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Minimization principle for shear alignment of liquid crystals
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If a static perturbation is applied to a liquid crystal, then the director configuration changes to minimize the
free energy. If a shear flow is applied to a liquid crystal, then one might ask: Does the director configuration
change to minimize any effective potential? To address that question, we derive the Leslie-Ericksen equations
for dissipative dynamics and determine whether they can be expressed as relaxation toward a minimum. The
answer may be yes or no, depending on the number of degrees of freedom. Using theory and simulations,
we consider two specific examples, reverse tilt domains under simple shear flow and dowser configurations
under plane Poiseuille flow, and we demonstrate that each example shows relaxation toward the minimum of an
effective potential.
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I. INTRODUCTION

In experiments on nematic liquid crystals, the director
field can be aligned by many different physical mechanisms,
including electric and magnetic fields, surface anchoring, and
shear flow. All of these mechanisms are useful for technologi-
cal applications. In liquid-crystal theory, there is an important
difference between the theoretical approaches that are used
to describe these alignment mechanisms. If the alignment
is induced by a static perturbation, then it is modeled by
adding appropriate terms to the free-energy function, and then
minimizing the free energy over all possible director fields. By
contrast, if the alignment is induced by shear flow, then it is
modeled by solving hydrodynamic equations [1–5]. When we
compare these approaches, it is natural to ask: Is it possible to
describe shear alignment by any type of minimization princi-
ple? In other words, does the nematic director field evolve to
minimize any effective potential? If so, then we could develop
an intuitive picture of shear alignment as motion toward some
optimal state, by analogy with alignment by an applied field
or other static perturbation.

To our knowledge, this kind of question has been consid-
ered at least three times in the liquid-crystal literature. First,
Olmsted and Goldbart developed a theory for the nonequi-
librium isotropic-nematic transition under shear flow [6,7].
This theory shows that shear flow has the same effect as an
aligning field on the isotropic-nematic transition: Weak shear
flow raises the transition temperature, and sufficiently strong
shear flow induces an isotropic-nematic critical point. Be-
cause the theoretical approach involves solving hydrodynamic
equations rather than minimizing any potential, it is easy for
the theory to determine the limit of stability for each phase,
but it is difficult for the theory to find the first-order transition
temperature. The first-order transition cannot be identified by
searching for the minimum of any function; rather, it must be
calculated by modeling the motion of the isotropic-nematic
interface.

Later, Doi developed a general theory for the dynamics of
soft matter, based on an Onsager-type variational approach

[8,9]. This theory is based on a single scalar function, called
the Rayleighian, which combines the dissipation function with
the generalized velocities and with derivatives of the energy
function. This approach is a variational theory, because it
derives the equations of motion by setting certain derivatives
of the Rayleighian equation to zero. However, it is not exactly
a minimization principle, because the system does not evolve
toward the global minimum of any function. This distinction
will be discussed in Sec. II below.

Most recently, Emeršič et al. developed theory and sim-
ulations to model the behavior of “dowser” and “bowser”
domains in nematic liquid crystals confined in a narrow cell
under Poiseuille flow [10,11]. Part of their work involves
defining an effective potential or effective free energy for
the dowser state, which includes the effects of flow as well
as the elastic free energy. In this case, the director field does
evolve toward the minimum of the effective potential, and one
can see that Poiseuille flow causes the dowser state to become
more favorable than the bowser.

The purpose of this article is to introduce a unified the-
oretical formalism to address this issue. We want to deter-
mine when liquid-crystal dynamics under shear flow can be
described by an effective potential, such that the system moves
toward the minimum of that potential.

In Sec. II, we begin with a simple analogy in classical
mechanics, in which we consider a particle moving in the
wind. In one dimension (1D), it is straightforward to define
an effective potential for this particle, which includes the
dissipative effects of the wind. By comparison, in two dimen-
sions (2D), this effective potential is only defined if the wind
velocity field has zero curl, or if the motion is restricted to a
1D track on the 2D plane.

In Sec. III, we apply this concept to a uniform liquid crystal
under simple shear flow. We show how the effects of shear
flow can be represented by an effective potential. In particular,
the shape of the effective potential determines whether the
director will tumble or align at the Leslie angle [3,4].

In Sec. IV, we extend the theory to a nonuniform liq-
uid crystal with no defects. In particular, we describe the

2470-0045/2020/101(3)/032701(9) 032701-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4982-2457
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.032701&domain=pdf&date_stamp=2020-03-04
https://doi.org/10.1103/PhysRevE.101.032701


XINGZHOU TANG AND JONATHAN V. SELINGER PHYSICAL REVIEW E 101, 032701 (2020)

dynamics of reverse tilt domains under simple shear flow,
and demonstrate that the domain walls move to minimize an
effective potential.

In Sec. V, we generalize the theory to a nonuniform liquid
crystal with defects. In particular, we consider the disclination
at the boundary between the dowser and bowser states in a nar-
row cell, and show that this disclination moves to minimize an
effective potential. For this problem, our results are consistent
with the theory of Emeršič et al. [10,11]; we show that their
effective potential fits into the general framework presented
here.

Finally, in Sec. VI, we provide a general discussion of
these examples. We argue that the concept of minimizing an
effective potential is a useful theoretical tool for describing
liquid crystals under shear flow. In the problems where it
applies, the effective potential particularly helps to develop
intuition for the effects of shear alignment.

II. CLASSICAL MECHANICS ANALOGY

To introduce the concept of an effective potential for
dissipative forces, we present a simple analogy in classical
mechanics. We first demonstrate this concept in 1D, and then
show its limitations in higher dimensions.

A. One dimension

Consider the dynamics of a classical particle in the wind.
This particle experiences a conservative force from its poten-
tial energy, as well as a dissipative force from air drag against
the wind. The equation of motion can be written as

mẍ = Fconservative + Fdissipative = −∂U

∂x
− ∂D

∂ ẋ
, (1)

where x(t ) is the particle position, m is the mass, U is the
potential energy, and D is the Rayleigh dissipation function.
For overdamped motion, this equation simplifies to

0 = −∂U

∂x
− ∂D

∂ ẋ
. (2)

In steady state, we have ẋ = 0, and hence the equation simpli-
fies further to

0 = −∂U

∂x
−

[
∂D

∂ ẋ

]
ẋ=0

. (3)

For a simple model of the conservative force, suppose the
potential energy is U (x) = 1

2 k(x − x0)2, so that Fconservative =
−k(x − x0). For a simple model of the dissipative force,
suppose the wind velocity field is vwind(x). In that case,
the Rayleigh dissipation function is D = 1

2γ [ẋ − vwind(x)]2,
where γ is the drag coefficient, and Fdissipative = −γ [ẋ −
vwind(x)]. Hence, the overdamped equation of motion be-
comes

0 = −k(x − x0) − γ [ẋ − vwind(x)], (4)

and the steady-state equation is

0 = −k(x − x0) + γ vwind(x). (5)

Thus, we see that the wind shifts the steady-state position of
the particle from x0 to x0 + (γ /k)vwind(x).

To express the steady-state solution as a minimization
principle, we would like to rewrite the steady-state Eq. (3) in
the form

0 = −∂Ueff

∂x
. (6)

Hence, we must define the effective potential Ueff(x) as

Ueff(x) = U (x) +
∫

dx

[
∂D

∂ ẋ

]
ẋ=0

. (7)

For the simple example above, this construction gives

Ueff(x) = 1

2
k(x − x0)2 −

∫
dxγ vwind(x). (8)

If the wind velocity is uniform, then this effective potential is
just Ueff(x) = 1

2 k(x − x0)2 − γ vwindx. We can easily see that
the steady-state position found above is the minimum of this
effective potential.

This example shows that the wind has the same effect as
a linear contribution to the potential energy. That statement
agrees with the common intuition that moving downwind is
like moving downhill, and moving upwind is like moving
uphill. More generally, the example also shows the procedure
for calculating an effective potential: First differentiate the
Rayleigh dissipation function with respect to velocity, then
set the velocity equal to zero, and then integrate with respect
to the position. In this article, we will apply that procedure
to other generalized coordinates and generalized velocities in
liquid-crystal physics.

Before going on, we should compare our analysis with
the variational theory of Doi [8,9]. Doi’s theory also seeks
to describe the behavior in terms of a single function. That
theory begins with the overdamped Eq. (2), and rewrites it in
the form

0 = −∂R

∂ ẋ
, (9)

where R is a function that Doi calls the Rayleighian, defined
by

R = ∂U

∂x
ẋ + D. (10)

Note that R is different from Ueff, because R is integrated with
respect to ẋ while Ueff is integrated with respect to x. For the
simple example of a particle in the wind, we have

R = k(x − x0)ẋ + 1
2γ [ẋ − vwind(x)]2. (11)

Equation (9) then states that R is minimized over velocity ẋ.
We emphasize that R is not minimized over position x. Rather,
minimization over ẋ gives the equation of motion, and this
equation must be solved to find the steady-state x.

As we understand it, Doi’s theory is a useful way to derive
equations of motion. It is a variational theory in the sense
that equations of motion are derived by differentiating R with
respect to velocity. It is not actually a minimization theory,
because the system does not move toward a minimum of R.
By contrast, the effective potential theory is a minimization
theory in this stronger sense, because the system does move
toward a minimum of Ueff.
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B. Two dimensions

To see important limitations of the effective potential
theory, consider 2D motion of a particle in the wind. Sup-
pose the particle position r(t ), and the wind velocity field is
vwind(x, y), so that the Rayleigh dissipation function is D =
1
2γ |ṙ − vwind(x, y)|2. Following the same notation as above,
the steady-equation of motion is

0 = −∂U

∂r
−

[
∂D

∂ ṙ

]
ṙ=0

= −∂U

∂r
+ γ vwind(x, y). (12)

We would like to rewrite that equation in the form

0 = −∂Ueff

∂r
, (13)

and hence we must define

Ueff(x, y) = U (x, y) +
∫

dr ·
[
∂D

∂ ṙ

]
ṙ=0

= U (x, y) − γ

∫
dr · vwind(x, y). (14)

We must now ask: Does this integral have a single value, or
does it depend on the integration path? The answer depends
on the curl of the wind velocity field. If ∇ × vwind = 0, then
the integral is independent of path, and hence the effec-
tive potential is a uniquely defined function. By contrast, if
∇ × vwind �= 0 (as in a hurricane), then the integral depends
on the path, and the effective potential is not well defined.
This example demonstrates that the concept of an effective
potential might or might not be useful in problems with more
than one degree of freedom, depending on the generalized curl
of the dissipative force.

For one more variation on this problem, suppose that
the particle is constrained to move on a 1D curve in 2D,
like a train constrained to move on a railroad track. If the
curve is not closed, then there is only a single integration
path from one point to another in Eq. (14), and hence the
effective potential is uniquely defined as in 1D. However, if
the curve is a closed loop, then the integration path might go
around the loop once or multiple times. Hence, the effective
potential becomes a multivalued function, with a discrete set
of possible values. We can still work with it, but we need to be
careful with branch cuts, so that we only compare the effective
potential of states on the same branch. Several examples of
this phenomenon in liquid-crystal physics will be given in the
following sections.

III. UNIFORM LIQUID CRYSTAL UNDER
SIMPLE SHEAR FLOW

For an example of an effective potential in liquid-crystal
physics, consider a nematic phase under simple shear flow.
For simplicity, we work in 2D, so that the director is n̂(t ) =
[cos θ (t ), sin θ (t )]. We assume the phase is uniform, so that
the director may depend on time but not on position.

In hydrodynamic theory, there are two modes that dissipate
energy: the strain rate tensor, Ai j = 1

2 (∂iv j + ∂ jvi ), and the
director rotation with respect to the background fluid vortic-
ity, Ni = ṅi − 1

2 (∂ jvi − ∂iv j )n j . The most general quadratic

dissipation function density is then [12]

D = 1
2α4Ai jAi j + 1

2 (α5 + α6)niAi jA jknk (15)

+ 1
2α1(niAi jn j )

2 + 1
2γ1NiNi + γ2NiAi jn j,

where the α coefficients are the Leslie viscosities for fluid
flow, γ1 is the rotational viscosity for director rotation with
respect to background fluid vorticity, and γ2 is the torsion
coefficient, representing a dissipative coupling between strain
rate and director rotation.

For simple shear flow, we consider the fluid flow velocity
profile is v = (v′y, 0). Hence, the dissipative modes become

Ai j =
(

0 v′
2

v′
2 0

)
, Ni =

(− sin θ

cos θ

)[
θ̇ + v′

2

]
, (16)

and the dissipation function becomes

D =1

8
(α4 + α5 + α6)v′2 + 1

8
α1v

′2 sin2 2θ

+ 1

2
γ1

[
θ̇ + v′

2

]2

+ 1

2
γ2v

′
[
θ̇ + v′

2

]
cos 2θ. (17)

To convert this dissipation function into an effective poten-
tial acting on the steady-state angle θ , we follow the procedure
developed in Sec. II (A). First, we calculate the dissipative
force acting on θ by differentiating the dissipation function
with respect to θ̇ ,

−∂D

∂θ̇
= γ1

[
θ̇ + v′

2

]
+ 1

2
γ2v

′ cos 2θ. (18)

Next, we go to the steady-state case by setting θ̇ = 0, and we
obtain

−
[
∂D

∂θ̇

]
θ̇=0

= 1

2
γ1v

′ + 1

2
γ2v

′ cos 2θ. (19)

Finally, we integrate with respect to θ , and we find the
effective potential

Ueff =
∫

dθ

[
∂D

∂θ̇

]
θ̇=0

= 1

2
γ1v

′θ + 1

4
γ2v

′ sin 2θ. (20)

This expression for Ueff(θ ) is plotted in Fig. 1. From this
figure, we can see that the effective potential can have two
possible shapes, depending on the viscosity ratio |γ2/γ1|. If
|γ2/γ1| � 1, then the effective potential is a monotonically
increasing or decreasing function of θ , with no local minima.
In that case, the director tumbles continuously toward lower
values of Ueff. The direction of tumbling depends on the sign
of v′. A positive shear flow v′ > 0 induces tumbling with θ̇ <

0, while v′ < 0 induces θ̇ > 0. By contrast, if |γ2/γ1| > 1,
then the the effective potential has a series of local minima,
and the director aligns at one of these minima. To find
the alignment orientation, we can solve ∂Ueff/∂θ = 0, which
gives

θ = 1

2
cos−1

[
−γ1

γ2

]
. (21)

Of course, the theory of shear alignment was developed
and the alignment angle was calculated many years ago. This
calculation is normally expressed as a balance of stresses,
rather than as the minimization of any function. We suggest
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FIG. 1. Effective potential Ueff(θ ) for shear alignment of a uni-
form nematic liquid crystal in the 2D plane. If the viscosity ratio
|γ2/γ1| � 1 (as in the dashed red curve), then the effective potential
has no local minima, and the director tumbles. If |γ2/γ1| > 1 (as in
the solid blue curve), then the effective potential has local minima,
and the director aligns at one of those minima. The plot is drawn with
γ1 > 0, γ2 < 0 (as in typical experimental materials), and v′ > 0.

that the effective potential provides several insights into this
classic calculation. First, we can see that the magnitude of
shear flow v′ does not affect the alignment angle, but it does
determine the overall magnitude of Ueff. Hence, a stronger
shear flow gives a stronger alignment at the same angle.
Second, we can see that the arccosine in Eq. (21) has multiple
values, and some of them are local minima of Ueff while
others are local maxima. Reversing the sign of v′ reverses the
sign of Ueff, and hences exchanges the minima and maxima.
Third, we can see how alignment by shear flow competes with
other alignment mechanisms, such as alignment by an ap-
plied magnetic field. The effective potential Ueff derived from
shear flow can simply be added to the magnetic free energy
−(�χ/2μ0)(H · n̂)2, or to any other free-energy terms, and
the equilibrium director can be determined by minimization
of the total effective free energy.

We note that the same physical state of the liquid crystal
can be described by multiple angles (θ , θ ± π , θ ± 2π , …),
and hence the same physical state has multiple values of the
effective potential. This problem of a multivalued effective
potential is analogous to the problem of motion in a hurricane
on a circular railroad track, as discussed in Sec. II (B). We
can interpret the analogy by working in terms of the nematic
director n̂ = (cos θ, sin θ ). The two components of n̂ are anal-
ogous to the 2D plane, and the constraint |n̂| = 1 is analogous
to the track that constrains the motion. Alternatively, we can
interpret the analogy by working in terms of the 2D nematic
order tensor Qi j = S(2nin j − δi j ), where S is the scalar order
parameter. Here, the two independent components Qxx =
−Qyy = S cos 2θ and Qxy = Qyx = S sin 2θ are analogous to
the 2D plane, and the thermal free energy that determines S
provides an approximate constraint on the motion, analogous
to the track. In either case, the effective potential is locally
well-defined, under small rotations of the physical state. How-
ever, there are different branches of the effective potential,

x

y

Domain Wall Domain

E

FIG. 2. Example of reverse tilt domains separated by a domain
wall. The top and bottom surfaces of the cell have strong planar
anchoring, and an electric or magnetic field is applied across the
thickness of the cell, in the y direction.

depending on which branch of the angle θ is chosen, and it
is not meaningful to compare different branches.

As we mentioned in the Introduction, previous theoret-
ical research has studied the effects of shear flow on the
isotropic-nematic transition [6,7]. Near this transition, one
must consider the two independent components of the nematic
order tensor without a strong constraint on the scalar order
parameter S. This problem is analogous to motion in the 2D
plane without a track. In that case, the effective potential
involves an integral that is path-dependent, and hence is not
even locally well-defined. Thus, the concept of an effective
potential may not be useful for that problem.

IV. REVERSE TILT DOMAINS UNDER
SIMPLE SHEAR FLOW

In this section, we apply the concept of minimizing an
effective potential to a nonuniform liquid crystal. For a simple
example of a nonuniform liquid crystal with no defects, we
consider the dynamics of reverse tilt domains under shear
flow.

The concept of reverse tilt domains is illustrated in Fig. 2.
When a nematic liquid crystal is confined to a narrow cell
with strong anchoring conditions, and then subjected to an
electric or magnetic field above the Fréedericksz transition,
the director field becomes nonuniform across the thickness of
the cell. It aligns with the anchoring direction near the walls,
and tilts toward the field direction in the interior. Ideally, it
would tilt in the same orientation for all horizontal positions.
However, in typical experiments, the director tilts in a positive
or negative orientation in different parts of the cell. The
regions of different tilt are called reverse tilt domains, and
the narrow regions between these domains are domain walls
[13–15].

In the simple geometry of Fig. 2, there is a symmetry be-
tween the domains of positive and negative tilt on the left and
right sides. Because of that symmetry, the domains have equal
free energy, and neither domain will grow or shrink. In some
cases, an experimenter might want to break the symmetry,
to favor positive or negative tilt. One method to break the
symmetry is to prepare surfaces with a pretilt. With modified
anchoring conditions, the surface can induce the director field
to have a slight tilt away from the planar orientation, in a
positive or negative direction. Another method is to tilt the
applied electric or magnetic field. This tilted field favors the
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corresponding tilted domain, and disfavors the other. These
two methods for breaking the symmetry can certainly be
described by a free energy. With a specified surface pretilt or
bulk tilted field, one can calculate the free-energy difference
between domains of positive and negative tilt. Based on this
free-energy difference, one can predict how one domain grows
and the other shrinks.

Now consider a third method to break the symmetry by
applying a shear flow v = (v′y, 0). Under shear flow, one type
of domain is closer to the favored shear alignment angle, and
hence is compatible with the flow. By comparison, the other
type of domain is farther from the favored angle, and is less
compatible with the flow. The question is: Can this method for
breaking the symmetry be described by an effective potential?
Under shear flow, is there an effective potential difference be-
tween domains of positive and negative tilt, which determines
how one domain grows and the other shrinks?

To answer that question, we extend the effective potential
argument of the previous section to a nonuniform liquid
crystal in a reverse tilt domain. Suppose the director field is
n̂(y, t ) = (cos θ (y, t ), sin θ (y, t )), and the applied electric field
is E = (0, E ). The free-energy density then becomes

F = 1

2
K

(
∂θ

∂y

)2

− 1

2
ε0�εE2 sin2 θ, (22)

where �ε is the dielectric anisotropy, and we assume a single
Frank constant K . Following the argument of Eqs. (15)–(20),
we construct the dissipation function, differentiate it with
respect to θ̇ to find the dissipative force, and integrate it with
respect to θ to find the dissipative part of the effective potential
density, ∫

dθ

[
δD

δθ̇

]
θ̇=0

= 1

2
γ1v

′θ + 1

4
γ2v

′ sin 2θ. (23)

Combining the free energy and the dissipative terms gives the
total effective potential density

Ueff = 1

2
K

(
∂θ

∂y

)2

− 1

2
ε0�εE2 sin2 θ

+ 1

2
γ1v

′θ + 1

4
γ2v

′ sin 2θ. (24)

Now that we have derived the effective potential density,
we can use it to calculate the steady-state director field, just
as we are accustomed to using the free-energy density to
calculate the equilibrium director field. In particular, we can
construct the Euler-Lagrange equation,

0 = δUeff

δθ
= − K

∂2θ

∂y2
− 1

2
ε0�εE2 sin 2θ

+ 1

2
γ1v

′ + 1

2
γ2v

′ cos 2θ. (25)

This equation is equivalent to the Ericksen-Leslie equation
for the steady-state director field in the Fréedericksz transition
under shear flow, and it is difficult to solve exactly.

As a simpler alternative, we make a variational ansatz
for the steady-state director field θ (y) = θ0 cos(πy/d ), which
satisfies the planar anchoring conditions at y = ±d/2. We
insert this ansatz into the effective potential density Eq. (24)

and then average over the thickness of the cell to obtain

U average
eff = π2Kθ2

0

4d2
+ ε0�εE2

2
[J0(2θ0) − 1]

+ γ1v
′θ0

π
+ γ2v

′

4
H0(2θ0), (26)

where J0 and H0 are the Bessel and Struve functions, respec-
tively. Near the Fréedericksz transition, for θ0 � 1, we can
expand as a power series in θ0 to obtain

U average
eff = (γ1 + γ2)v′θ0

π
+ ε0�ε

(
E2

c − E2
)
θ2

0

2

− 4γ2v
′θ3

0

9π
+ ε0�εθ4

0

8
+ · · · , (27)

where Ec = [(π2K )/(2ε0�εd2)]1/2 is the critical field. From
this series, we can see how shear flow changes the Fréeder-
icksz transition. In the absence of flow, for v′ = 0, the ef-
fective potential has an exact symmetry between positive and
negative tilt θ0. Above the critical field, there are two minima
at θ0 = ±[2(1 − E2

c /E2)]1/2, and these two minima have the
same effective potential. By contrast, for v′ �= 0, the power
series has odd terms that break the symmetry between positive
and negative tilt. The shear flow acts as an effective field that
favors one sign of θ0. Hence, the two minima are shifted, and
one minimum becomes lower in effective potential than the
other. For that reason, the domain wall between neighboring
domains in Fig. 2 will move, so that the domain with lower
effective potential will grow, and the domain with higher
effective potential will shrink.

We have performed numerical simulations of the dynamics
of two reverse tilt domains separated by a wall, using the
same Q tensor method as in our previous article [16]. These
simulations confirm that the the domain of lower effective
potential grows, and the domain of higher effective potential
shrinks. The velocity of the wall between these domains is
proportional to the shear rate v′, and hence to the difference
of effective potential between the two domains. These results
confirm that the effective potential provides a useful way to
understand which domain is favored by the imposed shear
flow.

V. DOWSER AND BOWSER STATES UNDER
POISEUILLE FLOW

In this section, we consider the motion of a disclination
between the dowser and bowser states in a narrow liquid-
crystal cell. This problem has already been studied using an
effective potential concept by Emeršič et al. [10,11]. We show
that their effective potential concept is consistent with the
general approach presented in this article.

The dowser state has been found experimentally in several
studies by Pieranski et al. [17–21]. It has the structure shown
schematically in Fig. 3(a). Suppose that a liquid-crystal cell
has strong homeotropic anchoring on both sides. The simplest
director configuration is just a uniform vertical alignment,
shown in the right side of the figure. However, under some
circumstances, the director field might form a more complex
state, shown in the left side of the figure, which Pieranski et al.
have called the dowser state. In the dowser state, the director
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x
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(b) Flow Dowser Disclination Bowser

x

y

(a) No
flow

Dowser Disclination Uniform

FIG. 3. (a) Dowser and uniform states, separated by a disclina-
tion, in the absence of flow. (b) Dowser and bowser states, separated
by a disclination, in the presence of Poiseuille flow (indicated by the
red arrows).

rotates through 180◦ from the top to the bottom surface. At
any interface where the uniform and dowser states meet, the
liquid crystal must have a disclination of topological charge
±1/2, shown in the middle of the figure.

In general, the dowser has a higher elastic free energy than
the uniform state, because the dowser has director gradients
while the uniform state does not. In equilibrium, the dowser
region shrinks and the uniform region grows, so that the liquid
crystal can reduce its total free energy. This process occurs
by motion of the disclination at the interface. In the example
of Fig. 3(a), the disclination moves to the left to reduce the
dowser region and increase the uniform region.

In the experiments of Refs. [10,11], Emeršič et al. stabilize
the dowser state by applying planar Poiseuille flow. Poiseuille
flow is a parabolic flow profile v = [vmax(1 − 4y2/d2), 0],
so that the velocity is zero at the top and bottom surfaces
y = ±d/2, and is maximum in the middle of the cell, as
shown in red in Fig. 3(b). Poiseuille flow includes shear
flow ∂vx/∂y with one sign in the upper half of the cell, and
the opposite sign in the lower half of the cell. This shear
flow induces alignment of the director field with one sign
in the upper half and the opposite sign in the lower half.
The profile of shear alignment angle across the thickness is
similar to the director profile in the dowser state. Hence,
one might expect the dowser state to be compatible with
Poiseuille flow. By contrast, when the uniform state is ex-
posed to Poiseuille flow, it deforms into the bow-like director
profile on the right of Fig. 3(b), which Emeršič et al. call
the “bowser” state. One might expect the bowser state to be
less compatible than the dowser with Poiseuille flow. Indeed,
the experiments demonstrate that a large enough Poiseuille
flow causes the dowser state to grow and the bowser state to
shrink.

We would like to understand the stabilization of the dowser
state through the same type of effective potential concept as in
the previous sections. In particular, we would like to see how
the Poiseuille flow affects the effective potential of the dowser
in comparison with the bowser state.

For this calculation, we repeat the argument of Sec. IV
with two small differences: There is no applied electric field
E = 0, and the shear rate for Poiseuille flow is given by v′ =
∂vx/∂y = −8vmaxy/d2. Hence, the effective potential density
becomes

Ueff =K

2

(
∂θ

∂y

)2

− 4γ1vmaxy θ

d2
− 2γ2vmaxy sin 2θ

d2
. (28)

We must integrate this density over the thickness of the cell
for both bowser and dowser states.

For the bowser state, the simplest assumption for the
director field is just the uniform θ (y) = π/2. By putting this
assumption into the effective potential Eq. (28) and averaging
over the thickness of the cell, we obtain just

U bowser
eff = 0. (29)

For a more detailed model of the bowser, we could use
the higher-order expression θ (y) = (π/2) + θ0 sin(2πy/d ),
which is vertical at the top and bottom surfaces as well as
in the center of the cell, and is tilted away from vertical in
opposite senses in the upper and lower halves. Putting this
assumption into the effective potential, expanding as a power
series for small θ0, and averaging over the cell thickness gives

U average
eff = −2(γ1 − γ2)vmaxθ0

πd
+ π2Kθ2

0

d2
. (30)

Minimizing this expression over θ0 gives

θ0 = (γ1 − γ2)vmaxd

π3K
. (31)

Hence, Poiseuille flow transforms the uniform state into a
bowser with director variation θ0 proportional to vmax. Putting
that expression back into the effective potential gives correc-
tions to Eq. (29). However, we will not need those corrections
in the argument below.

For the dowser state, we must be careful to choose the
appropriate quadrant for the angle θ . In choosing the quadrant,
we use the following physical argument: Suppose that the
disclination moves to the right, so that the bowser is trans-
formed into the dowser. In the upper half of the cell, the
director rotates counter-clockwise to θ > π/2. In the bottom
half of the cell, the director rotates clockwise to θ < π/2.
Hence, the simplest assumption for the director field is

θ (y) =
{

π (1 − y/d ), for 0 < y < d/2,

−πy/d, for − d/2 < y < 0.
(32)

In other words, we must put a branch cut for θ at y = 0, the
same height as the disclination. This choice of quadrant cor-
responds to the issue discussed in Sec. II(B) for the effective
potential of a particle that is constrained to move on a closed
loop. The effective potential is a multivalued function, and our
choice of the branch must be consistent to compare the bowser
and dowser states.

By putting assumption Eq. (32) for the director field into
the effective potential Eq. (28) and averaging over the cell
thickness, we obtain

U dowser
eff = π2K

2d2
− vmax

d

(πγ1

6
− γ2

π

)
. (33)
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In typical experimental materials, we have γ2 < 0, and hence
the term in parentheses is positive.

We can now compare the effective potentials of the bowser
and the dowser in Eqs. (29) and (33), respectively. When the
Poiseuille flow velocity vmax is low, the unfavorable elastic
term dominates the effective potential for the dowser, and
hence U bowser

eff < U dowser
eff . By contrast, when vmax is high, the

favorable dissipative term dominates the effective potential for
the dowser, and hence U bowser

eff > U dowser
eff . The two effective

potentials are equal at the velocity

v∗
max = π2K

2d

(πγ1

6
− γ2

π

)−1
. (34)

Hence, the effective potential concept shows quantitatively
that the bowser is preferred for vmax < v∗

max and the dowser
for vmax > v∗

max.
We can extend this concept to model the motion of the

disclination driven by a difference of effective potential. If
the disclination moves to the right by a distance δx, then
an area d δx is transformed from bowser to dowser, so the
total effective potential changes by d δx(U dowser

eff − U bowser
eff ).

Hence, the effective potential generates a force of Fpotential =
−d (U dowser

eff − U bowser
eff ) acting on the disclination. In addi-

tion, the motion of the disclination with velocity u, with
respect to the Poiseuille flow with velocity vmax, generates
a drag force of Fdrag = −η(u − vmax), where η is the drag
coefficient for the disclination. A classic result for this drag
coefficient [22], discussed in our previous paper [16], is η =
(πγ1/4) log[d/(2rcore)], where rcore is the disclination core
radius. (This minimal model assumes equal Frank constants,
flow viscosity α4 much greater than rotational viscosity γ1,
and all other viscosities equal to zero.) When the drag force
cancels the effective potential force, the disclination moves at
the steady-state velocity,

u = vmax − d

η

(
U dowser

eff − U bowser
eff

)

= vmax + 2vmax[1 − (6γ2)/(π2γ1)] − (6πK )/(dγ1)

3 log[d/(2rcore)]
.

(35)

In this result, the first term shows that the disclination is
carried along by the Poiseuille flow, and the second term
shows the extra (positive or negative) motion induced by the
difference of effective potential between bowser and dowser.

The 2D geometry of a disclination between bowser and
dowser necessarily shows both motion carried along by the
Poiseuille flow and motion induced by the effective potential
difference. As a conceptual exercise, one might want to sep-
arate these two effects, and see only motion induced by the
effective potential difference. For that reason, we consider the
3D system shown in Fig. 4. In this geometry, the Poiseuille
flow is in the x direction, the director field is in the (x, z) plane,
and the boundary between dowser and bowser occurs at y = 0.
Hence, the disclination runs along the x axis, and the director
around the disclination has a 3D twisted structure. Hence, the
Poiseuille flow carries the disclination along its own length, in
the x direction. By contrast, the effective potential difference
pushes the disclination in the y direction, so that the bowser
grows and the dowser shrinks, or vice versa. The force from

FIG. 4. Three-dimensional (3D) geometry of dowser and bowser
states, separated by a twisted disclination, in the presence of
Poiseuille flow (indicated by the red arrows).

the effective potential is the same as in the previous case,
while the drag force is Fdrag = −ηu. Hence, the forces balance
when the disclination moves at the steady-state velocity

u = 2vmax[1 − (6γ2)/(π2γ1)] − (6πK )/(dγ1)

3 log[d/(2rcore)]
(36)

in the y direction.
To test the effective potential approach, we perform nu-

merical simulations of a moving disclination between bowser
and dowser states, under imposed Poiseuille flow. We use the
same Q tensor method as in our previous article [16]. In this
method, the free-energy density is

F = − 1
4 aQi jQi j + 1

16 b(Qi jQi j )
2 + 1

16 L(∂kQi j )(∂kQi j ), (37)

and the dissipation function density is

D = 1
16�1Bi jBi j + 1

4�2Bi jAi j + 1
2α4Ai jAi j, (38)

where

Bi j = Q̇i j − ωm(εml jQil + εmliQl j ),

Ai j = 1
2 (∂iv j + ∂ jvi ),

ω = ∇ × v, (39)

and εi jk is the Levi-Civita symbol. The coefficients in this
tensor representation are related to the coefficients in the di-
rector representation by K = LS2, γ1 = �1S2, and γ2 = �2S,
where S is the scalar order parameter. For the simulations,
we use parameters d = 2 μm, K = 10 pN, γ1 = 0.08 Pa s,
γ2 = −0.09 Pa s, similar to the liquid crystal 5CB. We choose
a and b so that Sbulk = (a/b)1/2 = 1 and rcore = (K/a)1/2 =
0.2 μm. (The core radius rcore must be exaggerated for the
numerical algorithm, but the results are not very sensitive to
this value.) We impose the Poiseuille flow profile, and then
solve the hydrodynamic equation for the director field to find
the steady-state velocity of the disclination.

In Fig. 5, the black circles show the simulation results
for the disclination velocity u as a function of the Poiseuille
flow velocity vmax. By comparison, the black solid line shows
the effective potential prediction of Eq. (35). These two
calculations show consistent behavior. When vmax = 0, the
disclination moves to the left, with u < 0. The dowser shrinks
and the bowser grows, so that the system can reduce its elastic
free energy. By comparison, when vmax becomes large enough
in the positive direction, the dowser is stabilized, and then the
disclination moves to the right, with u > 0, so that the dowser
grows and the bowser shrinks. We can regard this change
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FIG. 5. Simulation results for the disclination velocity u as a
function of Poiseuille flow velocity vmax, in comparison with the
predictions of the effective potential theory, which are in Eq. (35)
for the planar disclination and Eq. (36) for the twisted disclination.
Numerical parameters are given in the text.

as driven by the dissipative part of the effective potential.
Although the simulations and theory agree very well for small
vmax, there are some discrepancies for larger vmax. To address
these discrepancies, we can add corrections to the effective
potential calculation by allowing the director field to respond
to the Poiseuille flow, but we do not present those results here.

We also perform numerical simulations of the twisted
disclination between bowser and dowser. These simulations
use the same procedure as for the planar disclination, except
that the Poiseuille flow is in the x direction and the Q tensor
is in the (x, z) plane. The simulation results are shown by
the red squares in Fig. 5, while the effective potential pre-
diction of Eq. (36) is shown by the red dashed line. Again,
the simulations and theory agree very well for small vmax,
although there are some discrepancies for larger vmax. We
can see that the slope of u as a function of vmax is smaller
for the twisted disclination than for the planar disclination,
because the twisted disclination moves in response to effective
potential differences but is not carried by Poiseuille flow.

Our effective potential theory for the motion of the discli-
nation between bowser and dowser is equivalent to the theory
developed by Emeršič et al. [10,11]. The significance of
our work is to show how this theory fits into the general
formalism for an effective potential that includes dissipative
contributions. In particular, we can see that this concept is the
same effective potential that enters into shear alignment at the
Leslie angle, and into the motion of reverse tilt domains.

VI. DISCUSSION

From the classical mechanics analogy in Sec. II, we can see
that the effective potential concept does not always apply. The
main issue that determines whether it works is the number of

degrees of freedom. If there is only one degree of freedom,
then the effective potential can be defined unambiguously. If
there is more than one degree of freedom, then the effective
potential might or might not be a uniquely defined quantity,
depending on whether the dissipative force has a nonzero curl.
In an intermediate case, a system might have a closed path
within a space with more than one degree of freedom, like a
train on a circular track. In that case, the effective potential is
a multivalued function, which still might be useful provided
that one is careful with branches of the function.

A 2D nematic liquid crystal has both a magnitude S and a
direction θ of orientational order. For that reason, it really is a
system with more than degree of freedom. However, in many
cases, the magnitude is approximately fixed, and only the
direction can vary. In that sense, it is analogous to a train on a
circular track of allowed states. Hence, the effective potential
is a multivalued function, which depends on which branch of
the angle θ is chosen. Indeed, the multivalued nature can be
seen because the effective potential depends on θ , not just on
sin 2θ and cos 2θ .

This multivalued nature of the effective potential might or
might not be important, depending on the problem. For shear
alignment in a uniform system, the multivalued nature is not
important as long as the director remains near a specific angle.
However, it becomes important if the director can tumble
through a full circle. For the reverse tilt domain problem,
the surface anchoring constrains the director near a specific
angle. Hence, all physical states are on a single branch of
the θ function, and the multivalued nature of the effective
potential is not important. For the dowser and bowser, there
is a disclination at the interface between the two states, and
hence we cannot work consistently with a single branch of
the θ function. Even so, we can still compare the effective
potentials of dowser and bowser, provided that we choose
the quadrant of angle in a consistent way that matches the
physical motion of the disclination.

In conclusion, this article has shown that the effective po-
tential concept is a useful way to think about shear alignment
of liquid crystals. Using the effective potential, we can see
that one state is more favorable than another in the presence
of imposed shear flow. Hence, the effects of shear flow can
be understood as minimization of effective potential, just
as the effects of applied fields or surface alignment can be
understood as minimization of the free energy. This type of
argument is more intuitive than just solving the hydrodynamic
equations, and we expect that it will be useful for a range of
nonequilibrium alignment problems.
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