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Saddle-splay-induced periodic edge undulations in smectic-A disks immersed in a nematic medium
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We report experimental studies on the phase behavior of binary mixtures of 1′′,7′′-bis(4-cyanobiphenyl-4′-
yl)heptane (CB7CB) and 4,4-diheptyloxyazoxybenzene, which exhibit, apart from the nematic (N) and twist-
bend nematic (NTB) phases, the induced smectic-A (Sm-A) phase for weight fraction of CB7CB between 0.05
and 0.70. In planar nematic layers, the NTB phase separates as droplets of tactoidlike planform; the chirality of
droplets manifests in the optical dissimilarity between their opposite angular ends. Our main result is that, in the
appropriate two phase region, Sm-A nuclei with positive dielectric anisotropy change over to disks immersed in
the nematic above some electric field, their edges decorated by periodic bright spots, a result which was earlier
reported in another binary system exhibiting the induced Sm-A phase [R. Pratibha and N. V. Madhusudana,
Physica A 224, 9 (1996)]. We develop a simple theory for the threshold of this distortion, which is a periodic
undulation of the edge of the disk, demonstrating that it arises from saddle-splay elasticity of Sm-A, the low
Sm-A–N interfacial tension unable to suppress the distortion. The observed increases in the number of bright
spots with field, and with the radius of the disk at a given field, in both the experimental systems are also
accounted for by the model. The distortion, which results in the most direct visualization of saddle splay in
Sm-A, is also exhibited by disks nucleating on surfaces treated for homeotropic anchoring.

DOI: 10.1103/PhysRevE.101.032704

I. INTRODUCTION

Smectic-A (Sm-A) liquid crystals (LCs) are characterized
by a stacking of liquid layers made of freely rotating rodlike
molecules, with the director n oriented along the layer normal
direction [1]. In single component materials taken in cells
with untreated glass plates, Sm-A nuclei separate from either
the isotropic (I) or the nematic (N) phase as bâtonnets, the
interfacial energy (∼r2, r being the drop size) dominating
over curvature elastic energy (∼r); the layer structure is
mainly determined by the anisotropy of interfacial tension
�γ = γ‖−γ⊥, where γ⊥ corresponding to the smectic layers
orthogonal to the Sm-A–I (or N) interface is lower than γ‖
corresponding to the layers parallel to it [2]. Well aligned
monodomain Sm-A samples can be prepared in cells whose
inner walls are treated for homeotropic anchoring, or by
drawing the LC across mm-sized holes, with the free-standing
films having 2–100s of layers [3]. After careful annealing,
the central regions of the latter will have no defects, though
a meniscus with a variable number of layers forms near the
walls of the hole. As we will see below, the solid boundaries
of the samples suppress manifestation of an intrinsic property
of the liquid layers. For unraveling this, it is useful to get a
freely suspended Sm-A monodomain, which is not in contact
with any solid boundaries. A good strategy for achieving
this is to have a system with a relatively wide Sm-A–N or
Sm-A–I biphasic region. Binary mixtures of two nematogenic
compounds, one of them with a strongly polar cyano (CN) end
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group and the other with a relatively weaker polar group often
form charge transfer complexes that exhibit the Sm-A phase
in a wide range of compositions, even if neither component
by itself is a smectogen [4]. Such an induced Sm-A LC often
coexists with either the N or I phase, over a range spanning
several K.

In an early study of such a binary system made of rod-
like molecules (pentylcyanoterphenyl and 4-biphenyl4"-n-
decyloxybenzoate) [5], it is found that, as the sample is slowly
cooled across the coexistence range, the induced Sm-A phase
nucleates to form ellipsoidal droplets, with the geometry
indicative of �γ being positive. Further cooling results in
focal conic domains (FCDs) of type I [1], each with just a pair
of conjugate elliptic and hyperbolic defects. The surrounding
nematic liquid crystal, with positive dielectric anisotropy �ε,
reorients in a large enough applied AC field (E ), with the
director n ‖ E. The smectic drop itself flattens out to lower
the dielectric energy, forming a disk with a number of layers.
While the layer normal is parallel to E in the central region
of the disk, it is distorted in the lateral periphery so that the
disk is decorated with a periodic pattern, made of alternating
dark and bright spots. At any given voltage U , the number
of such spots is proportional to the diameter of the drop, i.e.,
the pattern period does not depend on the drop size. Further,
as different smectic disks may have different thicknesses, the
periodicity may also be assumed to be relatively insensitive
to the number of layers in the disk. The number of spots
increases with U , at first slowly, but at a constant rapid rate
beyond some high voltage. The periodicity of the structure
depends only on U , whether it is increased or decreased as a
function of time.
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In this paper, we report experimental studies on another
binary system in which the aforesaid observations are repro-
duced. In the mixture with positive �ε exhibiting the induced
Sm-A phase, the highly polar compound is CB7CB. This
dimer of CB moieties is of bent shape due to the odd (seven
here) number of carbon atoms in the linking methylene chain;
it shows a transition from the N to NTB phase, the latter
made of pairs of the dimers arranged in double helical chains,
with the twist director having an orientational order [6].
The weakly polar component is 4,4-diheptyloxyazoxybenzene
(HOAB), showing the N and Sm-C phases. In the coexistence
range of the induced Sm-A and N phases, bâtonnets of the
former transform into edge-decorated disks above an applied
electric field, and their characteristic features are similar to
those described for the mixture in Ref. [5]. This shows that
the edge decoration with a periodic pattern is a phenomenon
that depends on the general properties of the smectic phase,
and is not limited to any specific system. We develop here
a simple theoretical model for its threshold, demonstrating
that saddle-splay elasticity of the smectic can account for
our observations, including the dependences of the number of
undulations on the size of the disk and the applied field. The
saddle-splay term [1,7] is essentially a surface term, playing
an important role in director configurations in cylindrical and
spherical geometries of nematics [8] and the stability of blue
phases [9] of short pitched cholesteric LCs. In smectics, it
describes the Gaussian curvature of the layers, and has been
used to analyze focal conic structures [1]. The edge decoration
of pristine Sm-A disks discussed in this paper is the most
direct manifestation of saddle-splay elasticity in smectic LCs.

This paper is organized as follows. After describing the
experimental set up in Sec. II, we present the results under
Sec. III in two parts, of which, the first deals with the phase
diagram of the system determined from optical and x-ray stud-
ies, and some unusual growth patterns of the NTB nuclei; and
the second, with the electric field effects on the induced Sm-A
domains. Section IV is devoted to a theoretical analysis of the
edge decoration of Sm-A disks. In Sec. V, we summarize the
main results and their significance. The paper is supplemented
by two videos and related notes; the latter also provide a
description of several optical features of the observed phases
not related to the saddle-splay instability; these are accessible
in the Supplemental Material [10].

II. EXPERIMENTAL PROCEDURE

The dimer CB7CB used in this study was synthesized
by two of the authors (M.B.K. and C.V.Y.). The phase se-
quence of CB7CB, from polarization microscopy, was: NTB

(103.3 ◦C) N (116.5 ◦C, TNI) I; HOAB was a commercial
sample having the phase sequence: Crystal, Cr (74 ◦C) Sm-C
(94.8 ◦C) N (124.5 ◦C) I . Optical textures were obtained
using a Carl-Zeiss Axio Imager.M1m polarizing microscope
with an attached AxioCam MRc5 digital camera. The sample
cells, procured from M/s AWAT, Poland, were sandwich type,
constructed of ITO electrodes, coated with polyimide and
buffed unidirectionally to ensure a uniform planar alignment
of the nematic director n; the cell gap L was in the range
5–20 μm. Sample temperature T , accurate to ±0.1 ◦C, was
maintained using an Instec HCS402 hot-stage coupled to a

FIG. 1. Concentration X (wt. % of CB7CB) temperature phase
diagram determined from x-ray diffraction and polarization micro-
scopic studies. The N phase, common to all the studied mixtures,
occurs over a temperature range that reaches a minimum for X ≈ 30
and a maximum for X ≈ 70. The Sm-C phase of pure HOAB is
completely suppressed for X > 5; the Sm-A phase is induced in the
concentration range 5–70; above X ≈ 70, only the NTB mesophase is
observed below the nematic.

STC200 temperature controller. The driving voltage in electric
field experiments was from a Stanford Research Systems
function generator (DS345) coupled to a FLC Electronics
voltage amplifier (model A800). A Keithley-2002 multimeter
was used to measure the field frequency f and rms voltage
U . x-ray measurements were performed using a PANalytical
X’Pert PRO MP x-ray diffractometer comprising a focusing
elliptical mirror and a fast high resolution detector (PIX-
CEL), the wavelength of the radiation being 0.15418 nm. The
sample, contained in a glass capillary and kept in a Mettler
hot-stage, was maintained at the desired temperature, accurate
to ±0.1 ◦C. The diffraction data thus collected were analyzed
using the Fityk profile fitting software [11]. For convenience,
we use the following symbolic notations: the orthogonal refer-
ence axes y and z define the rubbing and observation/electric
field directions, respectively; MX denotes the binary mix-
ture of CB7CB and HOAB with X wt. % of the former;
P(α)−A(β ) indicates the setting of the polarizer P and ana-
lyzer A with their axes at angles α and β (degrees) relative to y.

III. EXPERIMENTAL RESULTS

A. Phase diagram

Figure 1 shows the phase diagram for the CB7CB/HOAB
system, arrived at from optical microscopic and x-ray studies.
When the concentration X of CB7CB is high, as in M85

and M70, expectedly, we observe the two nematic phases,
N and NTB, just as in pure CB7CB. The onset of the NTB

phase in both M85 and M70 is marked by the appearance
of tactoidlike (in plan view) drops against a uniformly bire-
fringent nematic background, as exemplified in Fig. 2(a). As
the cooling progresses, the tactoidlike domains proliferate
and grow, eventually to occupy the entire volume, giving a
patchy colored texture. Thereafter, under decreasing fluidity,
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FIG. 2. (a) Tactoid-like NTB drops nucleated at 64.8 ◦C within a
nematic monodomain with the director n along y, in a 5-μm-thick
sample of the mixture M70 (X = 70.6 wt. %). (b) The geometry of
NTB domains becomes circular in the Freedericksz reoriented state at
5 V, 1 kHz. Scale: 5 μm each subdivision.

the mixture passes into a characteristic defect state, previously
described [12] as the twin stripe state from which the familiar
arrays of parabolic focal conic domains (PFCDs) of the NTB

phase evolve. The sequence of textures leading to the PFCD
state is shown in Fig. S1 of the Supplemental Material [10].

Some interesting optical features of NTB drops [Fig. 2(a)]
that relate to their director configuration may be noted.
Clearly, from the extension of the drop orthogonal to the
rubbing direction y, the anisotropy of interfacial tension �γ

is negative and the optic axis at the NTB-N interface lies along
the surface normal. The drops are visible in ordinary light or
linearly polarized light with the electric vector along y, but are
almost extinct for the incident light vibrating along x. Thus,
the optical axis in the NTB domains lies predominantly in the
yz plane. Interestingly, between diagonally crossed/parallel
polarizers, the tactoidlike drops appear differently colored
near their opposite vertices. Additionally, drops with the
opposite color combination are also formed, as seen in the en-
circled regions of Fig. 2(a). These features are understandable
from the shape of the NTB drop taken to nucleate at one of the
substrates (say, at the bottom one) and grow into the bulk. It
will then be fully in contact at the bottom plate, while only
its central part will be touching the top plate. A nonvanishing
chirality in the drop generates different director profiles at the
two tapering ends, leading to the optical dissimilarity. This
aspect is elaborated in Fig. S5 and related discussion in the
Supplemental Material [10].

In the biphasic N-NTB region, which is limited to ∼1 ◦C
in M85 and ∼2 ◦C in M70, the two phases are readily distin-
guished by application of a suitable electric field E = U/L.
At higher frequencies of E , at which the ionic effects become
negligible, mixtures with positive �ε—i.e., all the studied

mixtures except M5—show the Freedericksz transition at a
threshold UF, which is considerably lower for the N phase
compared to the NTB phase. For instance, in M70, reorientation
in the N region becomes discernible, through a change in
interference color, at ∼2 V. The NTB drops, by comparison,
show emphatic changes in color and geometry at ∼2UF; above
this voltage, they tend to become circular with their optical
axes along z, as in Fig. 2(b). At lower frequencies of the
applied field, depending on the value of f , the nematic phase
undergoes flexoelectric or electroconvective destabilization
prior to the Freedericksz realignment (see Figs. S3 and S4,
Supplemental Material [10], for details of different electrical
effects).

While the mixture M85 crystallizes directly from the NTB

phase (at about 50 ◦C), M70 shows an additional mesophase
before transforming to the crystal. At about 62 ◦C, within the
PFCD state of M70, elongated birefringent objects, identifiable
as the well- known bâtonnets, begin to appear. The x-ray
patterns recorded at various temperatures show the onset of
a layered Sm-A phase at this temperature (Fig. 3, CB7CB
70%); the Sm-A, as usual, separates as bâtonnets, though in a
multicomponent mixture of rod-like molecules with CB7CB,
the bâtonnets have been attributed to the NTB phase [12]. The
Sm-A phase coexists with the NTB phase over a wide range,
extending till crystallization at about 49 ◦C. In the crystalline
state, the two components of the mixture tend to separate (see
Fig. S2, Supplemental Material, for related textures).

The Sm-A phase, not present in either of the components, is
induced in all the mixtures with XCB7CB in the range 5–70 wt.
% (Fig. 3). As discussed in Sec. I, induction of the Sm-A phase
in binary mixtures, with one component terminally strongly
polar and the other relatively weakly polar or nonpolar, is
known to be mainly due to the formation of charge transfer
(CT) complexes [4,13]. CB7CB acts as an electron accep-
tor because of the CN groups that draw electrons from the
aromatic core; HOAB, as the donor, interacts with CB7CB
through CT complexing. Under a strong CT interaction, often,
the induced smectic phase is found to be strongly stabilized,
with the highest Sm-A–N transition temperature, for the molar
mixing ratio 1:1. In the phase diagram for our system (Fig. 1),
this maximum occurs for X ≈ 25 wt. %, approximately corre-
sponding to a CB7CB-HOAB molar ratio of 1:3. This may be
attributed to the smectogenic nature of HOAB [4], and the two
cyano groups in each CB7CB molecule.

In M50, after the onset of the Sm-A phase in the form of
usual bâtonnets (Fig. 4), the system remains biphasic even
through crystallization. At lower temperatures, progressive
decomposition takes place, with the CB7CB-rich N regions
transitioning into the NTB phase while the HOAB-rich bâ-
tonnets remain in the Sm-A phase (Fig. S7, Supplemental
Material). The mixtures M30 and M10 behave similarly in
that the NTB phase is completely eliminated in these, and
the induced Sm-A follows the N (Fig. 1), with no other
mesophase. The mixture M5 differs from all the other mixtures
in that it shows both Sm-A and Sm-C phases (Fig. 3).

B. Bâtonnets of the smectic-A phase in electric fields

When the N and Sm-A phases coexist, geometry of the
Sm-A domains is influenced by the alignment of the nematic.
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FIG. 3. x-ray measurements of the layer spacing d (left ordinate) and peak intensity I (right ordinate), for different compositions of the
CB7CB/HOAB system in the temperature range 54−112 ◦C. No low angle scattering was observed for the mixture with 85% CB7CB. Squares
and circles denote d and I , respectively. The marginal increase in Sm-A spacings with decreasing temperature is a result of chain stiffening.

In a (quasi)homeotropic nematic sample, smectic layers form
parallel to the bounding surfaces and, because of the isotropic
interfacial tension in the layer plane, their lateral boundary
tends to be circular. This is readily verified in M50 or M30

by first applying a high frequency field with U � UF in the
nematic phase, and then lowering the temperature into the N-
Sm-A biphasic region. The unique feature of Sm-A disks thus
formed is, as illustrated in Fig. 5, their undulatory boundary;
the circular chain of bright spots of light seen in the peripheral
region of the disks is due to the lens action arising from a
periodic distortion of the director in this region. The focal
planes of real and virtual images lying on either side of a
Sm-A disk may be seen in the movie clip V1.avi available in
the Supplemental Material [10].

When the electric field is applied after the onset of the
Sm-A phase in a planar nematic, the bâtonnets of Sm-A,
such as in Fig. 4, are affected only at higher voltages when

FIG. 4. Bâtonnets of the Sm-A phase coexisting with the N phase
in a 5-μm-thick layer of M52. Diagonally parallel polarizers. Scale:
5 μm each subdivision.

the nematic is quasihomeotropic. In a 5-μm-thick layer of
M52, for example, the bâtonnets begin to undergo a major
structural transformation only when U reaches around 16 V.
The evolution of Sm-A disks (Fig. 5) from bâtonnets occurs
in stages, as depicted in Fig. 6. The director reorientation in
the N phase begins at ∼2.2 V; above 16 V, as in Fig. 6(c),
bâtonnets transform into bands with circular terminations and
corrugated long edges extending in the rubbing direction; the
distortions in the interfacial region produce light focusing.
The bands break up at higher voltages and the fragments
assume the disk shape in time. Their wavy edge is well
discerned by reducing the voltage slightly, as in Fig. 6(h) and
6(i). In M30, the smectic disks form at focal conic defect sites
(angular locations) of zigzag bâtonnets [Fig. 6(j)].

FIG. 5. Circular Sm-A domains formed deep in the Freedericksz
state of a 20-μm thick, initially planar nematic sample of M50 at
85.5 ◦C, subjected to a field with f = 10 kHz and U = 42 V (≈
20UF) and observed using unpolarized mercury green light. Scale:
2 μm each subdivision.
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FIG. 6. (a)–(i) The course of transformation of Sm-A bâtonnets into homeotropic disks with corrugated boundaries under the influence of
increasing electric field of frequency 1 kHz, in a 5-μm-thick layer of M52 at 86 ◦C. (j) Sm-A disks developing at angular locations of zigzag
bâtonnets in M30 at 108 ◦C; 15 V, 1 kHz. P(45)−A(135) in (a) and (b); P(0) in (c)–(i); and P(15)−A(135) in (j). L = 5 μm.

The Sm-A disks change over to FCDs when the field
strength falls below a critical value Ec. In a 5-μm thick-
M52 layer at 85 ◦C, this happens for U < 12 V [(Fig. 7(e)].
As the voltage is reduced, the circular shape of the disks
begins to appear more and more elliptical. The nucleation
of FCDs begins, as a rule, at either or both of the two ends

of the minor axis of the apparent ellipse, as in Figs. 7(f)–
7(j) (see Supplemental Material [10] for a movie clip V2.avi
that further illustrates this feature). By implication, the
Sm-A disks are suspended in the nematic at higher fields;
and, with reducing E , their normal, parallel to z at higher
voltages, tends to tilt toward the rubbing axis y. This tilt

FIG. 7. Transformation of the near homeotropic state of Sm-A disks into focal conic defect state with reducing field of frequency 1
kHz. (a)–(e) Initially planar M52 layer; L = 5 μm, T = 85 ◦C. Scale: 2 μm each subdivision. Progressive growth of FCDs from the left edge
in contact with a substrate in (f), (g) M52 and (h)–(j) M30 (z-stacked images). Scale: (a)–(g) 2 μm each subdivision, (h)–(j) 5 μm each
subdivision.
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FIG. 8. Linear variation of the number of bright image spots NS

due to the undulatory edge of Sm-A disks as a function of (a) voltage
of the sine wave field of frequency 1 kHz in a 5-μm-thick M52 sample
at 85 ◦C and (b) radius of the disk in a 20-μm- thick M50 sample
at 85.5 ◦C, subjected to a sine wave field with U = 42 V and f =
10 kHz.

would eventually bring a Sm-A disk into contact with either
(or both) of the bounding surfaces, where the nucleation
of FCDs is initiated and from where it spreads on either
side.

The number of bright focal spots NS at the boundary of a
given homeotropic Sm-A disk varies with the field strength
E . In the earlier study of similar smectic disks in Ref. [5], as
already mentioned, NS (E ) has been found to change slope at
some field. We find it to be practically constant close to Ec

and too small to be resolvable above some 4 V μm−1. NS (E )
is linear in the narrow voltage range between these limits
[Fig. 8(a)]. At any given E , NS also shows a linear dependence
on the radius of the disk, as seen in Fig. 8(b).

IV. THEORETICAL ANALYSIS OF DECORATED
SMECTIC A DISKS

The intensity variations at the edge of Sm-A disks imply
that the layers are no longer flat there, but have a periodic
distortion, which leads to light focusing effects. Any distortion
costs elastic energy; and deviations of the director from the
direction of the electric field cost dielectric energy as well.
Indeed, one would normally expect that the disk, which is flat
all the way up to the edge, would minimize the energy, and
would be the equilibrium structure of the disk.

In order to develop a theoretical model for the decorated
disk, it is useful first to consider a smectic sample of thick-
ness D = ml , m being the number of layers, and l the layer
thickness, with a straight edge (Fig. 9) lying in the yz plane.
An electric field E acts along the layer normal, i.e., the z axis.
Let there be a small uniform displacement uo of the layers at
the edge, tilting the director by an angle θo ≈ nx = −∂uo/∂x.
As ∂u0/∂z = 0, we ignore the compression elastic constant in
the present part of the analysis, and consider its influence later,
when we discuss the structure of disks. The electric field tends
to reduce θ (x) as we move away from the edge. If θo 	 1, the
θ (x)-dependent part of the free energy density is given by

F (x) = k11

2

(
∂θ

∂x

)2

+
(

εo�εE2

2

)
θ2, (1)

where k11 is the splay elastic constant, ε0 the vacuum dielec-
tric constant, and �ε the (positive) dielectric anisotropy of

FIG. 9. Schematic of a Sm-A sample with thickness D = ml ,
where l is the layer spacing, and subjected to an electric field E acting
along the layer-normal (z axis). A vertical displacement u0 at the edge
of the sample (lying in the yz plane) dies down along the x axis. θ (x)
is the angle made by the layer-normal with the z axis.

the smectic sample. The Euler-Lagrange equation leads to the
solution

θ (x) = θoe−x/λ, (2)

where the length over which the deviation from the z axis
of the layer normal (and hence the displacement u), decays
due to the action of E is given by λ = √

(k11/εo�ε)/E , being
inversely proportional to E , as expected. Now let us assume
that the edge displacement is sinusoidal along the y axis
(Fig. 10), and given by u(y) = uo sin(2πy/λy). The electric
field tends to flatten the layers, and, in view of the result given
by Eq. (2), we assume that a reasonable solution is given by

u(x, y) = uoe−x/λx sin

(
2πy

λy

)
. (3)

The x and y components of the director n are given by
nx = −∂u/∂x and ny = −∂u/∂y. To the leading order in uo,
the above solution is curl-free, as required in a smectic sam-
ple. Again ignoring the compression term, the displacement-
dependent part of the free energy density reads as

F (x, y) = k11

2

(
∂nx

∂x
+ ∂ny

∂y

)2

+
(

εo�ε E2

2

)(
n2

x + n2
y

)
. (4)

FIG. 10. Schematic diagram of a Sm-A sample with a sinusoidal
undulation [given by Eq. (3)] imposed in the yz plane, lying in the
plane of the page. An electric field E acts along the z axis.
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FIG. 11. Schematic diagram of a circular disk made of Sm-A
layers, with a periodic undulation of the layers with an amplitude u0

at the edge r = R. As discussed in the text, the amplitude dies down
exponentially along the radial directions towards the center, and for
clarity a slower decay is depicted in the figure. There is no periodicity
of the radius R (though the perspective may seem to indicate such a
structure).

Using the solution (3), we get

F (x, y) = u2
o e

−2x/λx

⎡
⎢⎢⎢

k11

2
sin2

(
2πy

λy

)(
− 1

λ2
x

+ 4π2

λ2
y

)2

+εo�ε E2

2

(
1

λ2
x

sin2

(
2πy

λy

)
+ 4π2

λ2
y

cos2

(
2πy

λy

))⌉
.

(5)

A remarkable feature of the above result is that, if the
wavelength of the sinusoidal variation along the y axis satisfies
λy/2π = λx, the net divergence itself amounts to 0, and there
is no elastic energy cost associated with the distortion, and the
dielectric energy density also becomes independent of the y
coordinate. The splay cancellation due to opposite signs in
different directions of the distortion has been noted earlier
in some experiments on nematic LCs [14]. In the geometry
considered above, the cancellation is total.

With this background, we can analyze the experimental
results, which of course are on Sm-A disks, each with a
well-defined radius and a finite volume. The Sm-A disk is
suspended in the fluid nematic liquid crystal, and as in the
previous example, we assume that the layer displacement u,
and hence the director field has no z dependence in the disk.
Using cylindrical polar coordinates (r, ϕ) appropriate for this
geometry (Fig. 11), in analogy with Eq. (3), we assume

u(r, ϕ) = uoe−(R−r)/λr sin

(
2πRϕ

λϕ

)
, (6)

where r is measured from the center of the disk with radius
R, λr is the decay length of the edge distortion along −r, and
λϕ the wavelength of the sinusoidal edge distortion. We can
also assume that there are an integral number of wavelengths
around the periphery ν = 2πR/λϕ . If ν = 0, u(r, ϕ) is 0
everywhere, and the disk is perfectly flat. As such, ν � 1 in
the following. In the cylindrical coordinate system, the two

independent components of the director n are

nr = −∂u

∂r
= −uo

λr
e−(R−r)/λr sin(ν ϕ)

and

nϕ = − ∂u

r∂ϕ
= −uoν

r
e−(R−r)/λr cos (ν ϕ). (7)

The bulk free energy density, dependent on the distortions
of nr and nϕ can be written in analogy with Eq. (4). Again, to
leading order in uo, the distortion is curl free. In the cylindrical
geometry,

∇ · n = ∂nr

∂r
+ nr

r
+ ∂nϕ

r∂ϕ

= uoe−(R−r)/λr sin(ν ϕ)

[(
− 1

λ2
r

− 1

rλr
+ ν2

r2

)]
. (8)

It is clear that unlike in the case of a sample with a
straight edge, ∇ · n cannot be 0 everywhere in a disk. Further,
as the disk has a lateral free surface, we have to take into
account the effect of another term involving ∇ · n, viz., the
saddle-splay elasticity. In Sm-A LCs, it also describes the
elasticity associated with the Gaussian curvature of the layers
[1], while the k11 term describes that related to their mean
curvature. Our analysis will be restricted to terms only upto
uo

2 in the free energy, i.e., to the threshold of the instability.
As ∇ × n = 0 to leading order in uo, the energy density
due to saddle-splay reduces to k∇ · (n∇ · n). (Some authors
adopt the opposite sign convention [7].) Further, by the Gauss
theorem, the contribution to the total free energy due to this
term can be written as the following surface contribution:

Gκ = Dκ

∫ 2π

0
R nr∇ · n dϕ = π κD u2

o

R

λr

(
1

λ2
r

+ 1

Rλr
− ν2

R2

)
,

(9)

which is calculated at the surface of the edge at r = R. We
may note that a negative saddle-splay coefficient k forces the
terms in brackets of Eq. (9) to add up to a large positive
value for ν = 0, i.e., it does not lead to undulations. The
positive sign of κ , which favors a negative Gaussian curvature,
is consistent with the occurrence of the FCDs of type I
mentioned earlier [1,5].

Before we proceed further, we recall that an undulation
structure which is geometrically similar to the one studied
in this paper was found in a very different physical system
[15]. Polystyrene spherical beads, each with a diameter of
2.8 μm, deposited on free standing Sm-A films were found
to generate a corona region (of width ∼4−5 μm) around the
bead, with an azimuthally periodic undulation. The origin of
the structure was found to involve (i) wetting of the bead
with a relatively large surface tension by the Sm-A LC,
which resulted in (ii) a meniscus region forming the corona,
with a thickness decreasing away from the bead, and (iii)
the curvature of the meniscus generating a tensile stress and
the periodic undulation instability seen in the experiment.
Analogous undulating structures have been directly visualized
in the meniscus regions formed close to the solid walls around
circular holes across which the free standing films of other
types of smectic LCs have been studied [16,17]. In most parts
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of the undulating structure in the meniscus ∂u/∂z is nonzero,
and the theoretical analysis necessarily takes into account the
compression elasticity (B) of the smectic. In the cylindrically
symmetric system, the relevant contribution to the free energy
density is given by

FB(r, ϕ) = B

2

(
∂u

∂z
− 1

2

((
∂u

∂r

)2

+ 1

r2

(
∂u

∂ϕ

)2
))2

, (10)

in which the higher order term arises from the tilting of the
layers.

It is immediately clear that the Sm-A disks studied by us are
rather different, each with a constant number of layers with
a fixed volume, without any connected reservoir, meniscus
with variable thickness or tensile stress. The disks are perhaps
the simplest stand-alone Sm-A structures studied. ∂u/∂z = 0
for the layer displacement field u(r, ϕ) given by Eq. (6) and
the compression term given by Eq. (10) contribute to the
energetics only through the fourth order term ∝ u0

4, arising
from the tilt of the layer, and hence does not figure in the
calculation of the threshold. We will later make some remarks
about the effect of the B term above the threshold.

The Sm-A disk has two types of interface with the sur-
rounding medium. We will assume at first that the Sm-A disk
is surrounded by the isotropic phase, and consider the more
complicated case of the nematic LC later. At the edge, at R, the
liquid layer of Sm-A is in contact with the isotropic medium,
and the corresponding interfacial tension γ⊥ is smaller than γ‖
for the top and bottom interfaces of the disk. An area element
at the edge is

dAE = RD

√
1 +

(
∂u

R∂ϕ

)2

dϕ. (11)

As uo 	 R, the total area of the undulating edge is

AE = 2πRD

(
1 + u2

oν
2

4R2

)
. (12)

An area element at the top surface of the disk is

dAT =
√

1 +
(

∂u

∂r

)2

+
(

∂u

r∂ϕ

)2

rdr dϕ. (13)

The total area of the top surface is

AT = πR2

(
1 + u2

o

2R2

∫ R

0
e−2(R−r)/λr

(
ν2

r
+ r

λ2
r

)
dr

)
.

(14)

Our aim is to compare the free energies of Sm-A disks
with and without any undulations of equal volume. As the
number of layers and hence the thickness D is unaltered, the
top surface area AT should be equal in the two cases, i.e.,
AT = πRF

2, where RF is the radius of the undulation-free
flat disk. The extra interfacial area of the undulated disk is
�AE = AE−2πRF D, the latter being the edge area of the flat
disk:

�AE = πDu2
o

2R

(
ν2 −

∫ R

0
e−2(R−r)/λr

(
ν2

r
+ r

λ2
r

)
dr

)
.

(15)

Keeping terms only up to uo
2, we can now write the excess

free energy of an undulated disk compared to that of a flat one
with an equal volume as

�Fsm =
[

D

{∫ R

0

∫ 2π

0

(
k11

2
(∇ · n)2 + εo�εE2

2

(
n2

r + n2
ϕ

))
r dr dϕ

}
+ Gκ + γ⊥�AE

]
, (16)

where nr and nϕ , ∇ · n, Gk , and �AE are given by Eqs. (7)–
(9), and (15), respectively. If �Fsm is negative, the undulated
structure is favored.

To a good approximation, λr may be expected to be given
by the expression for λ shown after Eq. (2). The only nega-
tive contribution to �Fsm arises from saddle-splay elasticity,
which drives the undulation instability at the edge of the disk.
It is usually stated that for the layers themselves to be flat, or
the nematic director n to be undistorted in the ground state,
the magnitude of κ should not be larger than that of k11 (The
Ericksen inequality [1]). There are only a few measurements
of κ in the nematic LC, but the uncertainties in the earlier
measurements [8] are too large to confirm this result. A recent
measurement on cylindrical samples of a chromonic nematic
LC [18] yields κ ≈ 55k22 (the twist elastic constant) and κ ≈
5k33 (the bend elastic constant), both of which violate strongly
the Ericksen inequality. The authors have argued that the large
value of κ does not violate the thermodynamic equilibrium of
the structure. We may also note that the Ericksen inequality is
based on assuming a uniform distortion of the sample, while

practically in all experimental systems including ours, the
distortion is distinctly nonuniform.We have made calculations
using the following parameters: �ε = 1, k11 = 40 pN, κ =
200 pN and γ⊥ = 10 μJ/m2. The integrands ∝ r−2 and r−3

in the k11 part tend to diverge at r = 0, and we use the lower
limit of all integrals to be 0.01R, and as λr 	 R, the integral
values are insensitive to the actual (small) value of the chosen
lower limit.

We show in Fig. 12 all the four contributions as well as
the total �Fsm of Eq. (16) as functions of ν, the number of
undulations around the periphery for a disk with R = 5 μm
subjected to an electric field E = 4.76 V/μm. As the differ-
ent contributions to �Fsm depend linearly on D, the thickness
of the disk, the free energy itself simply scales linearly with
D which is chosen to be 2 μm in the calculations. The free
energy near the threshold scales as uo

2 and the amplitude uo

of the distortion is assumed to be 5 nm for the illustrative
calculations.

The decay length λr (= 0.447 μm) is fixed by the field E .
The saddle-splay energy Gκ given by Eq. (9) is also positive

032704-8



SADDLE-SPLAY-INDUCED PERIODIC EDGE … PHYSICAL REVIEW E 101, 032704 (2020)

FIG. 12. Different contributions to the free energy (in atto J) of a
Sm-A disk, with a radius of 5 μm surrounded by isotropic phase, and
under the action of an electric field E = 4.76 V/μm, as functions of
ν, the number of undulations at the edge. The positive splay elastic
energy [curve (a) at ν = 45] rapidly increases for ν > 20, and the
dielectric energy [curve (b)] shows a small increase with ν. The
interfacial energy [curve (c)] is very small, and stays close to 0
compared to the other contributions. The saddle-splay contribution
[curve (d)], which is negative, sharply increases in magnitude with
ν. The total free energy [curve (e)] has a minimum at ν = 34.

up to ν = 11. The splay elastic term, the dielectric and the
excess edge energy contributions increase with ν, though
the interfacial energy is rather small compared to the other
contributions and just hovers above 0 in the vertical scale
used in Fig. 12. The negative energy due to saddle splay
increases in magnitude with ν if it is �12, reflecting that
of the net negative Gaussian curvature of the layers. The
total free energy �Fsm itself becomes negative for ν = 13,
exhibits a minimum at ν = 34, and becomes positive again for
ν � 46. The main competition is between the positive splay
and negative saddle-splay terms. At intermediate values of
ν, a partial splay compensation discussed earlier ensures that
the relevant energy is quite low (Fig. 12), and the negative
saddle-splay term dominates. At higher values of ν (above
about 20), after moving away from the splay compensation
regime, the splay term that depends on ν4 increases faster than
the saddle-splay term ∝ ν2, resulting in the minimum in total
energy. Thus the model predicts that the equilibrium structure
of the disk has 34 edge undulations. The corresponding λϕ =
2πR/ν = 0.924 μm is more than twice λr = 0.447 μm.

In the experiments, the Sm-A drop is surrounded by ne-
matic liquid crystal, and the electric field above which the
disks form (applied RMS voltage ∼20 V, the sample thick-
ness being 5 μm) is well above that corresponding to the
Freedericksz (voltage) threshold of the nematic (∼2 V). An
interesting experimental observation is that when E is reduced
from a higher value, apart from a reduction in the number of
bright spots, the disk takes an elliptic shape at some E , and
the aspect ratio of the ellipse increases as the field is decreased
(Fig. 7). This can be understood as a tilting of the disk, when
the nematic director around the disk itself tilts in the central
part of the cell, generating a torque on the disk (Fig. 13).
Indeed between crossed polarizers set at 45◦ to the rubbing
direction, the elliptic drop brightens as the principal axes of
the refractive index ellipsoid of the disk also tilt. Below some
lower value of E , the disk touches the glass plates of the
cell, and the director reorientation along the rubbing direction
of the walls gives rise to focal conic textures (Fig. 7). This
observation also implies that the nematic director is strongly
anchored at the interface, and can be assumed to have the same
orientation as that of the smectic, with a maximum deviation
from the z axis at the lateral interface. As in the smectic drop,
moving away from the interface, the electric field reorients
the nematic director along E. The elastic deformation and
the deviation of n from E in the surrounding nematic, which
also cost energy, have to be taken into account. As can be
visualized from Fig. 11, there are three different types of
director distortion in the nematic, depending on its location in
the vicinity of the Sm-A disk. The free energy density of the
nematic of a given type i arising from elastic and dielectric
contributions can be written, in general, as

Fn(i) = kn

2
[(∇ · n)2 + (n · ∇ × n)2 + (n × ∇ × n)2]

+ εo�εnE2

2

(
n2

r + n2
ϕ

)
, (17)

where for simplicity we have assumed the one elastic constant
approximation with kn = k11 = k22 = k33, and �εn is the di-
electric anisotropy of the nematic LC. We can now calculate
the contributions from the three regions of the nematic.

Region a: This is the nematic radially extending from the
edge of the disk, with r > R and its thickness D being the
same as that of the disk. The director deformation from the
lateral edge of the disk dies down exponentially as the radius
increases in the nematic, and as in the case of Sm-A at r < R,
we can assume that the distortion has no z dependence. The
radial and azimuthal components of the director are then given

FIG. 13. Schematic of a Sm-A disk (a) at higher voltages [as in Fig. 7(a), for E = 3 V/μm], with its normal along E ; and (b) at lower
voltages [as in Fig. 7(d), for E = 2.4 V/μm], with its normal tilted relative to E . The N director remains strongly anchored to the Sm-A
director at the interface.
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by

nr (r, ϕ) = −uo

λr
e(R−r)/λr n sin (νϕ)

and

nϕ (r, ϕ) = −uoν

R
e(R−r)/λr n cos (νϕ), (18)

in which the director orientation agrees with that of the
smectic disk at the interface when r = R, and the decay length
in the nematic is given by

λrn =
√

kn/εo�εn/ E . (19)

Unlike in the Sm-A disk, ∇ × n is no longer 0 in the
nematic and the contribution to the total free energy of the
region a of the nematic is given by

�Fn(a) = D
∫ 2π

0
dϕ

∫ R+mλr n

R
rdrFn(a), (20)

where m ∼ 5 ensures that the director deviation from the z-
axis would be negligible for larger values of r.

Region b: This is the region of nematic lying above and
below the Sm-A disk from r = 0 to r = R. The director
components can be written as

nr (r, ϕ, z) = −uo

λr
e−(R−r)/λr sin (νϕ)e−z/λz

and

nϕ (r, ϕ, z) = −uoν

r
e−(R−r)/λr cos (νϕ)e− z

λz , (21)

where z is measured from the top surface of the disk along
the positive z axis, and the above director field agrees with
the one in the Sm-A disk when z = 0. In the one constant
approximation used, λz = λrn. The energy due to the part b
of the nematic is given by

�Fn(b) = 2
∫ 2π

0
dϕ

∫ R

0
rdr

∫ mλz

0
dzFn(b). (22)

The factor 2 takes care of both the nematic regions above
and below the disk.

Region c: This is the nematic lying above and below the
nematic region (a). The components of the director are

nr (r, ϕ, z) = −uo

λr
e(R−r)/λr n sin (νϕ)e−z/λz ,

and

nϕ (r, ϕ, z) = −uoν

R
e(R−r)/λr n cos (νϕ) e− z

λz , (23)

which reduce to those in the region a when z = 0. The
contribution from this region to the free energy of the medium
is given by

�Fn(c) = 2
∫ 2π

0
dϕ

∫ R+mλr n

R
rdr

∫ mλz

0
dzFn(c). (24)

The factor 2 takes care of both the top and bottom parts of
this nematic region.

The total free energy of the smectic and nematic regions in
relation to that of the undistorted flat disk is given by

�Ftot = �Fsm + �Fn(a) + �Fn(b) + �Fn(c). (25)

FIG. 14. The total contributions from all the three regions of the
nematic LC as described in the text to the elastic energy [curve (a)
at ν = 20], and the dielectric energy [curve (b)] added to �Fsm give
rise to a minimum at ν = 25 [curve (c)].

We have assumed kn = 20 pN, and �εn = 1, the latter
being the same as for the Sm-A LC. The sums of the contri-
butions from all the three nematic regions to both the elastic
and dielectric energies increase with ν, as shown in Fig 14.
The total free energy �Ftot exhibits a shallower minimum
compared to that of �Fsm, and at a lower ν, which is reduced
to 25 (Fig. 14), corresponding to λϕ = 1.26 μm.

As the contributions from the regions b and c of the
surrounding nematic are independent of thickness D, the total
free energy depends on D unlike for a Sm-A disk surrounded
by the isotropic phase. The dependence is, however, weak.
For R = 5 μm and E = 4.756 V/μm, ν = 25 when D =
2 μm, and ν = 24 when D = 1 μm. Reducing the saddle-
splay elastic constant κ to 150 pN from 200 pN lowers the
equilibrium value of ν to 21, for D = 2 μm. Reducing κ to
100 pN, the free energy minimum is positive even for E =
6.726 V/μm. Thus, as in the case of chromonic nematics,
the saddle-splay constant of the induced Sm-A LCs is >∼4
times k11.

The experimentally observed bright spots around the pe-
riphery of the disks arise from focusing effects. In the uniaxial
Sm-A and N LCs, the refractive index μe for a light beam
polarized along the director is larger than μo for the orthogo-
nal polarization. At any given position (r, ϕ) the beam splits
into the two polarized components, with the effective extraor-
dinary index μeff ≈ μo[1 + 0.5θ2(μe

2 − μo
2)/μe

2] slightly
larger than μo, θ being the angle made by the director
with the z axis. From Eq. (7), the projected director n⊥ =√

(n2
r + n2

ϕ ) ≈ θ has a nonzero value at all azimuthal orien-
tations ϕ at any given r, but the exponential decays of θ

along the radial direction on both sides of the edge focus
the light towards the periphery. The edge undulations of the
experimentally studied disks are well developed, i.e., u0 is not
negligible unlike in the theoretical analysis. The orientational
order and hence μe of Sm-A can be assumed to be larger
than that of the surrounding NLC. Including those in the
nearby NLC, the proposed deformations of the director field
are three-dimensional, but it is clear that, near the edge, the
Sm-A–N interface is tilted; and when a light beam enters
the Sm-A drop, in general, it is refracted at the interface.
The beam entering around the trough of the undulation is
refracted towards the central beam from all the three Sm-A
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FIG. 15. (a) Theoretical variation of ν with E in a Sm-A disk with R = 5 μm as described in the text. The essentially linear dependence
reflects that seen in experiments (see Fig. 8(a) above and Fig. 8 in Ref. [5]). (b) The dependence of ν on the radius of the disk R, fixing
D = 2 μm, E = 4.756 V/μm and κ = 200 pN. The dependence is linear, as seen experimentally in both the experimental systems (see Fig. 8(b)
above and Ref. [5]). This simply implies that λϕ is determined mainly by the decay lengths as long as the radius R of the disk is considerably
larger than those lengths.

regions (with r < R and ϕ larger and smaller than that at
the trough). The deviations get enhanced in the Sm-A due
to the gradient in μeff . On the other hand, near the crests of
the undulation, the refraction at the interfaces tilts the beams
away from the central beam, though the gradients in μeff push
them back towards the central beam. Thus the final focusing
effect depends on the relative magnitudes of the two effects.
If u0 is large enough, the large interfacial refraction focuses
the light beams strongly above the troughs and the number of
bright spots NS = ν, the number of undulations. This seems
to be the case in the system studied in this paper, and we
can also see odd number of bright spots, depending on E
and R (Figs. 5 and 8). If u0 is relatively small, the interfacial
refraction cannot be large, and the light beams near both
troughs and crests of the undulation get focused because of
the gradients in μeff , and NS = 2ν. This appears to be the case
in the system studied in Ref. [5], where only even values of
NS were recorded in well-developed disks.

The dependence of the equilibrium value of ν as a function
of the applied electric field E is shown in Fig. 15(a) for
κ = 200 pN, D = 2 μm, and R = 5 μm. It is essentially linear
(apart from a slightly sharper variation at low values of E ),
as seen in experiments. In the system studied in Ref. [5], the
slope of the variation increases beyond E ≈ 6 V/μm, which
is not seen in our calculations, which are only valid close
to the threshold of the instability. Nevertheless, the slope of
the curve is similar to those in the two experimental systems
within a factor of about 2. The decay lengths (λ) are ∝ 1/E ,
and the total ν-dependent elastic energies can overtake the
variation in the magnitude of the saddle-splay energy at a
lower value of ν or a higher λϕ as E is reduced, corresponding
to an optimum net Gaussian curvature. The minimum free
energy has a positive sign when E is lowered to 2.38V/μm,
and the undulation structure is metastable. The decay length
λr corresponding to E = 2.38 V/μm is 1.26 μm, and as the
distortion covers a relatively large fraction of the area of
the disk, the unfavorable dielectric and splay elastic energies
prevail for all values of ν. However, to reach the stable
uniformly oriented disk, ν has to decrease, which increases the
energy, and the potential barrier can ensure that the structure
is stuck in the deformed state.

The dependence of ν on the radius of the disk R, for
D = 2 μm, E = 4.756 V/μm, and κ = 200 pN, is shown in
Fig. 15(b). The dependence is essentially linear, as seen in
both the experimental systems. This simply implies that λϕ is
determined mainly by the decay lengths as long as the radius
R of the disk is considerably larger than those lengths.

Above the threshold, as u0 increases, the fourth order term
of Eq. (10) has to be included in Eq. (16) and Eq. (24). In ad-
dition, the following destabilizing dielectric term contributes
at this order: −ε0�εE2{(∂u/∂r)4 + (∂u/∂ϕ)4/r4}/6. Very
roughly this contribution renormalizes the B coefficient of
Eq. (10) at the fourth order as (B−ε0�εE2). As the maximum
electric field applied is below ∼10 V/μm, the effective value
of B can be treated as a constant.

A very rough estimate shows that the compression elastic
energy density becomes comparable to the splay contribution
when Bu2

0 � 10k11. As the disks are formed in the two phase
coexistence range, B can be expected to be relatively small, �
106 J/m3. The two energies become comparable for u0 ∼ 10
times the layer spacing. It is clear that the contribution from B
shifts the equilibrium value of ν to a lower value. A higher
value of the electric field increases ν [Fig. 15(a)]. Further,
the stronger dielectric torque [see Eq. (16)] can be expected
to reduce the value of u0, i.e., push the structure towards the
threshold, reducing the effect of the B coefficient. This may
account for the enhancement of the slope of the ν(E ) curve at
higher values of E in Ref. [5].

V. CONCLUSIONS

The experimental observation of a pristine Sm-A disk
which is immersed in a nematic medium and mainly stabilized
by the action of a large enough electric field on the positive
dielectric anisotropy of the medium is by itself interesting.
The development of the undulation instability near the edge
of such a disk, which is visible in an optical microscope is a
novel effect caused by the saddle-splay elasticity of the Sm-A
LC. From the earlier discussion, it would be interesting to look
for this effect in other geometries.

When a sample is taken in a cell whose walls are treated for
homeotropic anchoring and cooled to the coexistence range,
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FIG. 16. Sm-A domains formed in the homeotropic nematic
phase in a 9-μm-thick layer of M50 at 84 ◦C. Scale: 2 μm each
subdivision.

nearly circular Sm-A disks nucleate on the (lower) treated
surface (Fig. 16). These disks present slightly elongated bright
bands oriented towards their centers, reminiscent of the spots
exhibited by disks formed under a strong electric field in cells
treated for planar alignment. In several of them, there appears
to be an inner ring of bright spots, separated from the outer one
by a small gap. This probably indicates that a second smaller
disk has grown on the on top of the disk resting on the plate.
As the temperature is lowered further, Sm-A nuclei form in the
center of the cell as well, which avoid the higher interfacial
energy across the layer normal-nematic interface by bending
of layers to form focal conic domains (Fig. 17).

As in the case of the disks formed by the action of
electric field, the saddle-splay elasticity generates periodic
undulations at the edge of the disk. This results in angular
deviations (	 1 rad) of the director from the easy axis along
z on the surface treated for homeotropic anchoring, and costs
an anchoring energy per unit area given by w sin2θ/2. As the
top surface of the Sm-A disk has no restraints, all the layers
in the disk undulate in unison, i.e., ∂u/∂z = 0, as before.
The undulation amplitude decays towards the center of the
disk, the decay length now given by λw = k11/w. With a
typical anchoring strength w ∼ 10−4 J/m2 and k11 = 40 pN as
before, the decay length λw is 0.4 μm, similar in magnitude to
the decay lengths dictated by the dielectric interaction with E .
Consequently, as in the earlier case, the edge decorated disks
are stabilized by the saddle-splay elasticity of Sm-A LC (In the
system studied in Ref. [5], due to the chemical nature of the
components, Sm-A did not nucleate on the surface treated for

FIG. 17. Focal conic domains of the Sm-A phase formed in the
homeotropic nematic phase in a 9-μm-thick layer of M50. Scale: 5
μm each subdivision.

homeotropic anchoring, and only formed focal conic domains
in the center of the cell).

There is a report of a disk shaped monolayer of chiral fd
virus particles floating on water exhibiting periodic distortions
that grow in the form of twisted ribbons, if the edge interfacial
energy is reduced by polymeric depletants [19]. The saddle-
splay term has been invoked to understand the structure.
The cubic bicontinuous phase in lyotropic liquid crystals in
the dilute regime is again a consequence of the negative
Gaussian curvature of the layers [20]. Other structures have
been proposed theoretically, which are stabilized by interfaces
[21]. The system discussed in the present paper is an unusual
example of the influence of saddle-splay elasticity, which is
manifest because of (i) a relatively low value of the splay
elastic energy due to partial splay cancellation at large values
of the azimuthal wavelength λϕ (or low values of ν), and (ii) a
very small value of the interfacial tension that cannot suppress
the edge distortion. Though circularly shaped islands have
been found on free standing films of Sm-A LC, they do not
exhibit the undulation instability, as it is suppressed by the
large surface tension of about 20 mN/m [22], which is three
orders of magnitude higher than in the systems discussed in
this paper.
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