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Structure of smectic-A liquid crystals in nonuniform domains:
Modeling the impact of imperfect boundaries
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This paper describes the construction of equilibrium configurations for smectic-A liquid crystals subjected to
nonuniform physical boundary conditions, with two-dimensional dependence on the director and layer normal,
and a nonlinear layer function. Euler-Lagrange equations are constructed that describe key properties of liquid
crystals confined between two boundaries exhibiting spatial imperfections. The results of the model are shown to
be consistent with previous published findings in simple domains while results are obtained on how the structure
of the liquid crystals changes in response to boundary perturbations. Domain sizes are considered representing
those currently used in applications while predictions in smaller domains at the limit of current technologies are
also made. In particular, it is shown that the curvature along a boundary impacts on the liquid crystal’s structure
distant from the boundary feature and therefore previously developed mathematical models, that essentially
reduced the problem to a single spatial dimension, cannot be used in such circumstances. Consequences for
practical applications are briefly discussed.
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I. INTRODUCTION

Liquid crystals are anisotropic fluids, first discovered in
the 19th century by the Austrian botanist Friedrich Reinitzer
[1,2]. Most liquid crystals are organic substances that can be
induced to exhibit liquid crystal phases by changing either the
temperature (thermotropic) or the concentration in a solvent
(lyotropic). The most common type of molecule that forms
a liquid crystal is an elongated rod-shaped molecule; that is,
where one molecular axis is much longer than the other two.
This axis is known as the anisotropic axis.

Liquid crystals are classified according to their molec-
ular structure and organization. For example, the nematic
phase, where the molecules have no specific positional order
but exhibit a common directional alignment known as the
director (usually denoted by the unit vector n) [3, p. 14],
has received significant mathematical treatment [3–21]. How-
ever, the smectic phase, where the molecules display both
positional and orientational order, has received considerably
less attention. Specifically, smectic liquid crystals are layered
structures with a well-defined interlayer distance, which is
in the range 20–80 Å [3, p. 6]. These layers may be de-
scribed by a scalar function � that can be used to investi-
gate layer undulations [22–35] and is often assumed to be
of the form �(x, y, z, t ) = x + u(x, y, z, t ) [or �(x, y, z, t ) =
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z + u(x, y, z, t ) depending on the layer orientation], where u
denotes layer undulations. However, this ansatz does not ac-
curately describe the underlying features of the smectic layers.
Moreover, while there are a number of smectic phases [36, p.
45], this article will focus exclusively on smectic-A, the first
discovered and most common of the smectic phases [37, p. 6].

It was previously believed that when the smectic-A phase
arose in equilibrium the molecules were aligned in parallel
and equidistant layers and where each layer was perpen-
dicular to the director [Fig. 1(a)]. Mathematically, this was
represented by assuming the layer normal, denoted by a =
∇�/|∇�| [3,8,24], was identical to the director n. However,
as hypothesized by de Gennes [8] and later demonstrated by
Elston [38], the layer normal and the director can decouple
when surface pretilt is applied. Furthermore, Auernhammer
et al. [39–41], Soddemann et al. [42], and Stewart and Stewart
[31] indicated that samples of smectic-A under simple shear
may exhibit a decoupling between the director n and the unit
layer normal a.

In order to model this, and other phenomena, Stewart de-
veloped a dynamic theory, and a free-energy-density function,
for smectic-A liquid crystals [24]. This theory was developed
to allow for occurrences in which the director n and the unit
layer normal a do not always necessarily coincide. The theory
was based in part on many of the ideas that were used in the
formulation of dynamics for nematics by Ericksen [9,43] and
Leslie [10,11,14] and the dynamics for smectic-A by Martin
et al. [44], de Gennes [45,46], Ahmadi [47], and E [48].
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FIG. 1. Planar alignment of smectic-A liquid crystals. (a) In
equilibrium, where the director n is parallel to the smectic layer
normal a and (b) where the director n does not necessarily coincide
with the layer normal a and each are at angles θ (x, z) and δ(x, z),
respectively, to the horizontal.

Stewart studied “bookshelf”-aligned smectic-A liquid crys-
tals (so called due to the similarities between the orientation
of molecules in adjacent layers in Fig. 1(a) and the spines
of books when arranged on bookshelves) with surface pretilt
akin to the experimental work of Elston and assumed that the
orientation of the smectic layers, and the director, was solely
dependent on the in-plane spatial variable [i.e., z in Fig. 1(a)]
[25]. When Walker considered the decoupling of the layer
normal and the director in cylindrically layered smectic liquid
crystals [33], he illustrated that the orientation of the smectic
layers and the director may indeed be dependent on both the
in-plane spatial variable and the out-of-plane spatial variable
(that is, the spatial variable that crosses the smectic layers).
Consequently, there is a need to investigate the dependence
on the out-of-plane spatial variable in planar samples of
smectic-A liquid crystals with uniform and nonuniform cell
boundaries. These nonuniform boundaries could account for
naturally occurring imperfections in cell boundaries or in
circumstances where the smectic layer deformations are used
to highlight a foreign body on a cell boundary.

This article considers a smectic-A liquid crystal, arranged
in a suite of standard and nonstandard “bookshelf” geome-
tries, where the orientation of the director and layer nor-
mal are, and to the authors’ knowledge for the first time,
assumed to be functions of both the in- and out-of-plane
variables while the layer function is calculated explicitly
from the layer normal. Surface pretilt is applied on one or
more boundaries, and at the boundaries the smectic layers are
assumed to take the orientation of the physical cell wall. A
free energy associated with this experiment is created and the
corresponding Euler-Lagrange equations are constructed. The
Euler-Lagrange equations and the constraint relating the layer
function to the layer normal are then integrated numerically.
Indeed, due to the complexity of the model equations, this
aspect is significantly more challenging than simply including
a further spatial dimension into previous investigations. The
dependence of the orientation of the director and the layer
normal on these spatial variables is shown throughout the
samples and the extent to which the director and layer normal
decouple is highlighted.

To begin, in Sec. II, we provide the energy density function
for the liquid crystal, the associated boundary conditions and
construct the standard Euler-Lagrange equations. In Sec. III,
a standard “bookshelf”-aligned smectic-A liquid crystal is
investigated, where the angles describing the direction of the
director and layer normal are assumed to be functions of

both spatial variables. The results are consistent with those of
Elston [38] and Stewart [25], validating the solution method
developed. Then, in Secs. IV and V, we investigate an array
of nonuniform “bookshelf”-aligned smectic-A liquid crystals.
The dependence of the layer normal and the director on both
spatial variables is illustrated. Comments are made on the
results, and possible future work, in Sec. VI.

II. FREE ENERGY AND MINIMIZATION

In this section, we provide the free energy density for a
smectic-A liquid crystal. We then proceed to obtain coupled
partial differential equations that minimize the free-energy-
density function by using the standard Euler-Lagrange equa-
tions. This then allows us, in the subsequent sections, to intro-
duce appropriate boundary conditions and solve numerically.

A. Construction of free energy density

We consider a sample of “bookshelf”-aligned smectic-A
where the orientation of the director n and the layer normal
a depend on two spatial variables x and z, as described in
Fig. 1(b). The layer normal and director are assumed to make
angles δ(x, z) and θ (x, z) to the horizontal in the xz plane so
that the unit layer normal a and unit director n are given by

a = (cos[δ(x, z)], 0 , sin[δ(x, z)]), (1)

n = (cos[θ (x, z)], 0 , sin[θ (x, z)]), (2)

respectively. When δ = θ = 0, we have the usual level sets
of undisturbed “bookshelf”-aligned smectic-A, i.e., a ≡ n ≡
(1, 0, 0), as shown in Fig. 1(a). As is common, a scalar
function �(x, z) is introduced, where

a = ∇�(x, z)

|∇�(x, z)| , (3)

so that the gradient of �(x, z) describes the local layer struc-
ture. The layer normal (1), director (2), and layer function
(3) are used to compose an energy density that describes the
liquid crystal system. The energy density used by Stewart
[24,25], De Vita and Stewart [49], and Walker [33] will be
employed here. This energy density is based on the work of
Auernhammer et al. [39–41], E [48], Ribotta and Durand [50],
and Soddemann et al. [42] and takes the form

w = 1
2 Ka

1 (∇ · a)2 + 1
2 Kn

1 (∇ · n)2 + 1
2 B0(|∇�| + n · a − 2)2

+ 1
2 B1[1 − (n · a)2], (4)

with the total bulk energy being given by

W =
∫

V
w dV, (5)

where V is the sample volume. In the above expression Ka
1

is a measure of the bending of the smectic layers, while Kn
1

represents the elastic splay deformation of the director n; both
Ka

1 and Kn
1 are positive elastic constants with dimensions of

force. The constant Ka
1 relates to the influence of the orienta-

tion of the smectic layers on the total distortion energy. The
elastic constant Kn

1 is related to K1 in the usual elastic theory
connected with the nematic splay deformation [3,11]. Quan-
titative measures of these elastic terms have been proposed
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to be of the same order of magnitude as the elastic constant
K1 [40], which we shall adopt later. The B0 term is related to
smectic layer compression and its coefficient is an extended
version of that known for smectic-A, based on the results in
Refs. [8,40,48,50,51], having dimensions of energy per unit
volume (N m−2). The fourth term is a measure of the strength
of the coupling between a and n. The positive constant B1 has
comparable magnitude to B0 and the same dimensions. We
note that in an equilibrium situation this contribution to the
energy is minimized when the director and the layer normal
are parallel. We also note that alternative energy formulations
are possible; for example, the formulation proposed by de
Vita and Stewart [52,53] differs in the representation of the
layer compression term. Indeed, de Vita and Stewart’s energy
formulation can be treated using similar methods to those
proposed below. It can be seen that the main behavior and
characteristics of the solutions are unchanged except in certain
key cases [54].

From Eqs. (1) and (3), it follows that

�,x

|∇�| = cos[δ(x, z)], (6)

�,y

|∇�| = 0, (7)

�,z

|∇�| = sin[δ(x, z)], (8)

where the comma in a subscript indicates the partial derivative
with respect to any following variables. From Eq. (7) �,y =
0, and while assuming that the layer function is continuously
differentiable across the sample, and �,x �≡ 0 (i.e., δ �= π/2),
we can create from (6) and (8) the partial differential equation

�,z − �,x tan[δ(x, z)] = 0. (9)

This equation, and its cylindrical coordinate counterparts,
was investigated by Walker [33,34], where the angles that
describe the orientation of the layers and the director were
assumed to be functions of the in-plane spatial variable only.
In those cases, the method of characteristics provided an an-
alytical solution for the layer function �, and the free energy
was minimized using the standard Euler-Lagrange equations.
However, due to the nature of the nonlinear boundary con-
ditions to be applied in this work, we retain the dependence
of the layer normal and the director on both spatial variables.
Consequently there is no simple analytical solution to Eq. (9)
and hence we seek an alternative numerical solution.

Using (9), and to be consistent with Eq. (6), |∇�| can be
expressed as

|∇�| = �,x sec δ(x, z). (10)

Consequently, using Eqs. (1), (2), (4), and (10), we may write
the nonlinear free energy of the system to be

w = 1
2 Ka

1 (δ,z cos δ − δ,x sin δ)2 + 1
2 Kn

1 (θ,z cos θ − θ,x sin θ )2

+ 1
2 B0[�,x sec δ + cos(θ − δ) − 2]2 + 1

2 B1 sin2(θ − δ).

(11)

We are now required to minimize this free-energy function in
order to consider the equilibrium forms of the layer normal
and the director.

B. Minimization of free energy

The minimization of the energy density function in Eq. (11)
can be investigated by using the Euler-Lagrange equations

∂w

∂θ
− ∂

∂x

(
∂w

∂θ,x

)
− ∂

∂z

(
∂w

∂θ,z

)
= 0, (12)

∂w

∂δ
− ∂

∂x

(
∂w

∂δ,x

)
− ∂

∂z

(
∂w

∂δ,z

)
= 0, (13)

∂w

∂�
− ∂

∂x

(
∂w

∂�,x

)
− ∂

∂z

(
∂w

∂�,z

)
= 0, (14)

resulting in the following three coupled partial differential
equations:

0 = Kn
1 (θ,z cos θ − θ,x sin θ )(−θ,z sin θ − θ,x cos θ )

− B0 sin(θ − δ)[�,x sec δ + cos(θ − δ) − 2]

+ B1 sin(θ − δ) cos(θ − δ)

+ Kn
1 [sin θ (θ,z cos θ − θ,x sin θ )],x

− Kn
1 [cos θ (θ,z cos θ − θ,x sin θ )],z, (15)

0 = Ka
1 (δ,z cos δ − δ,x sin δ)(−δ,z sin δ − δ,x cos δ)

+ B0[�,x sec δ + cos(θ − δ) − 2]

× [�,x sec δ tan δ + sin(θ − δ)]

− B1 sin(θ − δ) cos(θ − δ)

+ Ka
1 [sin δ(δ,z cos δ − δ,x sin δ)],x

− Ka
1 [cos δ(δ,z cos δ − δ,x sin δ)],z, (16)

0 = {B0 sec δ[�,x sec δ + cos(θ − δ) − 2]},x. (17)

Following previous techniques [24,33], the above Euler-
Lagrange equations (15)–(17) are nondimensionalized by in-
troducing

λ =
√

Kn
1

B0
, κ = Ka

1

Kn
1

, B = B1

B0
, �̄ = �

λ
,

z̄ = z

λ
, x̄ = x

λ
, (18)

where λ is a molecular length scale [8, p. 344]. The com-
pression constant B0 typically takes a value of the order
106 N m−2, while the elastic splay deformation parameter
Kn

1 typically takes a value of the order 10−12 N [24,33].
Consequently, the molecular length scale λ is of the order
of 10−9 m (10 Å) which is comparable to the smectic layer
thickness (20–80 Å), as stipulated by de Gennes [8]. In the
above nondimensionalization, κ is a measure of the elastic
properties of the liquid crystal, with its magnitude playing
a particular role in the reorientation of the smectic layers in
previous research, while the constant B is a relative measure
of the layer compression constant and the strength of the
coupling between the layer normal and the director and it,
too, has shown significant influence in the reorientation of the
smectic layers in previous research [24,33]. Consistent with
other investigations [25], it is assumed that B1 and Ka

1 take
values with approximately similar orders of magnitude to B0

and Kn
1 , respectively, and hence, for the purpose of a thorough

investigation, B and κ will accordingly take values between
10−3 and 103.
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FIG. 2. Planar alignment of smectic-A liquid crystals in a regular
rectangular domain with pretilt applied on boundaries z̄ = ±d̄ and
periodic conditions on x̄ = ±L̄ as described in the text.

Consequently, the Euler-Lagrange equations (15)–(17)
now reduce to

0 = (θ,z̄ cos θ − θ,x̄ sin θ )(−θ,z̄ sin θ − θ,x̄ cos θ )

− sin(θ − δ)[�̄,x̄ sec δ + cos(θ − δ) − 2]

+ B sin(θ − δ) cos(θ − δ) + [sin θ (θ,z̄ cos θ

− θ,z̄ sin θ )],x̄ − [cos θ (θ,z̄ cos θ − θ,x̄ sin θ )],z̄, (19)

0 = κ (δ,z̄ cos δ − δ,x̄ sin δ)(−δ,z̄ sin δ − δ,x̄ cos δ)

+ [�̄,x̄ sec δ + cos(θ − δ) − 2]

× [�̄,x̄ sec δ tan δ + sin(θ − δ)]

− B sin(θ − δ) cos(θ − δ)

+ κ[sin δ(δ,z̄ cos δ − δ,x̄ sin δ)],x̄

− κ[cos δ(δ,z̄ cos δ − δ,x̄ sin δ)],z̄, (20)

0 = [�̄,x̄ sec δ + cos(θ − δ) − 2],x̄. (21)

The solutions of Eqs. (19)–(21) correspond to the minimiza-
tion of the energy function (11). Clearly, there is no nontrivial
analytical solution to the above equations. However, insightful
numerical solutions are sought for a suite of problems with
various applied boundary conditions in the following sections.

III. UNIFORM BOUNDARY CONDITIONS

We first reconsider the set-up investigated experimentally
by Elston [38] and analytically by Stewart [25]. That is,
“bookshelf”-aligned smectic-A liquid crystals confined be-
tween two parallel glass plates, a distance 2d = 2d̄λ units
apart, as described in Fig. 2. Surface pretilt of the director is
applied so that θ (x̄,−d̄ ) = −θ (x̄, d̄ ) = θ0 and it will also be
assumed that the smectic layers will exhibit a fixed layer tilt
at the boundaries, so that δ(x̄,−d̄ ) = −δ(x̄, d̄ ) = δ0. Periodic
conditions are applied on the fictitious x̄ = −L̄ and x̄ = L̄
boundaries, i.e., θ (−L̄, z̄) = θ (L̄, z̄) and δ(−L̄, z̄) = δ(L̄, z̄).

The model equations (19) and (20) were solved numer-
ically using COMSOL Multiphysics [55], which uses the
method of finite elements by constructing a suitable triangular
mesh over the domain. The constraint (9) was imposed in the
numerical scheme, via COMSOL’s model builder. Postsolu-
tion testing showed that the magnitude of the left-hand side of
(9) to not exceed 10−12, while generally falling between 10−16

and 10−14.
Previous investigations on smectic-A liquid crystal struc-

ture in a single spatial dimension have shown that nonzero
boundary conditions induce a boundary layer region in which
the director and layer normal attempt to align [24,25,33,49]. In
anticipation of similar effects in this higher spatial dimension
investigation, boundary layers are incorporated into the upper
and lower surfaces of the domains by refining the mesh on
the corresponding boundaries. In all numerical solutions, the
mesh resolution was selected so that further mesh refinement
produced graphically indistinguishable results. The numerical
routines utilized by COMSOL require initial values for the
model variables to be defined from which the final solution is
constructed. Crucially, the efficiency of the method was seen
to depend on the choice of these initial values. Provided the
initial values satisfied the boundary conditions for θ and δ

at z̄ = ±d̄ , COMSOL was usually able to iterate the initial
distributions so that these iterations converged rapidly to the
final equilibrium configuration. As expected, the convergence
was observed to be fastest when the initial values were cho-
sen to be “close” to the equilibrium solution. Therefore, by
exploiting known results for the single spatial configuration
in a standard “bookshelf” geometry [25], initial values of θ

and δ were selected to be zero for z̄ ∈ [−d̄ + 1, d̄ − 1] and
changing linearly outwith this region to take the specified
values at z̄ = ±d̄ and so displaying similar characteristics to
the solutions in Ref. [25], namely steep changes in the director
and layer normal angles close to the boundary and values
close to zero elsewhere. The initial value of � was taken to
be unity throughout the domain. It should be noted that the
solutions of the above Euler-Lagrange equations correspond
to local energy minimizers. Hence there is a risk that the
numerical iterations converge on a local minimizer, but not
necessarily the global energy minimizer. To mitigate against
this possibility, alternative initial iterates also satisfying the
boundary conditions were considered in an attempt to obtain
different local minimizers but in all cases the numerical
iterates converged on the same solution.

With the above choice of initial values and running on a
desktop computer with an Intel Core i7 processor with 6 GB
of RAM, the computational times for the domains described
in this investigation were typically between 1 and 2 min.

Typical values obtained for θ (x̄, z̄) and δ(x̄, z̄) and their
difference θ (x̄, z̄) − δ(x̄, z̄) are shown in Fig. 3 for a range
of domains corresponding to 10 nm × 10 nm (d̄ = L̄ = 5),
0.1 μm × 0.1 μm (d̄ = L̄ = 50), and 1 μm × 1 μm (d̄ =
L̄ = 500), therefore representing current typical liquid crystal
technologies along with potential future scenarios [38]. While
smaller domains can be considered from a purely mathemat-
ical perspective, from a physical perspective the continuum
approach would cease to be valid in such circumstances.
Notice that the director angle θ (x̄, z̄) and layer normal angle
δ(x̄, z̄) appear independent of the variable x̄ and hence their
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FIG. 3. Solutions of model equations (19) and (20) for different domain sizes with B = κ = 1 in a rectangular domain using boundary
conditions as described in text with θ0 = π/12 and δ0 = 0. Arrows indicate the director and layer normal vectors where appropriate.

alignment depends only on the spatial variable z̄. Indeed, this
independence was confirmed numerically in COMSOL since
the computed values of θ,x̄(x̄, z̄) and δ,x̄(x̄, z̄) had absolute
values less than 10−6 throughout all the domains compared
to θ,z̄(x̄, z̄) and δ,z̄(x̄, z̄) which had maximum values of orders
between 100 and 101. In all cases, the value of the director
angle θ declined from its value θ0 at the boundary z̄ = −d̄
(or increased from −θ0 at z̄ = d̄) to take a value close to zero
typically within 5–10 spatial units from the boundaries. The
layer normal angle increased from δ0 on the z̄ = −d̄ boundary
(or decreased from −δ0 on the z̄ = d̄ boundary) to take the
same value as the director angle, usually within 2 spatial units.
Thus, and as in Ref. [25], there are typically two boundary
layers; the first where the director and layer normal mutually
align, and the second where both simultaneously reorient to
zero.

The manner of the alignment between the director and
layer normal can be more easily compared by considering
their orientation along a single layer (i.e., a given value of
x̄), thereby allowing a direct comparison with the studies
of Elston [38] and Stewart [24]. The resultant alignment
depends on the values of the model parameters B and κ in
the same manner obtained by Elston [38] and Stewart [24].
Figure 4 illustrates typical values of θ (x̄, z̄) and δ(x̄, z̄) along
the layer x̄ = 0 where a logarithmic scale in terms of the
distance from the z̄ = −d̄ boundary has been adopted to fully
illustrate the convergence properties between the layer normal

and director angles away from a boundary where pretilt has
been applied. Notice that for κ < 1, the layer normal angle
δ increases to the director angle θ in a region close to the
boundary while θ declines to δ in the instance of κ > 1;
this behavior is consistent with the definition of κ = Ka

1 /Kn
1 ,

where Ka
1 and Kn

1 denote the desire of δ and θ , respectively,
to change over a spatial interval. Additionally, as B is in-
creased, the director and layer normal angles converge over
a shorter spatial distance before both tend to zero away from
the boundary, consistent with B representing the coupling
between the layer normal and director vectors. (Note that
due to the symmetry embedded in the model equations and
imposed through the boundary conditions, similar behavior is
observed around the z̄ = d̄ boundary, albeit with the signs of
the angles reversed.) Consequently, we deduce that a key pre-
diction of those previous investigations, namely that there are
no interlayer effects for smectic liquid crystals in a bookshelf
geometry, is indeed valid. However, when the boundaries of
the domain are perturbed, the “bookshelf” geometry no longer
applies and far more complex behavior is possible, as we now
investigate.

IV. NONUNIFORM BOUNDARY CONDITIONS

The uniform boundary conditions investigated above
demonstrated that the standard “bookshelf” geometry consid-
ered in previous investigations is indeed a suitable approach
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FIG. 4. Solutions of model equations (19) and (20) in a rectangular domain with d̄ = L̄ = 500 and for different values of B and κ using
boundary conditions as described in text with θ0 = π/12 and δ0 = 0 along the layer x̄ = 0, where θ and δ are shown by the solid and dashed
lines, respectively. The horizontal axes utilize a logarithmic scale of the distance from the lower surface, i.e., z̄ + d̄ .

for such domains and also that the minimization approach
outlined in Sec. II coupled with the numerical solution method
provides consistent results. However, de Gennes states that
“the notion of a perfectly flat or locally smooth surface is
an ad hoc idealization” [8, p. 353] and hence we must take
into account the possibility of undulations in the surfaces
and surface dislocation densities. Consequently, the validity
of the standard “bookshelf” approach requires investigation
in such settings. To this end, we now consider a suite of
smectic-A samples confined between nonuniform boundaries,
as schematically illustrated in Fig. 5. In this article, we
have restricted our attention to nonuniform boundaries hav-
ing cyclic perturbations, similar to that of de Gennes [8].
This allows us to consider the possibility of warped physi-
cal boundaries through possible manufacturing defects, heat
distortions, or poor treatment. We investigate the effect that
the boundaries have on the realignment of the layer normal

FIG. 5. Planar alignment of smectic-A liquid crystals; (a) con-
figuration (I) with one nonuniform boundary displaying a cyclic
perturbation, (b) configuration (II) with two nonuniform boundaries
having cyclic perturbations (that may be out of phase).

and the director, and show the differences compared uniform
boundary conditions.

To isolate the effect of perturbations at the boundaries on
the director and layer alignments, we consider the equilibrium
configurations that minimize the energy function (11) in a
semirectangular region in the xz plane bounded by x̄ = −L̄
(representing the (fictitious) left side of the domain), x̄ =
L̄ (representing the (fictitious) right side of the domain),
z̄ = d̄ + f (x̄) (representing the top of the domain), and z̄ =
−d̄ + g(x̄) (representing the bottom of the domain), where L̄
and d̄ are as defined in Sec. III. To investigate the effect of
different types of perturbations on the layer structure at the
upper and lower boundaries, two different configurations were
considered (see Fig. 5):

(I) f (x̄) = Ā sin[π (x̄ + L̄)/L̄], g(x̄) = 0, representing a
cyclic perturbation on one boundary only [Fig. 5(a)],

(II) f (x̄) = Ā sin[nπ (x̄ + L̄)/L̄], g(x̄) = Ā sin[nπ (x̄ +
L̄)/L̄ + ω], representing cyclic perturbations on both
boundaries [Fig. 5(b)],
where in each instance Ā < d̄ represents the maximum magni-
tude of the perturbations, the integer n denotes the frequency
of oscillations and ω the phase shift between boundaries in
the second configuration. Periodic boundary conditions were
applied to the layer normal angle δ and the director angle
θ on the x̄ = ±L̄ boundaries as described previously, i.e.,
θ (−L̄, z̄) = θ (L̄, z̄) and δ(−L̄, z̄) = δ(L̄, z̄). Surface pretilt
was applied to the upper and lower boundaries through fixed
boundary conditions that specified the director and layer
normal relative to the boundary. Thus on the upper surface z̄ =
d̄ + f (x̄), the director angle θ was set to be tan−1[ f ′(x̄)] − θ0

and the layer normal angle was set to be tan−1[ f ′(x̄)] − δ0

for specified values of θ0 and δ0. This choice of boundary
condition is consistent with previous studies on uniform
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FIG. 6. Solutions of model equations (19) and (20) in configuration (I) of Fig. 5(a) B = κ = 1 and Ā = 0.1d̄ using boundary conditions as
described in text with θ0 = π/12 and δ0 = 0 for domain sizes as indicated.

domains [24,33]. Depending on the geometry of the domain,
different boundary conditions were used on the lower surface.
In configuration (I) [i.e., Fig. 5(a)] where g(x̄) = 0, both θ

and δ were set to be zero on z̄ = −d̄ . In configuration (II),
similar conditions to those applied on the upper surface were
used on the lower boundary except the director and layer
normal angles were reflected with respect to the boundary;
specifically θ and δ were taken to be tan−1[g′(x̄)] + θ0 and
tan−1[g′(x̄)] + δ0, respectively, again consistent with previous
studies.

Model equations (19) and (20) with constraint (9) were
solved using the boundary conditions as described above
using the same method developed in Sec. III.

A. Configuration (I)

The numerical solution with B = κ = 1 for the configura-
tion shown in Fig. 5(a) with the same range of values of L̄ and
d̄ used previously and an oscillation of amplitude Ā = 0.1d̄
is shown in Fig. 6. The boundary conditions applied on the
lower surface (i.e., z̄ = −d̄) ensured that the director angle θ

and the layer normal angle δ coincided and were both zero at
that boundary. On the opposite boundary, there was a constant
separation between θ and δ, corresponding to θ0 − δ0, and the
transition between the two boundaries gives information on
the realignment characteristics of the smectic-A liquid crystals
in irregular domains. Unlike in the uniform domain of Sec. III,

this transition depended on the variable x̄ and on the domain
size, as shown by values of θ (x̄, z̄) and δ(x̄, z̄) along different
layers (i.e., different values of x̄), in the different domains
(Fig. 7).

In all cases, the director and layer normal vectors aligned
with each other a short distance away from the upper boundary
where pretilt was applied. Whereas with the same control pa-
rameters in the uniform domain where there was a symmetry
in how the smectic layers and the director aligned (Fig. 4
with κ = B = 1), the realignment processes in configuration
(I) displayed no such consistent symmetry for many layers.
For example, along the layers x̄ = 0.6L̄, and to a lesser
extent along x̄ = 0.2L̄, the change in the director angle θ was
greater than the change in the layer normal angle δ to achieve
alignment. Following their mutual alignment, both θ and δ

approached zero at greater distances from the boundary. In
the smallest domain, where d̄ = L̄ = 5, this approach to zero
occurred over a shorter spatial scale than the other domains
due to the influence of the lower boundary.

This configuration can be compared with that studied by de
Gennes [8]. de Gennes considered a smectic-A in contact with
an undulating glass surface, where the smectic planes stay
locally tangent to the surface (and the molecules stay in-line
with the layer normal). Assuming that the height of the local
amplitude of the undulation takes the form α cos(kx), where α

is assumed to be small, de Gennes stated that the thickness of
the distorted region was given by l = 1/(k2λ), where 2π/k
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FIG. 7. The director angle θ (x, z) (solid line) and layer normal angle δ(x, z) (dashed line) are shown for numerical solutions of model
equations (19) and (20) for configuration (I) in Fig. 5(a) for different size domains as indicated. Parameter values are B = κ = 1, Ā = 0.1d̄
with (a) x̄ = ±L̄, (b) x̄ = −0.6L̄, (c) x̄ = −0.2L̄, (d) x̄ = 0.2L̄, and (e) x̄ = 0.6L̄. The horiztonal axes utilizes a logarithmic scale of the vertical
distance from the upper surface, i.e., d̄ + f (x̄) − z̄.

is the wavelength of the undulation. The numerical results
provided here do not show quite as large a deformation
thickness as predicted by de Gennes, no doubt due to the fact
that opposite boundary conditions are forcing a realignment
sooner into the sample. Nevertheless, this thickness is signif-
icantly larger than the thickness of the distorted region which
would be found under similar conditions with a nematic liquid
crystal, which is found to be around 1/k.

B. Configuration (II)

The numerical solutions with B = κ = 1 for the configu-
ration shown in Fig. 5(b) using different values of d̄ and L̄
with a single oscillation of amplitude Ā = 0.1d̄ and with no
phase shift between boundaries (i.e., n = 1, ω = 0) is shown
in Fig. 8.

The smaller domain d̄ = L̄ = 5 exhibits an interesting
phenomenon absent from the larger domains; namely the
existence of “bands” of molecules and layers taking similar
orientations that connect the upper and lower surfaces. These
“bands” essentially connect regions of the upper and lower
surfaces with similar imposed values of θ and δ. However,
in the larger domains, i.e., d̄, L̄ � 50, these “bands” cease to
exist and instead both the director and layer normal angles ap-
proach zero away from the boundaries; clearly demonstrating
the influence of the boundaries within the sample, and the
sample size itself. As before, close to the upper and lower
boundaries, both θ and δ align with each another (Fig. 9)
in a similar manner to that observed in configuration (I) (cf.
Fig. 7).

Clearly these results in both configurations demonstrate
that a rigid “bookshelf” geometry, that has been previously
used throughout some mathematical investigations of the
structure of smectic liquid crystals, no longer applies when
boundary distortions are involved.

V. INVESTIGATION OF NONUNIFORM DOMAINS

Previous studies, e.g., Stewart [24], investigated how the
structure of the smectic liquid crystals arranged in a regular
“bookshelf” formation depended on the model parameters
B and κ . Here we utilize a similar approach but crucially
significantly extend that analysis to incorporate the role of
the domain shape and the irregular boundaries of the forms
introduced above. It was seen above that, except at the bound-
aries, the director and layer normal mutually align themselves
with the horizontal and hence the impact of nonuniform
domains are most evident close to the boundary. Conse-
quently, we henceforth focus attention on the smaller domain
with d̄ = L̄ = 5 (corresponding to d = L = 10 nm) where
boundary contributions across the entire domain are more
significant.

To quantify the overall alignment characteristics of the
liquid crystal structure in response to the boundaries and
model parameters, we introduce a perturbation measure that
captures the discrepancy between the system in its lowest
energy state as a result of the boundary conditions compared
to that without any. In the absence of boundary conditions,
as described above, the default state for the liquid crystal
structure is for the director and layer normal angles to coalign
with the positive x̄ axis, i.e., in the absence of boundary
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FIG. 8. Solutions of model equations (19) and (20) in configuration (II) of Fig. 5(b) for different domain sizes with B = κ = 1, n = 1,
ω = 0, and Ā = 0.1d̄ using boundary conditions as described in text with θ0 = π/12 and δ0 = 0 for the domain sizes indicated. The arrows
indicate the director and layer normal vectors n and a.

conditions model equations (19) and (20) will have solution
θ (x̄, z̄) = δ(x̄, z̄) = 0 for all x̄, z̄. Consequently, any deviation
from this default state indicates the impact of boundary condi-
tions. To quantify these deviations, we construct a normalized
measure of the perturbations over the domain by introducing
the integral function

�(ξ ) =
∫ L̄

−L̄

∫ d̄+ f (x̄)

−d̄+g(x̄)

√
ξ (x̄, z̄)2 dz̄dx̄,

so that variations in the angle ξ (taken to be θ , δ, and θ − δ)
over the domain are quantified by the normalized measure

M(ξ ) = �(ξ )

�(1)
, (22)

where �(1) corresponds to the area of the domain. In
the configurations described above, trivial integration yields
�(1) = 4d̄ L̄.

A. Variations in the physical parameters B and κ

As the parameter B, representing the ratio of n and a
coupling to layer compression, was increased beyond unity
in both configurations, there were minimal changes in the
orientation of the director angle θ but more pronounced
changes in the smectic layer angle δ. However, the most

significant change was in the difference θ − δ (Fig. 10). For
B > 1, the director angle θ and layer normal angle δ more
readily combined closer to the upper surface z̄ = d̄ + f (x̄)
resulting in a reduction of the size of the boundary layer
where θ and δ differed. There was no significant change in
the director or layer normal angles as B was reduced below
unity in either configuration. This is expected from previous
studies [25,33,34] where it was found that for small values of
B, i.e., B0 > B1, the director does not realign to be parallel
to the layer normal until further into the bulk of the liquid
crystal sample. This is related to the minimization of the
coefficient of B0, i.e., the minimization of (|∇�| + n · a − 2).
For large values of B, the angles defining the director and layer
normal are forced to become closer in magnitude closer to the
boundaries.

Variations in the parameter κ , representing the elastic
properties of the sample, impacted on both the director and the
layer normal angles (Fig. 11). In configuration (I), for κ < 1,
both the director and layer normal angles took values close to
zero only in the vicinity of the lower boundary z̄ = −d̄ due to
the imposed boundary conditions, whereas the pretilt applied
at the upper boundary z̄ = d̄ + f (x̄) forced these angles to
take mostly nonzero values elsewhere. As κ increased, both θ

and δ took values closer to zero throughout greater regions of
the domain. The difference θ − δ had a significant dependence
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FIG. 9. The director angle θ (x, z) (solid line) and layer normal angle δ(x, z) (dashed line) are shown for numerical solutions of model
equations (19) and (20) for configuration (II) in Fig. 5(b) for different size domains as indicated plotted against the vertical distance from
the upper surface, i.e., d̄ + f (x̄) − z̄. B = κ = n = 1, Ā = 0.1d̄ , ω = 0 for (a) x̄ = ±L̄, (b) x̄ = −0.6L̄, (c) x̄ = −0.2L̄, (d) x̄ = 0.2L̄, and (e)
x̄ = 0.6L̄.

on κ; for small κ the layer normal and director converged
close to the upper boundary z̄ = d̄ + f (x̄) while for κ > 1 the
mutual alignment arose over a greater spatial region. Again,
this is somewhat expected from previous studies [25,33,34]
where it was found that if κ is small, i.e., Kn

1 > Ka
1 , then the

layer angle δ increases so that the layer normal is parallel to
the director and if κ is large, i.e., Ka

1 > Kn
1 , then the layers

remain fixed at their boundary states until the director has
reoriented to be parallel to the layer normal, they then both
reorient to the equilibrium state δ = θ = 0.

FIG. 10. Values of θ (with director n), δ (with layer normal a) and θ − δ obtained from the solutions of model equations (19) and (20) for
configuration (I) in Fig. 5(a) where d̄ = L̄ = 5, κ = 1, Ā = 0.5, θ0 = π/12, δ0 = 0, and B took values as indicated.
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FIG. 11. Values of θ (with director n), δ (with layer normal a) and θ − δ obtained from the solutions of model equations (19) and (20) for
configuration (I) in Fig. 5(a) where d̄ = L̄ = 5, B = 1, Ā = 0.5, θ0 = π/12, δ0 = 0, and κ took values as indicated.

The perturbation measure (22) captured the dependence
of the angles θ and δ and their difference on variations of
the parameters B and κ in both configurations (Fig. 12). As
expected, due to the additional pretilt imposed on the lower
boundary in configuration (II), M(θ ), M(δ), and M(θ − δ)
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FIG. 12. The perturbation measures M(θ ) (denoted by ◦), M(δ)
(denoted by ∗), and M(θ − δ) (denoted by �) from numerical
solutions of Eqs. (19) and (20) for (a) configuration (I) and (b) con-
figuration (II) in Fig. 5 where d̄ = L̄ = 5, Ā = 0.5, n = 1, ω = π/2,
θ0 = π/12, and δ0 = 0. Unless indicated, B = 1 or κ = 1.

were greater in configuration (II) compared to configuration
(I). In both configurations, variations in the parameter B had
minimal impact on either M(θ ) or M(δ). However, there was a
marked reduction in M(θ − δ) as B increased from being less
than unity to more than unity, quantifying the observations
made in Fig. 10 concerning the mutual alignment between the
layer normal and director. Again, this is an expected result
and in line with previous research in the one-dimensional
Cartesian “bookshelf” case [25], and the one-dimensional
“cylindrical bookshelf” case [33,34]. In both configurations,
increases in κ marginally reduced M(θ ) and M(δ) in both
configurations, suggesting that the director and layer normal
align with the horizontal more readily for larger values of κ .
However, increases in κ coincided with an increase in M(θ −
δ) indicating less mutual alignment between the layer normal
and directors, again quantifying the graphical observations of
Fig. 11. Of course, an increase in κ relates to an increase in
Ka

1 in relation to Kn
1 , meaning that the director is more free to

orient than the layers. Hence we would expect to see a larger
difference in M(θ − δ) as the director is not so constrained to
be parallel to the layer normal.

B. Variations in domain structure

1. Amplitude of oscillations

Variations in Ā, representing the amplitude of oscillations,
had a significant impact on the alignment of the director
and layer normal vectors (Fig. 13). While the director and
layer normal angles changed as expected, their difference
θ − δ displayed an unexpected phenomenon as the amplitude
Ā increased. Specifically, differences in the distance over
which θ and δ aligned close to the boundary, along with the
quantitative change in their relative alignment, emerged in
different layers as Ā changed (Fig. 14).
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FIG. 13. Values of θ (with director n), δ (with layer normal a) and θ − δ obtained from the solutions of model equations (19) and (20) for
configuration (I) in Fig. 5(a), where B = κ = 1, θ0 = π/12, δ0 = 0, and Ā took values as indicated.

The differences in the alignment characteristics between
two different layers increased with the amplitude Ā. When
Ā = 0, corresponding to a uniform domain, there was no
difference in the relative alignment of θ and δ in different
layers [Fig. 14(a)]. However, as Ā increased, the differences
between θ and δ depended on the layer and the differences
increased with Ā [Figs. 14(b)–14(d)]. Notice that the origin
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FIG. 14. Values of |θ − δ| along x̄ = −0.5L̄ (solid line) and x̄ =
0.5L̄ (dashed line) as a distance from the upper surface d̄ + f (x̄)
obtained from the solutions of model equations (19) and (20) for
configuration (I) in Fig. 5(a) with d̄ = L̄ = 5 where B = κ = 1, θ0 =
π/12, δ0 = 0 and (a) Ā = 0, (b) Ā = 1, (c) Ā = 2, and (d) Ā = 3.

of this increased alignment distance corresponds to a re-
gion in the domain that exhibits the greatest influence from
boundary conditions. For illustration, consider a point in the
domain with x̄ = −0.5L̄ a short distance r directly below the
local maximum, i.e., (x̄, z̄) = (−0.5L̄, d̄ + f (−0.5L̄) − r) in
Fig. 13. There is a significant concentration of the domain’s
boundary close to this point, and thus a significant imposed
discrepancy between θ and δ, and furthermore this concentra-
tion of boundaries increases with Ā. Notice this boundary con-
centration is clearly less than at the point (x̄, z̄) = (0.5L̄, d̄ +
f (0.5L̄) − r) in Fig. 13. Consequently, the concentration of
boundaries close to a surface, and therefore the curvature
of the boundary, appears to play an important role in the
alignment of the director and layer normal, and which may
therefore explain the differences in the alignment properties
shown in Fig. 14.

Intriguingly, while the perturbation measures M(θ ) and
M(δ) increased with Ā as expected due to the increased
values of θ and δ imposed at the boundaries, there was
only a relatively small increase in M(θ − δ) in either of the
configurations (Fig. 15).

2. Frequency of oscillations

Variations in the oscillation frequencies of the surfaces in
configuration (II) had a significant impact on the alignment of
the director and layer normal vectors (Fig. 16). When the fre-
quency of the oscillations on the upper and lower boundaries
were increased, a series of “bands” were introduced connect-
ing the upper and lower surfaces within which the director
and layer normal angles were similar. These bands connected
regions on opposite boundaries that had similar gradients.
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FIG. 15. The perturbation measures M(θ ) (denoted by ◦), M(δ)
(denoted by ∗) and M(θ − δ) (denoted by �) in terms of Ā from
numerical solutions of Eqs. (19) and (20) for (a) configuration (I) and
(b) configuration (II) in Fig. 5 where B = κ = 1, n = 1, ω = π/2,
θ0 = π/12, and δ0 = 0.

Consequently, the width of these bands decreased with the
frequency of the oscillations since the gradients along the
boundary changed over shorter spatial scales. Moreover, the
differences between the director and layer normal angles, i.e.,
θ − δ, displayed interesting phenomena. For large oscillation
frequencies there were noticeable distortion “spikes” in the
difference θ − δ radiating into the domain originating from
the local maxima on the upper surface and from the local
minima on the lower surface. These “spikes” represent sig-
nificant discrepancies between the director and layer normal
angles not present in nearby layers and are consistent with the
above observations concerning how the boundaries influence
the alignment distances between the director and layer normal.
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FIG. 17. The perturbation measures M(θ ) (denoted by ◦), M(δ)
(denoted by ∗) and M(θ − δ) (denoted by �) of Eqs. (19) and (20)
for configuration (II) in Fig. 5(b) with d̄ = L̄ = 5. (a) B = κ = 1,
Ā = 0.5, ω = 0, θ0 = π/12, δ0 = 0 and the oscillation frequency n is
varied as indicated. (b) B = κ = n = 1, Ā = 0.5, θ0 = π/12, δ0 = 0
and the phase shift ω is varied as indicated.

As expected, the perturbation measure applied to both the
layer normal and director angles increased with the oscillation
frequency n but the difference θ − δ only underwent a small
increase with n [Fig. 17(a)], suggesting that the total region
in which the director and layer normal do not align was
largely unaffected by n and hence the formation of the narrow
“spikes” are partially canceled out elsewhere.

3. Phase shift in oscillations

It was shown above that for sufficiently large frequencies
of oscillations on the upper and lower surfaces of configu-
ration (II), “bands” connecting similar gradients on opposite

FIG. 16. Values of θ (with director n), δ (with layer normal a) and θ − δ obtained from the solutions of model equations (19) and (20) for
configuration (II) in Fig. 5(b) with d̄ = L̄ = 5, where B = κ = 1, Ā = 0.5, θ0 = π/12, δ0 = 0, ω = 0, and n took values as indicated.
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FIG. 18. Values of θ (with director n), δ (with layer normal a) and θ − δ obtained from the solutions of model equations (19) and (20) for
configuration (II) in Fig. 5(b) with d̄ = L̄ = 5 where B = κ = 1, Ā = 0.5, n = 3, θ0 = π/12, δ0 = 0 and ω took values as indicated.

surfaces were formed within which the director and layer
normal angles were similar. The orientation of these bands
was naturally influenced by the phase shift ω between the
upper and lower surfaces (Fig. 18). Specifically, bands in both
θ and δ arose between the closest regions on opposite surfaces
that exhibited similar gradients in either a positive or negative
direction. The edge of these bands coincided with regions
where there was a significant discrepancy between the director
and layer normal, as illustrated by the previously observed
“spiked” structures arising in the θ -δ plots.

The perturbation measure for both the director angle θ

and layer normal angle δ changed with the phase shift ω

[Fig. 17(b)]. Indeed, when ω = π , representing a half-cycle
phase shift between upper and lower boundaries, the measures
M(θ ) and M(δ) were minimized. Notice this particular phase
shift corresponds to a symmetry in the domain when viewed
along the z̄ = 0 axis, due to the pretilt applied. Changes in ω

did not alter M(θ − δ), indicating discrepancies between the
director and the layer normal are local to the boundaries.

C. Discussion

A short summary of all of the investigations within this
article can be found in Table I. The reorientation of the
molecules and the layers seems to be highly dependent on
the size of the nondimensionalized parameter B, which itself
is a measure of the strength of the ratio of the coupling of
the director and the layer normal to the layer compression
constant. That is, when B is large (i.e., when B1 � B0) it
would appear that the layer compression forces the molecules
and layers to realign to be parallel to the x axis closer the
boundaries compared to when B is small. We also find that

the size of the nondimensionalized parameter κ (the ratio
of the layer splay constant to the molecule splay constant)
impacts on the realignment of the director and layer normal;
specifically realignment arises over shorter distances when κ

is small.
However, there does not seem to be a strong immediate

requirement for the director and the layer normal to align
parallel to the x axis. In fact, the studies show that the
molecules and layers seem to realign in order to minimize any
deviation of gradients from the cell boundaries. This means
that distortion spikes, which permeate through the sample
for d̄ = L̄ = 5, are shown. The presence of these distortion
spikes are highly dependent on the size of the cell boundary
distortion, and the size of the cell itself, as expected. It should
be noted that these distortion spikes may not necessarily
correspond to a global energy minimization as, despite the
variations used in the selection of the initial iterates, there is a
possibility that the numerical iteration scheme used to inves-
tigate the Euler-Lagrange equations converged to a different
local minimizer instead. Indeed, the existence of more than a
single energy minimizer remains an interesting open problem.

These results are consistent with those found in the one-
dimensional Cartesian “bookshelf” case [25] and the one-
dimensional “cylindrical bookshelf” case [33]. Of course, the
two-dimensional “cylindrical bookshelf” case can now be
investigated using the technique described above. It will be
interesting to note how important a role the radius plays in the
orientation of the smectic layers and molecules.

Many more boundary structures can also now be studied.
For example, boundaries which exhibit localized distortions,
such as that which might appear due to dust particles on the
boundary, have been studied in Ref. [54] and will appear
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TABLE I. A summary of investigations.

Investigation Results

κ decreased below unity θ, δ boundary layers increased, (θ − δ) boundary layer reduced
δ increases toward θ , decrease in M(θ − δ), increase in M(θ ), M(δ)

κ increased above unity θ, δ boundary layers decreased, (θ − δ) boundary layer increased
θ decreases toward δ, increase in M(θ − δ), decrease in M(θ ), M(δ)

B increased above unity Minimal changes θ , pronounced changes in δ, minimal changes to M(θ ), M(δ)
(θ − δ) boundary layer decreased, marked reduction in M(θ − δ)

B decreased below unity No significant changes

Addition of non-uniform boundary Induced dependence of θ, δ on x̄, L̄, increased boundary layers
Increased M(θ ), M(δ), M(θ − δ)

Increase in Ā Increase in M(θ ), M(δ), small increase in M(θ − δ)

Increase in nπ/L̄ Increase in M(θ ), M(δ), small increase in M(θ − δ)

Changes in ω M(θ ), M(δ) minimized at ω = π , M(θ − δ) unaffected.

in future publications. Further, the challenge of considering
nonsmooth boundaries, such as those found in saw-tooth pro-
files or well geometries can now be considered for smectic-A
materials, as they have been for nematics [21,56–58]. These
nematic studies and many smectic studies [59–62] evidence
the possibility of multi-stable states which is of particular use
in bistable displays.

As mentioned, localized boundary defects have been stud-
ied in Ref. [54], using the energy minimization approach
given here. Smectic-A defects have been the focus of much
analytical and experimental attention, as they pose significant
challenges to those who wish to use these materials in display
applications [63–68]. While nonboundary defects were not
considered in this work, some defects within a planar,
cylindrical or spherical sample of smectic-A could also be
considered using the method introduced here. Of course,
defects such as dislocations and disclinations cannot be con-
sidered using this model, which assumes that layer number
is constant, but must be considered by the application of
parameter models such as those detailed and implemented in
Refs. [67,69–72].

VI. CONCLUSIONS

In this study, we have introduced a technique for solving
the nonlinear Euler-Lagrange equations associated with the
free energy density of a smectic-A liquid crystal in a variety
of cell designs with layer and director pretilt. For the first
time in the literature, the layer normal and the director have
been assumed to be functions of both the in-plane and the
out-of-plane spatial variables while including a truly nonlinear
layer function. We corroborated the results of Elston [38] and
Stewart [24] for “bookshelf” aligned smectic-A. That is, when
a uniform boundary and constant surface pretilt is applied, the
orientation of the smectic layers and the director is shown to
be only dependent on the in-plane spatial variable.

We then investigated nonuniform boundaries and showed
that the coupling of the director and the layer normal is highly
dependent on the boundary conditions applied, the spatial
variables, and some of the physical properties of the liquid
crystal. A number of cell designs were studied, including
sinusoidal perturbations on one boundary, in-phase sinusoidal

perturbations on both boundaries, and out-of-phase sinusoidal
perturbations on both boundaries. We found that, in all cases,
the liquid crystal molecules and layers orient to be parallel
(and hence minimize the free energy of the system) as soon
into the sample as possible, while not necessarily aligning
parallel to the boundaries. Consequently, throughout the bulk
of the sample, i.e., except at the boundaries, since the layer
normal and the director align, the free energy function (4)
reduces to the form K (∇ · n)2 + B(|∇φ| − 1)2 and so is con-
sistent with that of de Gennes [8].

These results have immediate consequences on the
use of smectic-A liquid crystals in two physical applica-
tions, namely; display technologies, and sensors. In display
applications, we see that small distortions at the cell bound-
aries, caused by uneven plates for example, can create distor-
tions through some of the smectic-A sample, leading to areas
of nonoperability. Of course, smectic layer instabilities have
been recorded previously [50,73–75], as has the difficulty
with the tilt of smectic molecules with respect to boundary
interfaces [8, p. 403]. However, given a smectic-A material
where B � 1, these distortions can be minimized. Indeed, in
sensor applications, these distortions could be used to identify
roughness of a boundary, or even the introduction of a foreign
body. These materials, therefore, could be used as sensors
in large public spaces to detect the release of potentially
dangerous molecules into the atmosphere.

While this research has considered only the static equi-
librium solutions of smectic-A confined between nonuniform
boundaries, there exists a further myriad of investigations
to be considered by including flow regimes. Some research
exists concerning Couette and Poiseuille flow of smectic-
A [26,27,76,77] and flow past finite obstacles [78]; how-
ever, these have not allowed for nonlinear layer functions
dependent on more than one spatial variable. Investigations
of these types are paramount for investigating the material
parameter value ranges which create instabilities, defects, and
phase transitions, all of which which are anathema to display
technologies.

This research has also allowed for a suite of further investi-
gations that include the use of different energy densities relat-
ing to similar materials (such as other smectics), or materials
with similar free-energy constructions (such as bilayer lipids).
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Finally, previous research has considered the use of weak
anchoring of the director on cell boundaries [32] and even
free boundary conditions on the smectic layers [49] (but with
the single variable dependence assumption). It remains an
open problem to incorporate similar ideas to the alignment
of smectic-A molecules and layers, where dependence on two
spatial variables is allowed.
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