12. The behavior of the (∇u)2 along the line y = 0 in the
leading zone part. The dots show the simulation results, while the
solid lines display their fitting by the Gaussian curve.
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FIG. 13. The gradual variation of the process zone–wake com-
plex in the vicinity of the critical point at a = 0.24. (a) v ≈ 1.032,
(b) v ≈ 1.111, and (c) v ≈ 1.184. A further increase of v gives rise
to a dramatic vanishing of u, so that it is not visible in the plot.

by a potential, such as the Landau potential. The latter plays
the role of the Lyapunov function for the dynamics of these
degrees of freedom. The structural degrees of freedom, such
as optical and acoustic phonons, magnons, degrees of freedom
related to the electronic subsystem, belong to the first class.
The degrees of freedom whose dynamics cannot be related to
any potential belong to the second class, like those describ-
ing chemical reactions or plasticity. Derivation of equations
describing the system belonging to these two classes requires
different approaches.

In this paper, we only discuss the first class. Namely,
we only consider the zones that differ from the bulk of the
solid by the structure of its crystal lattice. To describe such a
structural difference, Landau proposed [74] to introduce the
order parameter, η. One constructs it as a set of degrees of
freedom of the solid, such as normal coordinates of optical
phonons. Our approach, therefore, is akin to the theory of
structural phase transitions [74,77].

As in the Landau theory, one analyzes the solid phase
diagram. The latter, in general, contains several phases. Let
us denote the symmetry groups of their crystal lattices as
G, G1, G2, . . . , Gm, where m is an integer number m � 1.
Further, the groups Gi are in a group-subgroup relation with
the supergroup G: Gi ⊂ G (i = 1, . . . , m). Landau argued [74]
that the order parameter transforms according to one of the
irreducible representations of the supergroup G. The latter
completely defines the order parameter [74] and the so-called
Landau potential [77].

In accord with this, we describe the zone by the field,
η = η(r, t ). Assuming η �= 0 inside the zone while vanishing
outside, one describes the zone with the symmetry group Gi

and the matrix with the group G. If η �= 0 in the matrix, it
corresponds to one of the low-symmetry phases, Gi. At the
same time, η = 0, within the zone, means that it contains the
high-symmetry phase, G.

Let us also point out a few situations one should expect
in the case of a multicomponent order parameter. On the one
hand, one can face a situation with some order parameter
components different from zero in the matrix, while some

its other components are nonzero within the zone. Such a
situation corresponds to the low-symmetry phases Gi and Gj

(i �= j) describing the matrix and the zone or, in some cases,
different domains (twins, or variants) of the same phase, Gi.
On the other hand, one can meet a situation in which the
zone consists of several subdomains, each containing another
phase, G1, G2, . . ..

A family of the so-called reconstructive transitions, such as
transformations between body-centered cubic (bcc) and face-
centered cubic (fcc) or hexagonal close-packed (hcp) struc-
tures, exhibits no such group-subgroup relation as discussed
above. For a long time, therefore, the scientific community
believed that, in this case, one could not apply the Landau
theory. However, the introduction of a transcendental order
parameter [78] demonstrated that Landau’s theory could also
efficiently cope with reconstructive transformations [79]. The
process zone also can be of a reconstructive type. The observa-
tions of the fcc-bcc zone-matrix combination was reported in
molybdenum [5] and in steel [7], and the bcc-hcp combination
in iron [80] and in titanium [39].

All the zones described above are nonlinear. However, if
one can regard the elasticity in such systems as a linear one,
the nonlinearity in these cases is only related to the order
parameter. This condition holds for many brittle solids. In this
case, the field-theoretical approach offers a relatively simple
description of the process zone.

Let us turn now to the cases that are not amenable to the
field-theoretical approach.

Proper ferroelastic materials constitute a stand-alone class.
They exhibit phase transformations described by the order
parameter built out of components of the strain tensor [81].
In this case, one can still formulate the order-parameter-based
theory of the process zone. The latter, however, represents
equations of nonlinear elasticity, the nonlinearity being essen-
tial. One can only study these equations numerically. Even
that can become, however, impossible since one typically
measures the elastic modules of the higher orders with a
significant scattering [82].

A similar problem arises at the description of process zones
experiencing the local martensitic transformations accompa-
nied by a high spontaneous strain. In these cases, one often
can describe the transition by the structural order parameter,
different from the strain tensor. However, high spontaneous
strains make the problem highly elastically nonlinear. The
situation is not much easier to deal with in a purely elastically
nonlinear process zone (for instance, in brittle gels [64]). In
all these cases, our approach offers no advantage.

From this discussion, one can see that the field-theoretical
approach enables one to describe many process zones of very
different origins uniquely by the introduction of an order
parameter field, or several such fields.

The introduction of the order parameter as an “indicator
field” of the process zone seems to be a promising idea even
if the Landau potential does not exist. For example, one can
introduce such an indicator field for zones involving local
stress-induced chemical reactions, or those with dense dislo-
cation pileups. One can, further, combine such an indicator
field describing the extended process zone with the traditional
phase-field order parameter [83], bringing the method high
flexibility. A combination of the phase-field description of
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cracks with the order-parameter-based description of the pro-
cess zone may be a useful extension of both directions.

As for the difficulties, they are related to the fact that the
Landau potential is a polynomial. It must provide it to be
positively defined. That is, it is at least of the fourth order
in the case of the second-order transformation, and at least
of the sixth-order for the first-order one. However, in specific
cases, the polynomial order may still occur higher. As a result,
it may depend on many coefficients [such as α, β, and γ in
Eq. (4)]. To get quantitative results for specific materials, one
has to know the numerical values of such parameters. These,
however, have been measured experimentally for a limited list
of materials only [84].

B. Resumé

The equation of motion (9) exhibits a bifurcation [68] at
a = a∗. For a < a∗, a process zone occupied by the daughter
phase exists at the crack tip. For the potential (10) used here,
this value is equal to a∗ = 2−2/3 ≈ 0.63.

In this paper, we only addressed the domain below the
upper spinodal and only made our simulations with b = 1.
These limitations prescribe the values of the parameter a to
lie between 1/4 (the upper spinodal) and 3/16 (the binodal).
These values lie well below a∗ ≈ 0.63. For this reason, we
only dealt with the subcritical behavior of the equation of mo-
tion, and the process zone always existed in our simulations.
Thus, in this paper, we are not interested in the emergence
of the process zone. Our study focuses on configurations
exhibited by an already existing, propagating process zone.

In the course of the simulation, we observed that at small
crack tip speeds, the process zone is concave, with an in-
vagination in its back. As soon as the velocity exceeds the
value, vG, the shape of the zone changes to be convex, taking
a droplet configuration.

We established that a close coincidence takes place be-
tween the roof of the rear zone part, u2, and the order param-
eter value, ud, in the free, bulk daughter phase.

This is, however, not the case in the leading part of the
distribution. The origin of the difference between the roof
height in the leading and rear zone parts is that the leading part
of the distribution belongs to the region where the potential,
U (r, θ ) = √

2 cos(θ/2)r−1/2, in Eq. (9) is considerable. It is
this potential that determines the configuration of the leading
part of the distribution.

Furthermore, if the crack is loaded (KI �= 0), but still
motionless (KI < KIC), the zone is occupied by the daughter
phase which is stable and can exist infinitely long. It is ther-
modynamically stabilized by the potential, U (r, θ ). As soon
as the crack moves, it is the propagation of this potential in
front of the crack tip that forces the mother phase to transform
into the daughter phase along the leading zone interface.

In contrast, behind the crack tip, the potential gradually
vanishes, due to its angular dependence. Besides, in the case
of u distributions stretched out over long distances (such as
those displayed in Figs. 8 and 10) the effect of the potential
in the rear part becomes negligible because it decreases as
∼r−1/2.

One concludes that the daughter phase occupies the rear
part of the distribution. Here, however, it is not stabilized by
the potential, U (r, θ ).

We only simulated the problem in region IV of the material
bulk phase diagram (Fig. 1). As we discussed in Sec. III,
in this region the free daughter phase is metastable. One
concludes that the rear part of the order parameter distribution
consists of the daughter phase in the metastable state. As soon
as it is not stabilized, such a state gradually decays. In the
case of a motionless crack, it has enough time for the whole
metastable phase to vanish.

However, for 0 < v < vG one observes that only small
portions of the backward petals of the concave zone consist
of the metastable daughter phase, while the rest of the zone is
stable. It is stabilized by the potential U (r, θ ).

Historically, it was the elongated “tail” of the daughter
phase behind the propagating zone that one referred to as the
wake. That is, the wake only forms for v > vG, when the zone
takes a convex, elongated, droplet-like shape. In this case, the
daughter phase within the tail is not stabilized by the potential
and exhibits a roof, u2, almost equal to ud, suggesting that it
dwells in the metastable daughter phase.

Let us stress that as observed from our simulations, the
whole wake travels together with the zone–crack tip complex,
rather than staying behind forever. In other words, the back-
ward wake point has the same velocity, v, as that of the crack
tip. One concludes that the wake studied in this simulation
differs from the infinitely long-lived one reported in early
experiments [44], but rather is like the more recently observed
ones [57,58]. The origin of these differences along with a
detailed analysis of the wake parameters will be discussed in
part II of the present paper [73].

The knowledge of the geometry of the process zone is
a necessary basis for calculating the value of the stress in-
tensity factor. The discovered morphological transformation
inevitably influences the amount of the dynamic screening
of the stress field at the crack. The latter affects the crack
dynamics. The description of this dynamics is, however, out
of the scope of this paper. This question we will address in a
forthcoming paper.

VI. SUMMARY

To summarize, during the study of a process zone at the
tip of a propagating crack we established that upon increasing
the crack velocity the zone exhibits a morphological transfor-
mation passing from a concave shape with an invagination at
its back to a convex droplet-like shape. In this latter case, the
metastable wake follows the propagating process zone.
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APPENDIX A: DERIVATION OF EQUATIONS OF MOTION

1. The Lagrangian and the dissipation function

Making use of the density of the Landau potential (3) one
can write down a Lagrangian, L, of the solid:

L =
∫ {

1

2
ρ

(
∂u
∂t

)2

− �(η, ε)

}
d�, (A1)
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where ρ is the mass density of the solid, and � is the
density of the Landau potential (3). We assume here that the
order parameter only exhibits a relaxational dynamics and,
therefore, omit the corresponding inertial term. The latter is
justified at least for order-disorder phase transformations.

The equations of motion can be derived by the variation
of the action A = ∫

Ldt using the Lagrangian (A1) and the
dissipation function (1). One finds details on derivation of
dynamic equations in [69]. One obtains the following system
of equations:

κ
∂η

∂t
= gη − [α + 2Aεii(R)]η − β0η

3 − γ η5, (A2)

ρ
∂2ui

∂t2
= ∂σik

∂Xk
. (A3)

In this section we regard all relations in 3D. Correspond-
ingly, the radius vector is R = (X,Y, Z ) and the Laplace
operator has the form  = ∂2/∂X 2 + ∂2/∂Y 2 + ∂2/∂Z2. The
derivative of the free energy [Eqs. (3), (4), (5)] with respect to
the stain, σik = ∂�/∂εik , represents the stress tensor:

σik = Eσ

(1 + σ )(1 − 2σ )
ε j jδik + E

1 + σ
εik + Aη2δik . (A4)

Here δik is the Kronecker symbol. The last term in (A4),
Aη2δik , describes the spontaneous stress generated by the
phase transition.

A general consideration with any value of the crack speed,
V , one finds in [69]. In this paper for simplicity, we only
consider the crack velocities, V , much slower than the speed
of sound, V � c. In this case, one can approximate the
mechanical equation (A3) as follows:

∂σik

∂Xk
= 0. (A5)

We disregard changes in the temperature during the crack-
zone dynamics due to the liberation or absorption of heat in
the course of the phase transformation. The latter is possible,
provided the heat rapidly removes from the place where it is
generated or rapidly flows to the place where it is absorbed.
It can happen in two cases: (i) in a material possessing
a high thermal conductivity and (ii) in the case of a thin
layer of material supported by a substrate with high thermal
conductivity. In these cases, the temperature of the material
is almost equal to the ambient temperature and Eqs. (A2) and
(A5) hold. Otherwise, one needs to supplement (A2) and (A5)
with the heat conduction equation. The analysis of such an
extended model is, however, outside the scope of the present
paper.

Equation (A2) together with Eq. (A4) constitutes the com-
plete system of equations describing the dynamics of the
process zone.

2. Elimination of the elastic variables

Degrees of freedom associated with the strain field can be
eliminated using the technique of the elastic Green’s function.
Indeed, making use of (A5) and (A4), one can express the

displacement vector ui as

ui(R) = u(0)
i (R) − A

∫
Gi j (R − R′)

∂η2(R′)
∂X ′

j

d3R′, (A6)

where u(0)
i (R) is the displacement field generated by the crack

without the transformational process zone and Gi j (R) is the
elastic Green’s function of the solid. Einstein summation
convention is assumed. Using its Fourier transform,

Gi j (R) =
∫

Gi j (k) exp(ikR)
d3k

(2π )3
, (A7)

one finds an integral representation of the dilatation εii(R),

εii(R) = ε
(0)
ii (R) + A

∫
η2(R′)kik jGi j (k)

× exp[ik(R − R′)]
d3R′d3k

(2π )3
, (A8)

where the crack without the process zone (η ≡ 0) engenders
the strain ε

(0)
ii (R). In the elastically isotropic case, it is given

by the well-known expression

ε
(0)
ii (R) = (1 + σ )(1 − 2σ )KI

E (2πρ)1/2
cos(θ/2), (A9)

where ρ = √
X 2 + Y 2 and θ = arctan(Y/X ) are the polar

coordinates with the origin at the crack tip and KI is the
stress intensity factor [85]. The second term (A8) represents
the contribution of the process zone to the strain. Substitution
of the strain expression (A8) into (A2) yields the nonlinear,
integro-differential equation of motion for the order parame-
ter:

κ
∂η

∂t
= gη − [

α + 2Aε
(0)
ii (R)

]
η − N̂ (η). (A10)

Here the nonlinear equation part, N̂ (η), is expressed as fol-
lows:

N̂ (η) = β0η
3(R) + γ η5(R) − 2A2η(R)

∫
η2(R′)kik jGi j (k)

× exp[ik(R − R′)]
d3R′d3k

(2π )3
. (A11)

Equations (A10) and (A11) involve no elastic degrees of
freedom and contain only the field η(R).

One can obtain the Green’s function of the solid containing
a crack in two steps, as initially proposed by Bueckner [86].
During the first step, one determines the stress field in a
damage-free solid to which a local force is applied. The
second step determines the corresponding perturbation of the
stress intensity factor due to the cut. The value of the stress
obtained during the first step one determines along the cut
surface, subtracts it from that originally applied [87], and finds
the net stress intensity factor by the standard way. The stress
field still has the universal form, σ ∼ KI cos(θ/2)(2πρ)−1/2,
where one should understand KI as the net stress intensity
factor.

The second step determines the net stress intensity factor.
It involves bulky calculations, its description being lengthy.
We report it elsewhere. In this paper, we describe the essential
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first step, but only include step 2, by treating KI as a net stress
intensity factor.

To perform step 1, let us use (A4) and (A5) to find the
elastic Green’s function of the damage-free solid,

Gi j (k) = 2(1 + σ )

E

[
δi j

k2
− 1

2(1 − σ )

kik j

k4

]
, (A12)

and for (A12) the following identity holds:

Gi j (k)kik j = − (1 + σ )(1 − 2σ )

E (1 − σ )
. (A13)

In this case, the integral in (A8) can be explicitly evaluated
yielding the following relation:

εii(R) = ε
(0)
ii (R) + A(1 − 2σ )(1 + σ )

2E (1 − σ )
η2(R). (A14)

With (A14), the nonlinear part (A11) of Eq. (A10) takes an
especially simple form,

N̂ (η) = βη3(R) + γ η5(R), (A15)

where the new negative constant β < 0 stays now instead of
β0 < 0. One expresses it in terms of the coefficients of the
original Landau potential as follows:

β = −|β0|
[

1 + 2A2(1 − 2σ )(1 + σ )

E (1 − σ )|β0|
]
. (A16)

One finally obtains the nonlinear dynamic equation on the
order parameter (6), where U (R, t ) ≡ B cos(θ/2)ρ−1/2 ac-
counts for the effect of the strain field on the order parameter.

As a result, we have the process zone in which η(R, t )
is the primary and the displacement vector, u(R, t ), is the
secondary order parameter. After one has solved Eq. (6), the
elastic degrees of freedom can be obtained using the Green’s
function (A6) for u(R,t ) and its derivatives.

The transformation of the integral representation (A11)
into polynomial (A15) is possible due to two simplifying
properties assumed in this paper. The first is the elastic
isotropy of the solid proposed here. The second is that we only
accounted for the spontaneous dilatation manifesting itself in
the interaction term ∼η2εii in the free energy density (3).
If one studies an elastically anisotropic solid, or one admits
shear components of the spontaneous strain, or both, the last
term in N̂ (η) [Eq. (A11)] does not simplify. In this case, (A10)
represents the integro-differential equation. Analysis of these
more complicated cases is out of the scope of this paper.

3. Automodel equation

Let us stress that this equation exhaustively describes
the configuration and dynamics of the process zone at the
crack tip.

Assuming that the crack propagates with the velocity V
along the X axis from left to right, and expressing η(X,Y, t )
as η(X − V t,Y ), one comes to the automodel equation in the
comoving system of coordinates

gη + κV
∂η

∂X ′ − [α − U (X ′,Y )]η − βη3 − γ η5 = 0.

(A17)

TABLE III. Characteristic values of the parameters of the problem.

t0 λ0 η0 V∗

κg1/3

21/3B4/3 21/3
( g

B

)2/3 B1/3

21/6γ 1/4g1/12
(2g)1/3B2/3

κ

Here X ′ = X − V t ,  = ∂2/∂X ′2 + ∂2/∂Y 2. The boundary
conditions have the form η|∂� = 0. The latter expresses that
fact that the daughter phase only exists in the vicinity of the
crack tip and vanishes away from it. Since in the following
we only use the comoving system, from now on we omit the
prime and write X instead of X ′.

Equation (6) describes the evolution of the order parameter
in the vicinity of the crack tip. In turn, (A17) treats its
evolution in coordinates comoving with the velocity V �= 0
of the crack.

After one has obtained the solution, η(R, t ), of (A17), one
can use the Green’s function to find the stress at the tip. The
latter includes both the component generated by the crack tip
itself as well as the one engendered by the process zone.

4. Rescaling

Equation (A17) depends on six parameters g, κV , α, B, β,
and γ . For the numerical study, it is convenient to decrease the
number of these parameters by rescaling Eq. (A17). Besides,
this will make dimensionless all parameters and variables of
the resulting equation. We pass from X , Y , t and the dependent
variable, η(X,Y, t ), to the dimensionless ones—x, y, τ and
u = u(x, y, τ )—as follows:

τ = t/t0,

(
x

y

)
= 1

λ0

(
X

Y

)
, v = V/V∗, u = η/η0,

(A18)

where the expressions of the characteristic time and scale
of the problem, t0 and λ0, the characteristic velocity, V∗,
and the characteristic value of the order parameter, η0, are
summarized in Table III.

One should not confuse the rescaled order parameter,
u = u(r, τ ), that we treat here as a scalar, with the original
displacement vector, u(R, t ).

After these transformations Eq. (A17) transforms into
Eq. (9). The latter has the form convenient for numerical
solution.

APPENDIX B: TECHNICAL DETAILS
OF THE SIMULATIONS

1. Relaxation method for the first-order zone

In the past, we analyzed the process zone engendered by a
second-order phase transition. The latter can be described an-
alytically in closed form, the description being asymptotically
exact [69].

In contrast, no exact or asymptotically exact solution is
possible in the case of a first-order zone. In this paper, we
study it by numeric simulation.

We simulated the problem by the relaxation method.
We formally introduced an artificial time, τp, referred to
as the pseudotime, and assumed that ud = ud(x, y, τp). The
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subscript “d” stands for “dynamic.” Instead of simulating the
static equation (9), we simulated the following pseudotime-
dependent dynamic equation:

∂ud

∂τp
= − f (u). (B1)

One can regard the dynamics described by Eq. (B1) as the mo-
tion of a point in a functional space, the derivative, ∂ud/∂τp,
representing its velocity. One can also regard the left-hand part
of (B1) as the viscous friction force with the mobility equal to
unity. Its right-hand part,

f (u) = −ud − 21/3v × ∂ud

∂x
+ [a + Ũ (x, y)]ud − bu3

d + u5
d,

(B2)

with the boundary condition ud|∂� = 0 plays the role of a
driving force in the functional space. The nonzero initial
condition ud(x, y, 0) = u0(x, y) �= 0 is a point in this space
from which the motion of the point begins.

The free energy F ′ (12) represents a hypersurface in the
functional space. Any solution, ud(x, y, τp), of (B1) is a
trajectory “drawn” on this hypersurface. If the hypersurface
possesses a potential well, any trajectory falling there stops at
the point of its minimum, umin. At this point the driving force
vanishes:

f (umin) = 0. (B3)

Thus, if there are several minima of the hypersurface F ′ they
represent the fixed points of Eq. (B1).

The solution, u(x, y), of the static equation (9) represents a
fixed point of the dynamic equation (B1) and can be obtained
as a limit: u(x, y) = limτp→∞ ud(x, y, τp). In practice, we
approximate the function u(x, y) by ud(x, y, τp) at a time τp

large enough to ensure convergence. This approach we have
successfully applied in the past to simulate the second-order
process zone [68,69,88].

In the case of the first-order zone, the situation becomes
more complicated since in the hysteresis region, the hyper-
surface, F ′, has, at least, three minima, corresponding to the
mother and the daughter phase zones. The latter implies that
some trajectories can fall into the secondary minima, where
one does not expect them.

However, the hypersurface F ′ of the first-order potential
can have even a more complicated structure, with several
secondary minima different from those of the mother and
daughter phases. For example, one such secondary minimum
corresponds to a solution shown in Fig. 14. It possesses
straight portions of the boundary (indicated by arrows in
Fig. 14), rather than the expected curved ones. The solution
displayed in Fig. 14 stays in this form for a very long time of
simulation exhibiting no visible evolution.

On the one hand, this implies that the solution is close to a
fixed point. On the other hand, its size and the shape suggest
that it is somewhere not far, but differs from the desired one. It
is since the solution we are looking for is smooth. In this case,
we expect it to be approximately in the form of a cardioid.
One concludes that this fixed point differs from the one we
look for.

FIG. 14. The boundary of the process zone at the crack tip
obtained in the simulation exhibits straight portions. The crack spans
from x = −∞ to x = 0. In the case shown here, we performed the
simulation with the parameters a = 0.22 and v = 0, and the solution
in this state already exhibits a good convergence which implies
that the configuration corresponds to some minimum of F ′. The
boundary, however, exhibits straight portions indicated by arrows,
suggesting that the solution is trapped in a secondary minimum.

The explanation of the fixed point shown in Fig. 14 is
as follows. The straight parts of the boundary give rise
to some loss of the “homogeneous” part of the energy,∫ {[a − U (x, y)]u2/2 − bu4/4 + u6/6}dxdy, Eq. (13). They,
however, yield some energetic gain due to decreasing its
“inhomogeneous” part

∫
(∇u)2dxdy/2 along the straight por-

tions. Such an argument can be a reason for some of the sec-
ondary fixed points showing up during the relaxation method.

If the trajectory gets close to such a secondary fixed point
in the functional space, it can be captured forever. Also, the
hypersurface can exhibit saddle points and shallow valleys.
With limited simulation time, the latter may be indistinguish-
able from being captured forever.

Whether or not such secondary fixed points belong to the
problem under study is not a trivial question. On the one hand,
the primary minimum of F ′ in the functional space, indeed,
corresponds to the thermodynamic equilibrium. On the other
hand, the secondary minima represent physical reality. Indeed,
in experiments, the process zones always gradually evolve
during the crack loading. The evolution is prone to be caught
in the same types of secondary minima. One concludes that
the relaxation approach closely mimics the experimental situ-
ation. For these reasons, the choice is open.

In this paper, we aim to study the most general proper-
ties of the wake. Hence, we only focus on the fixed points
corresponding to the most pronounced minimum of the free
energy, F ′, and leave all the secondary fixed points out. It
follows that the solution corresponding to the principle mini-
mum must have a smooth, continuous boundary. That is, the
solution we are looking for should have no steps considerably
exceeding the mesh size. This has been the first criterion
of the selection of an acceptable solution. If we obtained a
stable solution exhibiting straight boundary portions flanked
by kinks or steps, we resimulated it after playing with the
initial condition. We tried to guess the initial condition to be
as close to the expected smooth solution as possible. In most
cases after some (sometimes considerable) number of trials,
we succeeded in guessing the initial shape close to the final
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one, and this gave the desired smooth solution. We further
controlled the convergence of such a solution—the control
method we describe in the next section.

Generally, the closer we simulated to the binodal, the more
difficult was the search for a smooth solution. The worst
results we obtained with a = 0.2, such that we could not be
sure that the solutions with a = 0.2 and 0 � v � 0.5 were
reliable. These results are not given, therefore, in this paper.

2. Software

We used the software COMSOL 5.3 for the finite-element
method simulations. The dynamic system has been solved
using the direct MUMPS solver with the BDF time stepping
algorithm.

3. Domain

We simulated the equation of motion of a zone in the
upper half plane y � 0 choosing a rectangular domain there,
its bottom boundary being at y = 0. In all cases, the solution
represents a plateau located in some region around the point
x = y = 0 bounded by a kink and rapidly vanishing outside
of the plateau-kink region. For this reason, the position of
the other boundaries of the simulation domain was defined
by trial and error, so that the solution vanishes well before
the boundaries. We also set a no-flux boundary condition at
the boundary y = 0 and the Dirichlet condition u|� = 0 at the
rest of the rectangle boundary. By trial we have proved that
provided the domain boundaries are at a certain distance from
the plateau that well exceeds the kink width, their positions do
not influence the solution.

As the initial condition, we used a smoothed step function,
provided by COMSOL and exhibiting a smooth, narrow kink.
We modified it such that it is only different from zero within
either a cardioid (used for v < vG) or an elongated ellipsoid
(used for v > vG). In the latter case, we shifted the center of
the ellipsoid somewhat backward from the origin of the coor-
dinates. These initial shapes proved to be close to the smooth
final solutions and offered a reasonably fast convergence.

4. Meshing and the simulation algorithm

Part of the difficulty with this problem is its multiscaling.
Indeed, the distance from the crack tip to the leading zone
edge varies from a few thousand dimensionless units at low
speeds to a few tens of units at high speeds, and this is also
the correct estimate for the zone height. The length of the
wake may achieve several thousand units. Finally, the zone
interface is only a few units wide as we have seen in Fig. 12.
Thus, one needs to resolve the problem on the scale of one
unit and simultaneously solve the equation on the scale of
a few thousand units. There is a considerable simplification
in that the solution outside the zone is almost zero and is of
no interest. Also within the zone, but outside of the kink, the
solution is rather flat. This enabled us to try to use a mesh that
is coarse away from the kink but is very fine within the kink.
The difficulty here is that the position of the kink is unknown
in advance. COMSOL enables a mesh with a variable size
which automatically searches for the kink position and can be
automatically built using the adaptive mesh refinement option
in combination with multiple studies.

FIG. 15. Example of a mesh obtained in the course of simulation
with a = 0.23 and v = 0.87. (a) The initial coarse mesh. (b) The
resulting mesh after multiple refinement processes. The mesh is
dense in the kink region and loose (mesh size ∼10) outside. (c) The
blown-up portion of the mesh in the region of a kink showing the
mesh size ∼0.1.

During each study run, the adaptive mesh refinement builds
several (typically, ten) meshes as well as ten solutions em-
ploying each of these meshes. For each successive solution,
it makes a new mesh determined by the value of the control
function (∇u)2/10 obtained during the previous solution pro-
cess. Further, COMSOL enables one to define a new study,
taking initial values from the result of the previous one. Fol-
lowing this procedure, one starts from a loose, homogeneous
mesh, like the one shown in the upper panel of Fig. 15, and
gradually comes to a highly nonhomogeneous mesh with a
small mesh size in the vicinity of the kink and a loose one
outside. Such a mesh is shown in the middle panel of Fig. 15.
Its lower panel shows a blown-up view of the mesh part taken
from the kink region. Depending on the zone size the whole
process can take from several to several hundred meshes and
studies.

5. Convergence control

The convergence of the solution ud(x, y, τp) to u(x, y) with
increasing pseudotime can be controlled in different ways
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FIG. 16. Example of the convergence control of the solution. Red
dots show the value of the norm (B4) obtained by the simulation
(with a = 0.24, b = 1, v = 0.6). The solid blue line indicates the
position of the horizontal asymptote.

depending on the nature of the problem. As a simple indicator,
we applied the Hilbert norm, ||u||, of the solution:

||u||2 =
∫∫

�

u2
d(x, y, τp)dxdy. (B4)

We regard the solution as having converged as soon as the
norm achieves a horizontal asymptote and exhibits a variation
of not more than a few percent over a time interval of sev-
eral hundred dimensionless units of the pseudotime, τp. This
number can vary depending on the control parameters.

Figure 16 shows an example of a good convergence for one
of the simulations lasting up to 2000 pseudotime units, while
the convergence has already been achieved already after about
500 ones.

6. Sampling

As a result of each simulation, we obtained two nested lists:
one with the structure of the element (x, y, u), the other with
the structure of (x, y, (∇u)2). These lists were exported from
COMSOL and imported into Mathematica 11.3 for further
postprocessing.

The cross section of the order parameter, u(x, y), along y =
0 such as that shown in Fig. 6(a) was obtained from the 3D list
of points with the elements (x, y, u) being those lying within a
narrow strip 0 � y � y0, where the width of the strip, y0, was
about 100 times smaller than the zone size. Typically y0 was
5 to 15. Then the second coordinate was left out, thus forming
a list with the elements (x, u) representing the cross section.

The contours of the process zone, such as the one shown in
Fig. 6(b), were obtained as follows. The data for (∇u)2 were
exported from COMSOL, yielding a list with the elements
(x, y, (∇u)2). Such a distribution exhibits a maximum along
the zone boundary, where u(x, y) exhibits a steep kink. The
list was reduced by selecting only those elements of the
list (x, y, (∇u)2) for which (∇u)2 exceeds a certain value,
(∇u)2

max. Typically, (∇u)2
max was about 0.01. This value was

determined by trial and error by using interactive mechanisms
of Mathematica 11.3, such as manipulate. Further, the ele-
ments of this reduced list were collapsed onto the (x, y) plane
by (x, y, (∇u)2) → (x, y), thus yielding the coordinates of the
points lying close to the center of the zone boundary.
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