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Separation of dense colloidal suspensions in narrow channels: A stochastic model
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The flow of a colloidal suspension in a narrow channel of periodically varying width is described by the
one-dimensional generalized asymmetric exclusion process. Each site admits multiple particle occupancy. We
consider particles of two different sizes. The sites available to particles form a comblike geometry: entropic
traps due to variation of channel width are modeled by dead ends, or pockets, attached individually to each site
of a one-dimensional chain. This geometry, combined with periodically alternating external driving, leads to a
ratchet effect which is very sensitive to particle size, thus enabling particle sorting. A typical behavior is reversal
of the current orientation when we change the density of small and big particles. In an optimal situation, the two
types of particles move in opposite directions, and particle separation is in principle perfect. We show that in
the simplest situation with one type of particles only, this model is exactly soluble. In the general case we use
enhanced mean-field approximation as well as direct numerical simulations.
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I. INTRODUCTION

The problem of movement of driven and strongly inter-
acting classical particles in confined geometries occurs very
often in numerous applications [1,2]. One of the first mo-
tivations for study of these systems occurred in molecular
biology [3,4]. When synthesizing proteins, ribosomes slide
along the RNA chain, driven by a molecular motor. There
are many ribosomes attached one after the other on the same
RNA chain, and as they are not synchronized, they interact
strongly by steric repulsion. The situation can be described in
terms of the asymmetric exclusion process (ASEP) [5]. This
model, due to its conceptual simplicity, became very popular
during the last decades. It is exactly solvable either using the
Bethe ansatz or using the matrix product technique [6–14].
It was found that it is a paradigmatic model for a very wide
range of situations sharing the same dynamic universality
class [15,16].

The success and popularity of the ASEP stimulated its
use for more realistic situations. We already mentioned the
early application to ribosome movement. Ribosomes are just
one of many examples of molecular motors at work in living
cells [17–20]. The molecular motors rely on the mechanism
of a Brownian ratchet [21], i.e., on periodic alteration of the
effective potential in which the motor particle moves. Such
alteration is spatially indiscriminate, nevertheless it produces
driven motion in a specific direction. Experiments show var-
ious complex phenomena which manifest strong interactions
between molecular motors [22–26]. To model them, the ASEP
was often combined with the ratchet mechanism, as a starting
point to develop more complicated models with internal de-
grees of freedom and complex dynamics [27–39].
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The typical length scale of molecular motors is about
10 nm. On a much larger scale, about 1 μm and more, similar
physics is observed in dense suspensions of colloidal particles
in narrow pores or various microfluidic chambers [1,40–43].
Driving is provided by the flow of surrounding liquid only, or
combining it with gravity, electrostatic field, centrifugation,
etc. One of the important tasks we face in such systems
is separation of colloidal particles according to their size,
shape, or other physical properties [44–46]. Among numerous
applications, let us mention, for example, separation of alien
particles from blood [47–49]. As a pedagogical example,
blood is perhaps the most illuminating case. Indeed, there are
numerous, but not extremely many, types of blood cells, all
of them at a scale about 10 μm, and they form a rather dense
suspension driven by blood pressure. Contact interaction be-
tween cells is strong due to considerable density, and driving
is also strong in order to keep them in movement. If there are
alien cells in very small concentration, e.g., originating from a
tumor, it is delicate task to find them among all the rest. Phys-
ical methods, like inertial migration [50], have the invaluable
advantage of being nondestructive; therefore, the captured
cells may be further analyzed, cultivated, etc. Another strategy
based on hydrodynamics is provided by deterministic lateral
displacement where particles pass through a two-dimensional
array of obstacles [51,52]. Diffusion-driven sorting in such
two-dimensional structures was studied in Refs. [53,54].

In our work, we focus on separation of particles in chan-
nels and tubes of various asymmetric geometric structure.
The most typical shape is the “sawtooth” profile, where the
width of the channel periodically increases and decreases.
The behavior of colloidal suspensions in such channels was
widely studied experimentally [55–59], confirming the sepa-
ration capacity of these devices. Theoretical modeling of these
systems was done mostly in the low-density regime, where
particles are nearly independent [60–62], but simulations are
also available for dense suspensions of hard spheres [63] or
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Lennard-Jones particles [64]. The clue to separation mecha-
nism lies in the ratchet mechanism, as explained above. It was
shown that the key ingredient of such channels as separating
devices comes from the wider areas of the channel. They act as
weak or strong traps (depending on the shape) where particles
may be kept off the current of other particles. In specific
geometries, such traps, or pockets, may even lead to negative
mobility of the particles [65–67].

The idea of our work comes from combination of the chan-
nel geometry containing arrays of pockets with the idealized
dynamics provided by the ASEP model. The fact that there are
several species of particles, which can differ in their mobility,
size, etc., will require some generalization of the ASEP model.
However, we shall still profit from its conceptual simplicity
and the ease of implementation in simulations.

In fact, the ASEP with several species of particles was
studied quite in depth [68–77]. As long as the exclusion
property is kept, i.e., if there is at most one particle at a site,
the multispecies ASEP remains to be integrable, and many
properties are known exactly. The situation changes if we
allow more particles per site [78]. This family of models is
commonly called generalized exclusion process (GEP). The
situation is much simpler in symmetric case, where unidi-
rectional driving is absent. Numerous results are known for
symmetric GEP [79–83], and although it does not seem to be
integrable, except for special cases (e.g., the misantrope pro-
cess [84]), approximative methods yield surprisingly precise
results when compared with numerical simulations [80].

For our purposes, we need to include asymmetric driving,
so the asymmetric GEP, or the generalized ASEP, will be
used [85]. Here we further generalize this model by allowing
two species of particles. These two species will model the sit-
uation of a dense colloidal mixture, whose components need
to be separated. This situation was already modeled in terms
of a two-lane ASEP [86–88], where interaction between lanes
partially accounts for two particles being at the same site. A
similar two-lane perspective was also applied in Ref. [89],
while in Ref. [90] particles could have different length, i.e.,
they can occupy different number of adjacent sites. Also in
our model the particles will have a different size, but we shall
require that one particle can occupy at most one site. The sum
of the sizes of all particles at the same site cannot exceed a
fixed number we shall call site capacity.

Second generalization introduced here will affect the ge-
ometry of the structure on which the particles move. In order
to mimic the channels of variable width, we abandon the
strict linear chain of sites. In earlier models each site was a
cell within which particles were placed. In our model, each
site is an object composed of two cells. The linear chain of
cells serves as a kind of a backbone and to each cell on the
backbone we append another cell as a dead end or a pocket.
The pockets are isolated from each other, so the particles
can jump just from the backbone to a pocket and back. This
way, particles diffuse on a kind of an asymmetric comblike
structure. Such structure is crucial for the emergence of the
ratchet effect, i.e., rectification of the net particle current,
when the direction of the external driving is periodically alter-
nated. Indeed, in the original ASEP and all its generalizations
keeping the linear chain geometry, the current just changes
sign when the direction of driving is altered, resulting in zero

ratchet current. The nonzero ratchet current can occur only
due to the presence of pockets.

In the Sec. II we define our generalized ASEP model,
show an exactly solvable case, and specify in detail the Monte
Carlo simulations used. Comparison with these simulations is
made throughout the following sections. In Sec. III we start
with mean-field approximation in methodologically useful
simplified cases. In Sec. IV we solve the full generalized
ASEP model using the mean-field approximation and discuss
the agreement with Monte Carlo simulations. In Sec. V we
investigate the ratchet effect and its use for full separation of
particles according to their size. Section VI summarizes the
results obtained.

II. GENERALIZED ASEP MODEL

A. Discretized and stochastic description

We want to model a dense suspension of colloid particles
moving in a pore with nontrivial geometry. The particles are
suspended in a fluid, but we assume they are neutrally buoy-
ant. The particles are driven by an external bias, due to either
a hydrodynamic drift or an external field. They interact with
each other and with the walls of the pore by steric repulsion.
Hydrodynamic interactions due to surrounding fluid are ne-
glected. We say in advance that such neglect is a serious weak
point of our approach, because in reality the hydrodynamic
interactions, especially with the walls, are quite strong. On the
other hand, it greatly simplifies the treatment, as the principal
factors of the movement are drift and diffusion. These two
factors can be then effectively accounted for by stochastic
modeling.

The first ingredient of our model will be the simplified
geometry of the pore in which the particles move. We suppose
the diameter of the pore varies periodically along its axis.
Inside the pore, a mixture of particles of various sizes is
moving. We show the situation schematically in Fig. 1(a).

(a)

(b)

b a d c
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z

FIG. 1. (a) Schematic picture of a pore with periodically varying
diameter, containing a mixture of colloidal particles. Note that the
variation is mirror-asymmetric. (b) Model idealization of such pore,
featuring an asymmetric comblike structure of cells. The structure
consists of a backbone with attached dead ends, or pockets. These
pockets represent locations where the diameter of the pore is in-
creased. The jump rates along the links connecting the cells are
indicated by quantities a, b, c, and d .
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In view of ASEP-like modeling, we mimic such a pore
geometry by a discretized version. Instead of having contin-
uous values for the positions of the particles we divide the
space available into cells, and for each particle we register
only the presence or absence of the particle in certain cell,
not the precise position within the cell. In order to measure
the size of the cell, we introduce the cell capacity k. As
our primary concern is separation of mixtures of colloidal
particles, we assume we have K species of particles, each
being characterized by the particle size lα , α = 1, . . . , K .
Finite size of the cell and steric repulsion between particles
are taken into account by the exclusion constraint for each
cell with capacity k, which is

K∑
α=1

nαlα � k, (1)

where nα is the number of particles of species α contained in
the cell.

The simplest way how the pore as in Fig. 1(a) can be
discretized into cells is the asymmetric comblike structure
sketched in Fig. 1(b). There are two types of cells. The cells
of the first type [one of them is denoted by the letter “s” in
Fig. 1(b)] form a linear chain which will be called backbone.
The cells of the second type (one of them is denoted by the
letter “z” in Fig. 1(b); the meaning of the letters s and z
will be clear later) complement the backbone by a sequence
of dead ends of unit length. Each cell in the backbone is
connected to exactly one cell of the second type. We shall
call the cells of the second type pockets. The pockets are
not connected directly one to another, but can communicate
indirectly through the backbone.

Particles can jump from one cell to the other, provided
the cells are directly connected. This means that particles can
jump from a cell on the backbone to the two nearest-neighbor
cells on the backbone. This is indicated in Fig. 1(b) by the
corresponding right- and left-hand jump rates a and b. A
particle in the backbone cell can also jump to the single
pocket cell attached to it (indicated by rate c) and conversely,
a particle can jump from the attached pocket to the backbone
(as indicated by rate d). For further convenience, we shall fix
the nomenclature so that the pair of cells consisting of one cell
at the backbone and the pocket cell attached to it will be called
a site. Therefore, the system consists of a linear chain of sites.

The second ingredient (after the geometry) of our model
is the dynamics of the particles. In reality, the movement
of the colloid particles has a deterministic and a stochastic
component. The deterministic part comes from the hydrody-
namic driving, which is known uniquely as long as the flow
of the fluid is determined (provided the flow is laminar). The
stochastic part is the Brownian motion, which depends on
particle size, temperature, and fluid viscosity. Instead, in our
model the movement of particles is purely stochastic, and the
deterministic component of the real movement is taken into
account in the model by a bias in jump rates between cells.

Therefore, the dynamics of the model is parametrized by
a set of jump rates. For each of the K species of particles,
we have four rates, namely, left and right jump rates along
the backbone and jump rates to and from the pocket. The
only constraint the particles must keep is the inequality (1)

which must be satisfied at all cells. Jumps which would violate
this constraint are forbidden. This is the generalization of the
exclusion principle of the ASEP model, in which at most one
particle at each site is allowed.

We shall denote the length of the backbone L (so that there
are 2L cells in total) and always assume periodic boundary
conditions.

As our main concern is with separation of particles by
size, and at the same time we want to keep the model simple
enough, the core results will contain particles of two species,
i.e., K = 2. Their sizes will be simply l1 = 1 (small particles)
and l2 = 2 (big particles). With a few exceptions (specified
explicitly later), we shall keep the convention that upper-case
symbols (rates, currents, etc.) pertain to big particles, while
lower-case symbols are used for small particles.

B. Exactly solvable case

If our model contains only small particles and, moreover,
if the capacity of the cells in the backbone is unity, k =
1, but the capacity q of the pockets can be arbitrary, we
can exactly calculate the stationary many-particle state. The
configurations are specified by the collection of occupations
numbers (s|z) = {(si|zi)} where si = 0, 1 and zi = 0, 1, . . . , q
are the particle numbers in the ith backbone cell and in the
attached pocket, respectively.

Stochastic transitions have the form of random jumps
of particles both between neighboring backbone cells and
between a backbone cell and the attached pocket, always
respecting their capacities. In particular, the transition rate
W ((s′|z′) ← (s|z)) = a whenever a particle jumps from an ith
backbone cell to the (i + 1)th backbone cell, i.e., for si = 1 −
si+1 = 1, s′

i = 1 − s′
i+1 = 0, and s′

j = s j for all other back-
bone cells, with the pocket configuration remaining untouched
(z′ = z). Analogously, the transition rate for the opposite
jump, i.e., from the (i + 1)th backbone cell to the ith one is
denoted by b. A particle can also jump from the ith backbone
cell to the attached pocket with rate c and the opposite process
occurs with rate d zi; note that it is proportional to the number
of particles in the pocket.

We will show that the stationary distribution does not
depend on the jump rates a and b, therefore it coincides with
the stationary distribution of the detailed balanced dynamics
(a = b). The latter is to be the equilibrium distribution of a
system with L ground states (the backbone cells) and L excited
states (the pockets), which in the grand-canonical setting takes
the factorized form

P(s|z) =
L∏

i=1

[p(si ) p̄(zi )], (2)

where the marginal distributions in the backbone cells and the
pockets, respectively, are

p(si ) = λsi

1 + λ
, p̄(zi ) = 1

�(λ)

(λγ )zi

zi!
(3)

with γ = c/d and �(λ) = ∑q
n=0(λγ )n/n!. In this ansatz we

have used that the logarithmic ratio ln(d/c) = − ln γ can
be interpreted as the effective energy difference (with unit
temperature) between the ground (backbone) and the excited
(pocket) states. The averaged density of particles is then
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ρ1 = 〈si〉 + 〈zi〉 or

ρ1 = λ

1 + λ
+ λ

d ln �(λ)

dλ
. (4)

We remark that by conditioning the distribution (2) on a
fixed total number of particles

∑
i(si + zi ) = ρ1L, which is

invariant under the dynamics, we would obtain the canonical
form of distribution (no longer dependent on λ that cancels
out). However, for convenience we stick to the factorized
grand-canonical form (2) in the sequel, and we prove that
it indeed provides the stationary distribution of the driven
dynamics (i.e., for a �= b, in general).

The stationary condition∑
(s′,z′ )

J ((s′|z′) ← (s|z)) = 0 (5)

expressed in words requires that the sum of all probability
currents from any configuration (s|z) is zero. There are four
types of particle jumps: to or from the pocket (denoted by
indices ↑ and ↓) and to the right or to the left along the
backbone (denoted by indices → and ←). Therefore the
stationarity condition can be written in the simplified form∑

i

[J ↑
i + J ↓

i + J →
i + J ←

i ](s|z) = 0. (6)

The first term J ↑
i (s|z) can be nonzero only if the configuration

(s|z) satisfies si = 1, zi < q, and it counts the probability
current between this configuration and the configuration (s′|z′)
such as s′

i = 0, z′
i = zi + 1 (all other occupations unchanged),

which equals

J ↑
i (s|z) = c P(s|z) − d (zi + 1)P(s′|z′). (7)

However, this is always zero since from (2) and (3) we have
P(s|z)

P(s′|z′)
= zi + 1

γ
. (8)

By the same reasoning, J ↓
i (s|z) = 0 for the probability cur-

rent between any (s|z) such that si = 0 and zi > 0 and (s′|z′)
defined by s′

i = 1, z′
i = zi − 1 (and the rest unchanged). To-

gether it verifies the detailed balance condition for all transi-
tions to and from the pockets, which is also intuitively clear
from the geometry.

On the other hand, for the jumps to the right along the
backbone we need si = 1 − si+1 = 1 and the new configu-
ration is s′

i = 1 − s′
i+1 = 0 (and the rest unchanged). Since

P(s′|z′) = P(s|z), the probability current between these two
configurations is

J →
i (s|z) = (a − b)P(s|z)si(1 − si+1). (9)

Analogously, J ←
i (s|z) = (b − a)P(s|z) whenever si = 1 −

si−1 = 0 and zero otherwise. Their sum can be conveniently
written in the form

(J →
i + J ←

i+1)(s|z) = (a − b)(si − si+1)P(s|z) (10)

from which the stationarity (5)–(6) immediately follows by
summing over all cells i = 1, . . . , L and by using the periodic
boundary conditions.

The stationary particle current is given by

j =
∑
(s|z)

[J →
i − J ←

i+1](s|z) = (a − b)〈si〉(1 − 〈si+1〉) (11)

(independently of i). In terms of the fugacity λ(ρ1, γ ), the cur-
rent reads j = (a − b)λ/(1 + λ)2. Since the driving reversal
corresponds to the transformation a ↔ b together with c ↔ d ,
we can also calculate the ratchet current (for a flashing ratchet
slowly switching between the positive and negative driving
regimes) as

jrat = 1

2
( j + j∗) = a − b

2

[
λ

(1 + λ)2
− λ∗

(1 + λ∗)2

]
, (12)

where λ∗ = λ(ρ1, 1/γ ) is the fugacity in the driving-reversed
case and j∗ is the corresponding particle current. The ratchet
current as a function of the density of small particles can be
obtained by inversion of the relation (4).

C. Strategies for general case

1. Monte Carlo simulation

In a generic case, there is no exact solution available and
there is no easy hope for any, because as soon as k > 1 at
the backbone the system is very likely to be nonintegrable.
A natural choice is a direct numerical Monte Carlo (MC)
simulation, which we implement using a cellular-automata
approach. At each moment of the discrete simulation time the
state of the system is described by the occupation numbers
of particles of each species in each cell. We denote the set
of occupation numbers by {( ziZi

siSi
)}, where the numbers at the

bottom denote the occupation numbers at the ith backbone
cell, while the numbers on the top denote the occupation
numbers at the pocket attached to the ith backbone cell. We
shall keep the convention that the letters “z” correspond to
the pockets and letters “s” correspond to the backbone. At the
same time, capital letters denote occupation by big particles,
and lowercase letters denote occupation by small particles.
The site index i runs from 1 to L.

Transition probabilities between states of the system
W [{( ziZi

siSi
)} ← {( z′

iZ
′
i

s′
iS

′
i
)}] are deduced from the probabilities of

individual processes which always affect at most two neigh-
boring sites. Therefore, for the nondiagonal elements of the
transition matrix we have

W

[{(
ziZi

siSi

)}
←

{(
z′

iZ
′
i

s′
iS

′
i

)}]

= �m

L

L∑
m=1

W2

[(
zmZm

smSm

)(
zm+1Zm+1

sm+1Sm+1

)

←
(

z′
mZ ′

m

s′
mS′

m

)(
z′

m+1Z ′
m+1

s′
m+1S′

m+1

)]
, (13)

where �m = ∏
i,i �=m,i �=m+1 δsi,s′

i
δSi,S′

i
δzi,z′

i
δZi,Z ′

i
. In the following

we shall also denote χk (s, S) = 1 if 0 � s and 0 � S and s +
2S � k. Otherwise we put χk (s, S) = 0.

The matrix W2 describes the probabilities of elementary
jumping processes. For example, for a jump of a small particle
to the right on the backbone we have

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1 + 1S1

)(
z2Z2

s2 − 1S2

)]

= 1

ν
(s1 + 1)a χk (s2, S2). (14)
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The list of all nonzero off-diagonal elements in the matrix W2

is given in Appendix A.
The diagonal element of the transition matrix W is com-

puted so that the matrix is stochastic, i.e., the sum of prob-
abilities over all final states gives 1. The precise value of
the constant ν is inessential in the simulation, except for the
requirement that all elements of W are probabilities, i.e., fall
into the interval [0,1]. For example, we can use ν = k(a +
A + b + B + c + C + d + D). On the basis of these transition
probabilities, we run a standard Monte Carlo simulation.

2. Mean-field approximation

Besides direct numerical simulation, we shall use the
mean-field (MF) approximation. Details of the MF calcula-
tions will be thoroughly explained later. Here we just sketch
the general approach. In the approximation, we want to keep
correlations between the cell at the backbone and the pocket
cell attached to it. These two cells form a single site. We
neglect the correlations between different sites, assuming that
the full probability distribution of all configurations factorizes
into product of probabilities of configurations of individual
sites. As we also suppose that the system is uniform, i.e.,
all sites are equivalent, we obtain a set of equations for the
probabilities of configurations of one site. For k = 3, which
will be the typical case studied here, there are 36 configu-
rations. However, their probabilities are not all independent.
Taking into account three constraints (one for unit total prob-
ability and two imposed by fixed number of particles of each
species), we end with the set of 33 quadratic equations, which
are then solved numerically. In the following sections we shall
investigate specific situations, starting with the simplified ones
(with lower number of independent equations). Comparison
with corresponding results of Monte Carlo simulations will
be provided in parallel.

III. PRELIMINARY CALCULATIONS

Before going to the full model with pockets, let us look first
at several simpler situations. We shall omit the pockets, so that
the particles can hop only along a linear chain, but suppose
the cell capacity k is larger than 1. This feature generalizes
the ASEP model.

A. One species of particles

1. Jump rates

In our analytic calculations, we shall work in continuous-
time description. When we compare stationary-state proper-
ties with discrete-time Monte Carlo simulations, such dis-
tinction in the treatment of time plays no role, as long as
probabilities and rates are properly matched one to the other.

Let us first simplify the model further by assuming just
one species of particles, namely the small ones. The particle
can jump to the right or to the left. The only condition is that
the occupation s of any site must be s � k. We can introduce
general jump rates depending on the occupation of the site.
From a site occupied by s particles, one particle can jump to
the right with probability as and to the left with probability
bs. If the particles do not interact, besides the steric constraint

b a 3 b 3 a 2 b 2 a

FIG. 2. Generalized ASEP model with the cell capacity k = 3;
the rates are shown as given by Eq. (15). The probability that a
particle jumps from a site occupied by s particles is proportional to s.
This means that particles do not interact beyond the steric repulsion.

s � k, it is natural to let

as = sa, bs = sb. (15)

This is the choice we shall use in most of the calculations
and which also corresponds to our Monte Carlo simulations.
However, as it will be clear later, our theory works equally
well for any choice of the dependence of as and bs on s. For
example, we could investigate “sticky” particles, where as and
bs grow slower than linear with s. We illustrate the model for
k = 3 in Fig. 2.

2. Chain of master equations

For small particles only and cell capacity k, each site can be
in one of the k + 1 states denoted by the site occupation s. The
configuration of the whole chain is the set of occupation num-
bers. The probability of the configuration {si} will be denoted
P({si}). We suppose that these probabilities are invariant with
respect to spatial translations. Then we can extract the one-site
and two-site probabilities which do not depend on position:

P(1)
s =

∑
{si}

1

L

L∑
m=1

δsm,sP({si}),

P(2)
ss′ =

∑
{si}

1

L

L∑
m=1

δsm,sδsm+1,s′P({si}). (16)

We can write an exact master equation for the one-site
probabilities as follows. As a first step we construct an
evolution equation for this one-site probability by explicitly
analyzing possible jump processes. The change of P(1)

s in time
is caused by jumps occurring on the left (L) and right (R)
bonds connecting this site to its two neighbors,

d

dt
P(1)

s = xL + xR. (17)

Each jump can be of the loss (−) or gain (+) type

xL = x−
L + x+

L ,

xR = x−
R + x+

R . (18)

It is convenient to express these terms through functions
l and u which select appropriate two-site states allowed for
each s:

x−
L = −bsl

L
s − δ̃s,kuL

s ,

x+
L = δ̃s,kbs+1lL

s+1 + δ̃s,0uL
s−1,

x−
R = −asl

R
s − δ̃s,kuR

s ,

x+
R = δ̃s,kas+1lR

s+1 + δ̃s,0uR
s−1. (19)

Here factors δ̃s,s′ = 1 − δs,s′ are used to exclude the terms
for states s = {0, k} where necessary. Equalities a0 = b0 = 0
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are also implied. The selective functions l and u are defined
through two-site probabilities as follows:

lL
s =

k−1∑
s′=0

P(2)
s′s , uL

s =
k∑

s′=1

as′P(2)
s′s ,

lR
s =

k−1∑
s′=0

P(2)
ss′ , uR

s =
k∑

s′=1

bs′P(2)
ss′ . (20)

Functions lL
s , lR

s refer to jumps from the site in state s, whereas
uL

s , uR
s describe jumps onto this site. The context of defining

these functions for one-site states is similar to the one for
many-site states discussed in the formulation of the pairwise
balance for the drop-push model [91]. It is easy to notice that
the “R” functions change to the “L” ones, if indices of P(2) are
permuted and simultaneous substitution bs′ → as′ is made.
The same holds for x∓

R and x∓
L .

Expressions (17) through (20) together constitute the mas-
ter equation for the one-site probabilities. By analogy, similar
equation can be obtained for two-site, three-site, etc., prob-
abilities, thus producing a chain of equations familiar from
many branches of statistical physics. We need the probabilities
beyond the one-site ones in order to calculate measurable
quantities. For example, from the two-site probabilities we
obtain the current along the bond between two neighboring
sites as

j =
k∑

s=1

k−1∑
s′=0

asP
(2)
ss′ −

k−1∑
s=0

k∑
s′=1

bs′P(2)
ss′ . (21)

3. Mean-field approximation

The simplest closure of the chain of master equations is
obtained by assuming factorization of two-site probabilities

P(2)
ss′ ≈ P(1)

s P(1)
s′ . (22)

This is the mean-field (MF) approximation, neglecting the
correlations between neighboring sites. Moreover, note that
not only correlations are absent in the MF approximation, but
also the asymmetry P(2)

ss′ �= P(2)
s′s , which may play important

role in a driven system, disappears in MF approach.
This way we obtain closed set of equations for the k + 1

probabilities P(1)
s . Hence, from now on we drop the superscript

“(1),” as there is no danger of confusion.
The periodic boundary conditions imply that the number

of particles in the system is conserved. Therefore, the average
density of particles ρ1 is constant and the one-site probabilities
satisfy two linear conditions

∑k
s=0 Ps = 1 and

∑k
s=0 sPs = ρ1.

This reduces the number of independent equations to k − 1.
Owing to approximation (22) the selective functions reduce

to

lL
s = lR

s ≈ Ps

k−1∑
s′=0

Ps′ ,

uL
s ≈ Ps

k∑
s′=1

as′Ps′ ,

uR
s ≈ Ps

k∑
s′=1

bs′Ps′ . (23)

We are interested in a steady state, defined by dPs/dt = 0.
From (17) and (22): it follows that the stationary master
equation has the form

0 = (a + b)[(−hsPs + δ̃s,khs+1Ps+1)l + (−δ̃s,kPs

+ δ̃s,0Ps−1)u], (24)

where hs = (as + bs)/(a + b) are the reduced rates and

l =
k−1∑
s′=0

Ps′ , u =
k∑

s′=1

hs′Ps′ . (25)

The current defined by Eq. (21) can be written as

j =
k∑

s=1

(as − bs)Psl. (26)

It is simplified to j = (a − b)ul , if as/a = bs/b.
The set of k + 1 quadratic equations (24) for Ps written as

0 = h1P1l − P0u,

0 = (−h1P1 + h2P2)l + (−P1 + P0)u,

. . . ,

0 = −hkPkl + Pk−1u

is to be solved with respect to the probabilities. However, it
is reducible to one equation. We simplify it by successive
adding to obtain hs+1Ps+1l − Psu = 0 for each s, from which k
quasilinear relations follow: Ps = φhs+1Ps+1, where φ = l/u.
Ps for any s < k can be expressed through Pk as

Ps|s<k = φk−shs+1hs+2 · · · hkPk . (27)

Using this formula in the normalization condition yields Pk in
terms of φ:

Pk =
[

k∑
s=0

hs+1 · · · hkφ
k−s

]−1

. (28)

Note that in the most interesting case (15) we have simply
hs = s and the probabilities are equal to truncated Poisson
distribution

Ps = P0
φ−s

s!
for s � k,

Ps = 0 for s > k. (29)

Equations (27) and (28) derived from the set of stationary
equations (24) express all the probabilities through φ. How-
ever, the neglect of nearest-neighbor correlations by the use
of Eq. (22) has resulted in that these expressions coincide
with their equilibrium counterparts [80,83] written in terms
of the fugacity, λ = 1/φ, which can be obtained from the
grand canonical ensemble for a = b. For the ASEP model
(k = 1) the stationary solution (29) is exact; cf. Sec. II B
(without pockets). More generally, for k > 1 and under the
assumption as/bs = a/b, the MF solution (27) coincides with
the exact stationary distribution of the corresponding zero-
range process [92].

The equation for φ is derived by multiplying the normal-
ization condition by ρ1 and subtracting from the density-fixing
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ρ1

j

543210

2.5

2

1.5

1

0.5

0

FIG. 3. Particle current for the generalized ASEP model with
small particles only. Points represent Monte Carlo simulation data,
lines correspond to mean-field approximation. The site capacity is
k = 2 (×), k = 3 (•), k = 4 (�), and k = 5 (�). The hopping rates
are a = 1, b = 0.

condition:
∑k

s=0 Ps(ρ1 − s) = 0. Substitution of Eqs. (27) into
this relation yields

k∑
s=0

ρ1 − s

h1h2 · · · hs
φk−s = 0. (30)

The rates satisfying Eq. (15) yield hs = s, and Eq. (30) is
reduced to

k∑
s=0

ρ1 − s

s!
φk−s = 0, (31)

whereas the current is

j = (a − b)(1 − Pk )ρ1. (32)

We can see that the current depends on the rates a and b
only through the multiplicative factor (a − b) in (32). The
occupation probabilities Ps do not depend on the rates at all.
This is the consequence of (15). For other choices of the rates
as, bs this may not be true.

4. Comparison with Monte Carlo simulations

We can easily solve Eq. (31) and from the solution compute
the current (32). The results were compared with direct Monte
Carlo (MC) simulation using the transition probabilities (13)
appropriately simplified for the case without pockets and in
presence of small particles only. The results are shown in
Fig. 3 for the cell capacity k = 2, 3, 4, and 5. We can see
that for k = 2 the mean-field results are barely distinguish-
able from the MC simulation. When we increase k, the MF
deviation from MC results increases, but the agreement still
remains very good. This means that the correlation effects,
neglected in MF approximation, remain very small. We shall
see in the next section that the situation changes dramatically
when big particles are also present.

B. Two species of particles

1. Jump rates

Now we add big particles. The size of these particles is
l2 = 2, and the number of big particles on a site will be

b a 3 b 3 a b b a 2 a

B A A B

FIG. 4. Generalized ASEP model with two species of particles
and cell capacity k = 3.

denoted by capital letters. If there are s small particles and S
big particles on the same site, the constraint s + 2S � k must
be satisfied. In analogy with jump rates of small particles, we
denote by AS and BS the rates at which one big particle jumps
from a site occupied by S big particles to the right and to the
left, respectively. Also in analogy to (15), when comparing the
MF results with MC simulations we shall use

AS = SA, BS = SB, (33)

which holds for particles which interact only by steric re-
pulsion. However, our calculations will hold for any form
of the dependence of the rates on S. The model is depicted
schematically in Fig. 4.

2. Mean-field approximation

The one- and two-site probabilities for occupation by s
small particles and S big particles will be denoted P(1)

sS and
P(2)

sS;s′S′ , respectively. The master equation for these probabili-
ties can be constructed in the same way as it was done in the
preceding section for the one-species case. (See Appendix B 1
for details.) We shall directly proceed to the mean-field ap-
proximation

P(2)
sS;s′S′ ≈ P(1)

sS P(1)
s′S′ . (34)

We also drop the superscript “(1)” in the following, as we did
in the one-species case.

In the stationary state dPsS/dt = 0 and we obtain a set
of quadratic equations for the one-site probabilities. In the
special case k = 3 which will be analyzed in detail, we have
six quadratic equations. The probabilities must also satisfy the
conditions implied by fixed density ρ1 of small particles and
density ρ2 of big particles

(k)∑
s,S

PsS = 1,

(k)∑
s,S

s PsS = ρ1,

(k)∑
s,S

S PsS = ρ2, (35)

where (k) in upper limits of the sums denotes restriction s +
2S � k. In fact, the densities of small and big particles, ρ1 and
ρ2, have to satisfy similar inequality ρ1 + 2ρ2 � k.

The MF steady-state master equation for PsS is as follows:

0 = (a + b){[−hsPsS + δ̃s+2S,khs+1Ps+1,S]l

+ [−δ̃s+2S,kPsS + δ̃s,0Ps−1,S]u

+ [−HSPsS + ˜̃δs+2S,kHS+1Ps,S+1]L

+ [− ˜̃δs+2S,kPsS + δ̃S,0Ps,S−1]U }, (36)

where HS = (AS + BS )/(a + b) and the factor ˜̃δs+2S,k = 1 −
δs+2S,k − δs+2S,k−1 ensures correct treatment of highly occu-
pied states for big particles. The MF selective functions l , L
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are defined in the Appendix, Eqs. (B8) and (B10), whereas the
MF expressions for u and U read

u =
(k)∑

s′,S′
hs′Ps′S′ , U =

(k)∑
s′,S′

HS′Ps′S′ . (37)

The MF currents of small and big particles are

j =
(k)∑
s,S

(as − bs)PsS l, J =
(k)∑
s,S

(AS − BS )PsS L. (38)

For details, see the Appendix, Eqs. (B5) and (B6).
Let us consider the case k = 3 for which an additional re-

striction ρ2 � 1 takes place. Stationary MF master equations
for PsS follow from Eq. (36):

P00 : 0 = h1P10l − P00u + H1P01L − P00U,

P10 : 0 = (−h1P10 + h2P20)l + (−P10 + P00)u

+ H1P11L − P10U,

P20 : 0 = (−h2P20 + h3P30)l + (−P20 + P10)u,

P30 : 0 = −h3P30l + P20u,

P01 : 0 = h1P11l − P01u − H1P01L + P00U,

P11 : 0 = −h1P11l + P01u − H1P11L + P10U, (39)

where

l = P00 + P10 + P20 + P01,

u = h1P10 + h2P20 + h3P30 + h1P11,

L = P00 + P10,

U = H1P01 + H1P11. (40)

Again, the problem can be reduced to one equation for the
quantity φ = l/u (see Appendix B 2). The equation is

ρ1φ
4 + 2ρ1 − 1

h1
φ3 + (h1 + h2)ρ1 + 2h1ρ2 − 2h1 − h2

h2
1h2

φ2

+ (h1 + h3)ρ1 + (3h1 + h3)ρ2 − 3h1 − 2h2

h2
1h2h3

φ

+ ρ1 + 2ρ2 − 3

h2
1h2h3

= 0. (41)

Note that the equation does not depend on the jump rates of
big particles. The probabilities and the currents are calculated
from the solution to Eq. (41) as explained in Appendix B 2.
For the rates taken as in Eq. (15) the final equation is
reduced to

ρ1φ
4 + (2ρ1 − 1)φ3 + 3ρ1 + 2ρ2 − 4

2
φ2

+ 4ρ1 + 6ρ2 − 9

6
φ + ρ1 + 2ρ2 − 3

6
= 0. (42)

From the solution of this equation we extract the currents
of small and big particles according to (38), which is then
compared with MC simulations.

3. Comparison with Monte Carlo simulations

The allowed range of densities of small and big particles
is limited by inequalities 0 � ρ2 � 1, 0 � ρ1 � 3, and ρ1 +

ρ1

ρ2

O 1 2 3

1

1.5

close packing line
I

II

III

FIG. 5. The region of densities for the two-species generalized
ASEP with k = 3.

2ρ2 � 3. It is depicted schematically in Fig. 5, where we can
distinguish several special regimes. Line I with ρ1 ∈ [0; 3],
ρ2 = 0 represents the one-species generalized ASEP with
k = 3 which has been considered above and the results are
shown in Fig. 3. Line II with ρ1 = 0, ρ2 ∈ [0; 1], corresponds
to the classical ASEP model of big particles. Correlations are
known to be absent in the stationary state of this model on the
ring while the current reads J = (A − B)ρ2(1 − ρ2). There is
also no correlation on line III with ρ1 ∈ [0; 1], ρ2 = 1, where
the big particles are immovable (J = 0) and the small particles
behave like the ASEP with j = (a − b)ρ1(1 − ρ1). The close-
packing line represents mixtures of varying composition with
currents j and J being equal to zero.

Therefore, we expect that the correlations will diminish
when we approach the edges of the allowed density region
indicated in Fig. 5 and the MC simulation data will be
close to MF results. On the contrary, in the interior part of
the allowed density region we expect larger correlations and
higher difference between MC and MF values.

We show in Fig. 6 dependence of the currents of big
and small particles on the density of small as well as big
particles. First, we can observe that the MF results always
agree qualitatively with MC simulations. The trends, positions
of the maxima, and exact intervals of density, within which the
currents are nonzero, are all well reproduced. Quantitatively,
though, there are often considerable differences, which call
for explanation. Generally, the difference between the MF
and MC results are due to correlations and the size of the
deviations may serve as an estimate of the importance of
these correlations. We can clearly see that the correlations
are stronger for intermediate densities and tend to zero when
the densities come close to lower or upper limits. This is
most evident in Figs. 6(a) and 6(d), where we can see the
dependence of the current of small particles on the density
of small, and the current of big on the density of big particles,
respectively. Let us look at Figs. 6(a) more carefully. Next
to lower and upper limits of ρ1, the agreement is very good.
We can also see that when the density of big particles is large
[ρ2 = 0.8 in Fig. 6(a)] the agreement is quite good for any
ρ1, while for smaller ρ2, the deviation is as large as 25% in
the middle of the allowed ρ1. This seems to be in contrast
with the results presented in Fig. 3, where the dependence
of j on ρ1 for ρ2 = 0 shows very good agreement of MF
and MC results. The situation becomes more clear when
looking at Fig. 6(b), where we can see the dependence of j
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(b)

ρ2

(d)

10.80.60.40.20

j

(a)1

0.8

0.6

0.4

0.2

0

ρ1

J

(c)

2.521.510.50

0.2

0.1

0

FIG. 6. Dependence of the current of small particles [panels (a) and (b)] and the current of big particles [panels (c) and (d)] on the density
of small particles [panels (a) and (c)] and big particles [panels (b) and (d)], in the generalized ASEP model. The points represent numerical
simulation data, the lines are results of mean-field approximation. The rates are a = A = 1, b = B = 0. The parameters in panels (a) and (c) are
ρ2 = 0.8 (×, solid line), ρ2 = 0.4 (�, dot-dashed line), ρ2 = 0.2 (•, dotted line). The parameters in panels (b) and (d) are ρ1 = 0.5 (×, solid
line), ρ1 = 0.8 (•, dotted line), ρ1 = 1.2 (�, dot-dashed line).

on ρ2. We observe that at high values of ρ2 the difference
between MF and MC gradually diminishes. On the contrary,
when ρ2 approaches zero, the difference stays large, or even
seems to increase. This needs a detailed view at what happens
at very small concentration of big particles. Such detail is
shown in Fig. 7. We can see that down to values as small
as ρ2 = 0.005 the current j seems to converge to a value
significantly lower than the value observed at ρ2 = 0 exactly.
Only within very narrow region of very small concentrations
of big particles we observe steep approach to the ρ2 = 0 value.
This implies that addition of a few big particles into the system
of small particles induces significant correlations. In fact, it

ρ2

j

0.0150.010.0050

1

0.8

0.6

0.4

FIG. 7. Detail of the dependence of the current of small particles
on the density of big particles, as shown in Fig. 6(b). The parameters
are ρ1 = 0.5 (×, solid line), ρ1 = 0.8 (•, dotted line), ρ1 = 1.2 (�,
dot-dashed line).

is not difficult to understand these correlations qualitatively.
Even a single big particle acts as a “bottleneck” for small
particles, slowing their movement locally. To see this effect,
we calculated by MC simulations the pair correlation function

C(i − j) = 〈siS j〉 − 〈si〉〈S j〉, (43)

where si and Si denote the number of small and big particles
present at the site i, respectively. In Fig. 8 we show the results

i − j

±C
(i
−

j)

100−10−20

10−1

10−2

10−3

10−4

FIG. 8. Pair correlation function of the densities of big and small
particles. The symbols distinguish the sign to be applied in front
of the quantity C: + corresponds to the plus sign (i.e., correlation
function is positive), and × corresponds to the minus sign (i.e.,
correlation function is negative). The average densities are ρ1 = 1.2,
ρ2 = 0.1, the hopping rates are a = 1, A = 0.5, b = B = 0.
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for a typical set of parameters. We can clearly see that behind
a big particle, an exponentially decaying cloud of enhanced
density of small particles is formed. At the same time, in front
of the big particle, the density of small particles is depleted,
also with an exponential decay.

This observation also provides a hint why the MF results
for current of big particles are sometimes higher than MC
results, while in other cases the opposite is true. Indeed, if
small particles are depleted in front of the big one, as Fig. 8
indicates, the big particle jumps to the right with higher prob-
ability in comparison to uniform configurations with average
density ρ1 implied by MF approximation. This is in agreement
with the observation that the MF current of big particles
mainly underestimates the MC data, JMF < JMC [Figs. 6(c)
and 6(d)]. Overestimation takes place only when the both
densities are high, ρ2 � 0.8, ρ1 � 0.8. On the contrary, big
particles can only decrease the MC current of small ones
and overall overestimation jMF > jMC is similar to that of
the model without big particles considered in the previous
subsection.

IV. FULL MODEL WITH POCKETS

Let us now investigate the model introduced in Sec. II
in full detail. The geometry is quasi-one-dimensional. The
entity we shall call “site” consists of two cells, the first at
the backbone and the second attached to the first as a pocket.
Configuration of the site is specified by occupation numbers
of both species of particles at both the backbone cell (s and S)
and the pocket cell (z and Z). As always, capital letters belong
to big particles, lowercase letters to small particles. In general,
capacity k of the backbone cell may be different from the
capacity q of the pocket cell. The restriction for the occupation
numbers at each site is then s + 2S � k and z + 2Z � q.

As in the case of jump rates along the backbone, also the
jump rates to and from the pockets depend on the occupation
of the cell from which the jump occurs. We shall denote them
cs, CS for jumps to the pocket and dz, DZ for the jumps from
the pocket. As before, for particles interacting only by steric
repulsion we have

as = sa, AS = SA,

bs = sb, BS = SB,

cs = sc, CS = SC,

dz = zd, DZ = ZD. (44)

A. One species of particles

Let us start with small particles only. The configuration
of the site is ( z

s ) where z is occupation of the pocket and s
occupation of the backbone cell. As before, we can define
one-site configuration probabilities P(1)

sz , and assuming factor-
ization of the two-site probabilities, we arrive at a closed set of
equations in the mean-field approximation. These equations
are complemented by the conditions of normalization and
fixing the density

k∑
s=0

q∑
z=0

P(1)
sz = 1,

k∑
s=0

q∑
z=0

(s + z)P(1)
sz = ρ1. (45)

Probability P(1)
sz is governed by the following generaliza-

tion of Eq. (17):

d

dt
P(1)

sz = xL + xR + y, (46)

where xL and xR refer to jumps between sites, while y
describes one-site pocket processes (see Appendix C 1 for
details).

In a steady state, equality dP(1)
sz /dt = 0 holds. Then

Eq. (46) within the MF approximation and under periodic
boundary conditions is reduced to

0 = (a + b){[−hsPsz + δ̃s,khs+1Ps+1,z]l

+ [−δ̃s,kPsz + δ̃s,0Ps−1,z]u}
− δ̃z,qcsPsz + δ̃z,qδ̃s,0dz+1Ps−1,z+1

+ δ̃s,k δ̃z,0cs+1Ps+1,z−1 − δ̃s,kdzPsz, (47)

where the superscript “(1)” has been omitted as before and we
introduce

l =
k−1∑
s′=0

q∑
z′=0

Ps′z′ , u =
k∑

s′=1

hs′

q∑
z′=0

Ps′z′ . (48)

The current

j =
k∑

s=1

(as − bs)l
q∑

z=0

Psz (49)

simplifies to

j = (a − b)ul (50)

if the rates are given by (15).
The set of stationary master equations (47) can be reduced

to one equation for k = 1; see Appendix C 2. Similar reduc-
tion to a single algebraic equation was shown in the cases
without pockets, investigated in the previous sections. Here,
though, for k � 2 such simple reduction is not possible in
general case but still remains possible if the jump rates satisfy
(44). (See Appendix C 3 for details.) In this special case and
for k = q = 3 the final equation for φ = l/u reads [see also
Eq. (C26)]

ρφ6 + (1 + γ )(ρ − 1)φ5 + 1

2
(1 + γ )2(ρ − 2)φ4

+ 1

6
(1 + γ )3(ρ − 3)φ3 + γ

6

(
1 + 3

2
γ + γ 2

)
(ρ − 4)φ2

+ γ 2

12
(1 + γ )(ρ − 5)φ + γ 3

36
(ρ − 6) = 0 (51)

with γ = c/d . From the solution of this equation we re-
construct all the one-site probabilities and then compute the
current.

B. Two species of particles

Now we turn to the case of two species. The capacities of
backbone and pocket cells imply restrictions on the densities
of small (ρ1) and big (ρ2) particles, namely, ρ1+2ρ2�k+q.
The one-site probabilities P(1)

sS,zZ satisfy three conditions
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originating from fixed densities

(k)∑
s,S

(q)∑
z,Z

P(1)
sS,zZ = 1,

(k)∑
s,S

(q)∑
z,Z

(s + z) P(1)
sS,zZ = ρ1,

(k)∑
s,S

(q)∑
z,Z

(S + Z ) P(1)
sS,zZ = ρ2. (52)

The master equation for the one-site probability is written
in the form

d

dt
P(1)

sS,zZ = x + y + X + Y, (53)

where x and X are related to jumps of small and big particles
along the backbone and y and Y describe jumps of small and
big particles to and from the pockets. Explicit expressions for
them are given in Appendix D 1.

The mean-field approximation is performed as usual by
factorizing two-site probabilities. At the same time we again
drop the superscript “(1).” Then, in the MF approximation we
have

x = (a + b)[(−hsPsS,zZ + δ̃s+2S,khs+1Ps+1,S,zZ )l

+ (−δ̃s+2S,kPsS,zZ + δ̃s,0Ps−1,S,zZ )u],

X = (a + b)[(−HSPsS,zZ + ˜̃δs+2S,kHS+1Ps,S+1,zZ )L

+ (− ˜̃δs+2S,kPsS,zZ + δ̃S,0Ps,S−1,zZ )u]. (54)

Functions l , L are given in Eqs. (D11) and (D13) while u, U
are defined as follows:

u =
(k)∑

s′,S′
hs′

(q)∑
z′,Z ′

Ps′S′,z′Z ′ ,

U =
(k)∑

s′,S′
HS′

(q)∑
z′,Z ′

Ps′S′,z′Z ′ . (55)

The MF currents of small and big particles read

j =
(k)∑
s,S

(as − bs)l
(q)∑
z,Z

PsS,zZ ,

J =
(k)∑
s,S

(AS − BS )L
(q)∑
z,Z

PsS,zZ . (56)

If as/a = bs/b and AS/a = BS/b for all s and S, these are
reduced to

j = (a − b)ul, J = (a − b)UL. (57)

The equations for stationary state can be simplified for
rates satisfying (44). Using the same procedure as in one-
species case (detailed in Appendix C 3), we arrive at a set of
just two algebraic equations for the quantities φ = l/u and
ψ = U/L which are

ρ1φ
6 + (1 + γ )[ρ1 − 1]φ5 + 1

2 (1 + γ )2[ρ1 − 2]φ4 + 1
6 (1 + γ )3[ρ1 − 3]φ3

+ 1
6γ

(
1 + 3

2γ + γ 2
)
[ρ1 − 4]φ2 + 1

12γ 2(1 + γ )[ρ1 − 5]φ + 1
36γ 3[ρ1 − 6]

+ψ
{
ρ1φ

6 + (1 + γ )[ρ1 − 1]φ5 + γ
(
1 + 1

2γ
)
[ρ1 − 2]φ4 + 1

2γ 2
(
1 + 1

3γ
)
[ρ1 − 3]φ3 + 1

6γ 3[ρ1 − 4]φ2
}

+ψ
{
ρ1φ

6 + (1 + γ )[ρ1 − 1]φ5 + 1
2 (1 + 2γ )[ρ1 − 2]φ4 + 1

6 (1 + 3γ )[ρ1 − 3]φ3 + 1
6γ [ρ1 − 4]φ2

}
+ψ2{ρ1φ

6 + (1 + γ )[ρ1 − 1]φ5 + γ [ρ1 − 2]φ4} = 0, (58)

ρ2
{
φ6 + (1 + γ )φ5 + 1

2 (1 + γ )2φ4 + 1
6 (1 + γ )3φ3 + 1

6γ
(
1 + 3

2γ + γ 2)φ2 + 1
12γ 2(1 + γ )φ + 1

36γ 3}
+ (ρ2 − 1)ψ

{
φ6 + (1 + γ )φ5 + γ

(
1 + 1

2γ
)
φ4 + 1

2γ 2
(
1 + 1

3γ
)
φ3 + 1

6γ 3φ2
}

+ (ρ2 − 1)ψ
{
φ6 + (1 + γ )φ5 + 1

2 (1 + 2γ )φ4 + 1
6 (1 + 3γ )φ3 + 1

6γφ2
}

+ (ρ2 − 2)ψ2
{
φ6 + (1 + γ )φ5 + γφ4

} = 0, (59)

where γ = c/d and  = C/D. From the solution of these
equations, the one-site probabilities can be reconstructed
straightforwardly (see Appendix D 1 for details).

C. Comparison with Monte Carlo simulations

We investigate the simplest nontrivial situation k = 3 and
q = 3. The backbone and pocket cell capacities imply a
restriction on the densities of small and big particles, namely,
ρ1 + 2ρ2 � 6. Moreover, in this geometry there can be at most
one big particle both in the backbone cell and in the pocket,
therefore ρ2 � 2. This defines the area of allowed densities.

We show in Figs. 9 and 10 the currents of small and big
particles as functions of the density of small particles in com-
parison with direct MC simulations. We use the same value
γ =  for big and small particles. Again, we can see that in
the limits ρ1 → 0 and ρ1 approaching the maximum allowed
value, the agreement between the MF and MC results is very
good, while in the intermediate region the correlations cause
marked deviations. This is the same behavior as in the case
without pockets. In the dependence of the current of big par-
ticles we observe a remarkable feature. In the regime ρ2 < 1,
shown in Fig. 9, the current of big particles show deviations
between MF and MC for intermediate densities ρ1. On the
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FIG. 9. Current of small particles (a) and big particles (b) for the
generalized ASEP with pockets. The density of big particles is ρ2 =
0.5. The rates are a = 1, A = 0.5, b = B = 0, d = 0.5, D = 0.25,
γ =  = 0.5 (×, solid line), γ =  = 2 (•, dotted line), γ =  =
0.2 (�, dot-dashed line).

contrary, in the regime ρ2 > 1, shown in Fig. 10, the MC and
MF results coincide nearly exactly. At the same time, when
we compare the curves for different values of the parameter γ ,

j

(a)0.4
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0.1
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J
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3210
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FIG. 10. Current of small particles (a) and big particles (b) for
the generalized ASEP with pockets. The density of big particles is
ρ2 = 1.5. The rates are a = 1, A = 0.5, b = B = 0, d = 0.5, D =
0.25, γ =  = 0.5 (×, solid line), γ =  = 2 (•, dotted line), γ =
 = 0.2 (�, dot-dashed line).

we can see that in the ρ2 > 1 regime the current of big parti-
cles always increases with increasing γ , while in the ρ2 < 1
regime J increases with γ only for large ρ1, but decreases
with γ for small ρ1. This can be understood as follows. For
ρ2 < 1 and few small particles, increasing γ means that more
big particles are trapped in the pockets and less of them are
available for movement along the backbone. When the density
of small particles increase, the pockets are filled by the small
particles instead, pushing the big particles out, thus increasing
the number of big particles on the backbone. This causes the
increase of the current of big particles. For ρ2 > 1 we do
not see the change of trend when increasing the density of
small particles. In this case the backbone is in large part filled
by big particles, thus blocking the movement of each other.
Increasing γ means more big particles trapped in the pockets,
which has the effect of increasing the current of big particles,
rather than decreasing it. Presence of small particles does not
change this behavior qualitatively. Small particles cause only
overall decrease of the current due to less space to move.

As for the current of small particles, in both Figs. 9 and 10
we can see that the maximum of current is shifted to low con-
centrations ρ1 at low values of γ and to high concentrations
for high values of γ . This is the basis for the ratchet effect
investigated in the next section.

V. SEPARATION OF PARTICLES

A. Ratchet effect

Up to now we were concerned with time-independent
driving of particles and we computed only the stationary state.
If we want to investigate the ratchet effect, we need to include
the nonstationarity, at least on an approximate level. Here we
shall use adiabatic approximation. Generically, ratchet effect
occurs everywhere two conditions are satisfied, namely time-
dependent driving and mirror-asymmetric geometry. How-
ever, it is not obvious a priori, if, in a specific situation,
the ratchet effect is quantitatively significant or negligible.
In our case, the ratchet effect occurs by a simple mechanism
tightly related to the presence of pockets. We imagine that the
driving is due to an external field, e.g., an electrical one, if
the particles carry electrostatic charge. The pockets are dead
ends tilted with respect to the axis of the backbone. Let us
look at what happens in low-density regime. In an alternating
external field, particles are pushed toward the dead ends in
one half-period, thus emptying the backbone. This implies
decreasing the current. In the next half-period of the driving,
particles are pulled from the dead ends, average density on the
backbone increases. Therefore, current averaged over entire
period of the driving is rectified. An important point is that
in the high-density regime the effect of filling and emptying
the pockets has opposite consequences. Indeed, in the high-
density regime, when we decrease the density at the backbone,
the current increases. Therefore, we expect that not just the
magnitude but even the sign of the ratchet effect depends
strongly on the density of particles.

If we consider time-dependent driving in adiabatic approx-
imation, we can use the results obtained for stationary state
virtually unchanged. Specifically, we suppose that driving
depends on time periodically in a stepwise manner. In the first
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half of the period, we assume parameters of the model are a,
b, A, B, c, d , C, and D. We also assume a > b and A > B, i.e.,
in the first half period the drift is oriented rightward. In the
second half of the period we exchange the values of the param-
eters as a ↔ b, A ↔ B, c ↔ d , and C ↔ D. A physical inter-
pretation of such change is the following. We suppose that
the particles are driven by a homogeneous external field. For
example, colloid particles can carry electrostatic charge and
the whole apparatus can be inserted in homogeneous but time-
dependent electric field. When the orientation of the field is re-
versed, it corresponds to exchange the right- and left-hand side
in the model. This implies the exchanges a ↔ b and A ↔ B.
As we already hinted, pockets are considered as tilted dead
ends of the channel in which the colloid particles move. The
rates for entering and leaving the pocket depend on the field
in analogous manner as the rates for leftward and rightward
jumps. Moreover, they depend on the inclination of the dead
end with respect to the main channel. Inverting the orientation
of the field is equivalent to inverting the inclination. This
implies the exchanges c ↔ d , and C ↔ D.

We suppose that the frequency of the alternation of
the external driving is so low that during each half-period
the system is in a stationary state almost all the time. This
is the adiabatic approximation. The quantities averaged over
many time periods then can be calculated as average of sta-
tionary states with one orientation of the driving and with the
opposite orientation of the driving. Particle current averaged
in such a way is the ratchet current. It can be nonzero even
though if we averaged the driving itself, we would get zero.
The source of the ratchet current is the mirror asymmetry of
the geometry in which the particles move.

For γ = c/d < 1 and  = C/D < 1 pockets are inclined
against the direction of the driving. The pockets are emptied
and the density of particles at the backbone is increased.
On the other hand, for γ > 1,  > 1, i.e., pockets inclined
along the direction of the driving, the pockets are packed
with particles and the density of particles at the backbone is
decreased. In the first and in the second half-periods of the
periodic driving the density at the backbone is different, which
results in a net ratchet current.

If the rates satisfy (44), the currents of small and big parti-
cles are proportional to a − b and A − B, respectively. There-
fore, we define quantities j(γ , ) = j/(a − b) and J (γ , ) =
J/(A − B), which depend on the parameters of the model only
through the fractions γ = c/d and  = C/D, as indicated by
the arguments. Then the ratchet currents of small and big
particles in the adiabatic approximation are

jrat = a − b

2
[ j(γ , ) − j(γ −1, −1)],

Jrat = A − B

2
[J (γ , ) − J (γ −1, −1)]. (60)

We show the ratchet currents as functions of the density
of small particles in Figs. 11–13. In all cases we have a − b
as well as A − B positive and γ < 1, i.e., in the first half-
period of the periodic driving the drift is oriented rightwards
and jumps from the pocket have higher probability than to the
pocket. This means that the pockets are tilted to the left, just
as depicted in Fig. 1(b).
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−0.4

FIG. 11. Ratchet current of small particles (×, solid line), and
big particles (•, dotted line). The rates are a = A = 1, b = B = 0,
d = 0.5, D = 0.25, γ = 0.2. The density of big particles is ρ2 = 0.5.

In all three figures we can see the typical behavior of the
ratchet current of small particles. For small ρ1 it increases,
for ρ1 increasing it achieves a maximum, and then descends
to zero at some intermediate density, and beyond this point it
becomes negative. Its absolute value increases again, achieves
a maximum, and decreases finally to zero at a maximum
allowed density. This type of dependence can be easily un-
derstood from Figs. 9 and 10. As we already stressed, the
maximum of the current is at lower densities if γ < 1 and
at higher densities if γ > 1. Therefore, the positive current
in the first half-period dominates at lower densities, while the
negative current at the second half-period dominates at higher
densities. In simple words, at the second-half period, when
γ > 1, particles are more accumulated in the pockets than in
the first half-period. Such accumulation leads to decrease of
the current for small densities, but, on the contrary, to increase
of the current for higher densities.

Comparing the MC and MF results, we can see in all
cases that mean-field approximation overestimates the ratchet
current. This implies that correlations hinder the ratchet effect.

B. Regime of full separation

In Figs. 11–13 we can see features which play a cen-
tral role in separation of particles by size. The ratchet
currents of big and small particles have quite different
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FIG. 12. Ratchet current of small particles (×, solid line), and
big particles (•, dotted line). The rates are a = A = 1, b = B = 0,
d = 0.5, D = 0.25, γ = 0.2. The density of big particles is ρ2 = 1.0.
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FIG. 13. Ratchet current of small particles (×, solid line), and
big particles (•, dotted line). The rates are a = A = 1, b = B = 0,
d = 0.5, D = 0.25, γ = 0.2. The density of big particles is ρ2 = 1.5.

magnitude, and most importantly, they can have even different
sign. It is the latter regime that is the most important, because
this implies in principle a total separation of these particle
species. In practice, however, such full separation regime can
be only transitory, because it occurs only in specific region
of particle densities. The separation process itself results in
change of the concentrations, and in general can push the
system out of the regime of full separation, unless a special
trajectory in the density plane (ρ1 vs ρ2) is maintained.

More specifically, in Figs. 11–13 we can see that for fixed
ρ2 there is a specific interval of densities ρ1 for which jrat and
Jrat have different sign. In Fig. 13 we can observe that for ρ2 =
1.5 such interval is about ρ1 ∈ [0, 1.4], while for ρ2 = 0.5 it
is about ρ1 ∈ [1.5, 3]. We found that in general for ρ2 > 1
the interval for ρ1 extends down to 0, while for ρ2 < 1 it has
positive lower limit.

The set of these intervals sums up in a phase diagram as
shown in Fig. 14. We can compare the area of full separation
obtained by MC simulations (shaded areas) with MF results
(delimited by lines). The general feature of this diagram is
that full separation occur at “diagonal” densities, i.e., at low
density of small particles, if the density of big particles is

ρ1

ρ
2

3.532.521.510.50

2

1.5

1

0.5

0

FIG. 14. Phase diagram of the ratchet separator. We indicate the
area of densities for which the ratchet currents of small and big
particles have opposite sign. The shaded regions are obtained by
Monte Carlo simulations, the lines correspond to the mean-field
approximation. The values of the parameters are a = 1, A = 0.5,
b = B = 0, d = 0.5, D = 0.25, γ = 0.1 (area shaded as “//,” solid
line) and γ = 0.5 (area shaded as “\\,” dotted line)

large, and at low densities of big particles, if density of small
particles is large, as well as at the intermediate regime, where
both densities are somewhere in the middle of their allowed
range.

Comparing the MC and MF results, we can see that they
agree very well at the part of the diagram which corresponds
to high concentration of big particles, but differences are
rather large in the part corresponding to low concentration
of big particles. This is consistent with the generic finding
we already discussed before, that addition of small number of
large particles into moderately dense ensemble of small parti-
cles drastically increases correlations. This is then reflected in
large difference between the MF and MC results.

VI. CONCLUSIONS

We introduced generalizations of the asymmetric simple
exclusion process. The basic assumptions of ASEP are main-
tained. Namely, the model is endowed with stochastic dynam-
ics; the system is discrete, i.e., it is composed of cells among
which the particles jump; the system is driven, which results
in nonzero current in stationary state; the particles interact by
steric repulsion, i.e., there is an exclusion condition.

We generalized the standard ASEP in three directions. The
first one consisted in allowing several particles sharing the
same cell at the same time. This is the most important change
from the standard ASEP, because it makes the model non-
integrable in general. The second generalization introduced
several species of particles, each species being characterized
by a specific particle size. The exclusion condition then re-
quires that sum of sizes of all particles at the same cell does
not exceed a constant k which we call capacity. The third
generalization consisted in changed geometry. Instead of a
linear chain of cells used in ASEP, we used an asymmetric
comblike topology, in which a new cell, called a pocket, is
attached to each cell on the chain.

The main question we posed was, how much this setup can
serve as a model of particle separation in narrow channels.
Therefore, the main quantities of interest were the currents
of small and big particles. The approaches to the model were
first direct Monte Carlo (MC) simulations, which were done in
parallel with generalized mean-field (MF) approximation. We
also found a specific case in which exact solution is possible
for the stationary state.

We used the difference between MC and MF results as a
qualitative measure of correlations induced by particle inter-
action. Generically, we found that correlations are significant
in the regime of intermediate densities, but they are small
in either of the limits of very small and close to maximum
density of particles. An important exception is the regime
of intermediate to large density of small particles, where
adding even a few big particles increases the correlations
significantly. It can be understood intuitively as blocking large
number of small particles behind a single big particle.

The presence of pockets is essential for the ratchet ef-
fect. Ratchet effect is achieved here by making the driving
time-dependent. More precisely, by periodical change of the
direction of the driving, so that the driving is zero on average.
In the first half-period the driving is constant and oriented
rightward, in the second half-period the absolute value of the
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driving is unchanged but orientation is reversed. In presence of
pockets, the ratio γ of the jump rates to and from the pocket is
γ < 1 in one half-period while γ > 1 in the next half-period.
This results in a nonzero net current when averaged over the
whole period. This is the intuitive explanation of the current
rectification.

We calculated the ratchet effect in the adiabatic approxi-
mation, i.e., we assumed that the period of the driving goes to
infinity. We found that the generic dependence of the ratchet
current on the density of particles shows current reversal at an
intermediate density of particles. The most practical finding
is that the density at which the current reversal occurs, is
not the same for the big and the small particles. Therefore,
there is an interval of densities for which the directions of the
ratchet currents of the small and big particles are opposite. In
this regime, full separation of the small particles from the big
ones is expected. Interestingly, in the density-density plane,
the area of full separation extends “diagonally” from the states
of high density of big and low density of small to the states of
high density of small and low density of big.

If we imagine separation of a real mixture of colloid
particles, the actual densities of both small and big particles
change during the separation process. Therefore, we move
in the density-density plane along a trajectory, whose shape
depends on the details of the separation setup. If we are clever
enough to devise the apparatus so that the trajectory goes
within the “diagonal” area of full separation, we may actually
end with having all big particles on one side and all small
particles on the opposite side.

There are numerous directions in which we can make
the model more realistic. First, the quasi-one-dimensional
geometry can be enhanced by attributing a finite size to the
backbone as well as to the pockets. This means that several
cells can be placed one by another in transversal direction.
Another important extension would be keeping finite nonzero
frequency of switching the driving direction. We have made
preliminary studies in a variant of the model with sinusoidally
varying driving and observed strong dependence on the fre-
quency. Moreover, at nonzero frequency, the currents show
rather complicated nonlinear dependence on the strength of
the driving, i.e., in our model, on the difference between
rightward and leftward jump rates. These topics need more
investigation, though.
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APPENDIX A: MATRIX OF TRANSITION PROBABILITIES

The matrix W2 describing the probabilities of elementary
jumping transitions in Eq. (13) can be easily defined by listing
all the nonzero off-diagonal elements. The list includes jumps
along the backbone

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1 + 1S1

)(
z2Z2

s2 − 1S2

)]
= 1

ν
(s1 + 1)a χk (s2, S2),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1 − 1S1

)(
z2Z2

s2 + 1S2

)]
= 1

ν
(s2 + 1)b χk (s1, S1),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1S1 + 1

)(
z2Z2

s2S2 − 1

)]
= 1

ν
(S1 + 1)A χk (s2, S2),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1S1 − 1

)(
z2Z2

s2S2 + 1

)]
= 1

ν
(S2 + 1)B χk (s1, S1), (A1)

and the jumps to and from the pocket

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1 + 1Z1

s1 − 1S1

)(
z2Z2

s2S2

)]
= 1

2ν
(z1 + 1)d χk (s1, S1),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1S1

)(
z2 + 1Z2

s2 − 1S2

)]
= 1

2ν
(z2 + 1)d χk (s2, S2),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1 − 1Z1

s1 + 1S1

)(
z2Z2

s2S2

)]
= 1

2ν
(s1 + 1)c χk (z1, Z1),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1S1

)(
z2 − 1Z2

s2 + 1S2

)]
= 1

2ν
(s2 + 1)c χk (z2, Z2),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1 + 1

s1S1 − 1

)(
z2Z2

s2S2

)]
= 1

2ν
(Z1 + 1)D χk (s1, S1),
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W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1S1

)(
z2Z2 + 1

s2S2 − 1

)]
= 1

2ν
(Z2 + 1)D χk (s2, S2),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1 − 1

s1S1 + 1

)(
z2Z2

s2S2

)]
= 1

2ν
(S1 + 1)C χk (z1, Z1),

W2

[(
z1Z1

s1S1

)(
z2Z2

s2S2

)
←

(
z1Z1

s1S1

)(
z2Z2 − 1

s2S2 + 1

)]
= 1

2ν
(S2 + 1)C χk (z2, Z2). (A2)

APPENDIX B: TWO-SPECIES GENERALIZED ASEP

1. Construction of the master equation

The right-hand side of the analog of Eq. (17) includes also
contributions from jumps of big particles, XL and XR:

d

dt
P(1)

sS = xL + xR + XL + XR, (B1)

where XL = X −
L + X +

L and XR = X −
R + X +

R . Explicit expres-
sions for all the terms read

x−
L = −bsl

L
sS − δ̃s+2S,kuL

sS,

x+
L = δ̃s+2S,kbs+1lL

s+1,S + δ̃s,0uL
s−1,S,

x−
R = −asl

R
sS − δ̃s+2S,kuR

sS,

x+
R = δ̃s+2S,kas+1lR

s+1,S + δ̃s,0uR
s−1,S (B2)

for small particles and

X −
L = −BSLL

sS − ˜̃δs+2S,kU
L
sS,

X +
L = ˜̃δs+2S,kBS+1LL

s,S+1 + δ̃S,0U
L
s,S−1,

X −
R = −ASLR

sS − ˜̃δs+2S,kU
R
sS,

X +
R = ˜̃δs+2S,kAS+1LR

s,S+1 + δ̃S,0U
R
s,S−1 (B3)

for big particles, where ˜̃δs+2S,k = 1 − δs+2S,k − δs+2S,k−1

stands for highly occupied states in the case of jumps of
big particles. Four states (s − 1, S), (s + 1, S) and (s, S − 1),
(s, S + 1) contribute to the gain terms. The selective functions
l , u and L, U are defined as follows:

lL
sS =

(k−1)∑
s′,S′

P(2)
s′S′;sS, uL

sS =
(k)∑

s′,S′
as′P(2)

s′S′;sS,

lR
sS =

(k−1)∑
s′,S′

P(2)
sS;s′S′ , uR

sS =
(k)∑

s′,S′
bs′P(2)

sS;s′S′ ,

LL
sS =

(k−2)∑
s′,S′

P(2)
s′S′;sS, U L

sS =
(k)∑

s′,S′
AS′P(2)

s′S′;sS,

LR
sS =

(k−2)∑
s′,S′

P(2)
sS;s′S′ , U R

sS =
(k)∑

s′,S′
BS′P(2)

sS;s′S′ , (B4)

where the upper limit of the sum given in parentheses, like∑(m)
s,S , has the meaning that the summation is carried over

all non-negative integers s and S satisfying the condition
s + 2S � m.

The currents of small and big particles read

j =
(k)∑
s,S

(k−1)∑
s′,S′

asP
(2)
sS;s′S′ −

(k−1)∑
s,S

(k)∑
s′,S′

bs′P(2)
sS;s′S′ , (B5)

J =
(k)∑
s,S

(k−2)∑
s′,S′

ASP(2)
sS;s′S′ −

(k−2)∑
s,S

(k)∑
s′,S′

BS′P(2)
sS;s′S′ . (B6)

Under periodic boundary conditions, the mean-field ap-
proximation P(2)

sS;s′S′ ≈ P(1)
sS P(1)

s′S′ makes the selective functions
to simplify

lL
sS = lR

sS = P(1)
sS l, uL

sS = P(1)
sS ua, uR

sS = P(1)
sS ub, (B7)

where

l =
(k−1)∑
s′,S′

P(1)
s′S′ , ua =

(k)∑
s′,S′

as′P(1)
s′S′ , ub =

(k)∑
s′,S′

bs′P(1)
s′S′ (B8)

and

LL
sS = LR

sS = P(1)
sS L, U L

sS = P(1)
sS UA, U R

sS = P(1)
sS UB (B9)

with

L =
(k−2)∑
s′,S′

P(1)
s′S′ , UA =

(k)∑
s′,S′

AS′P(1)
s′S′ , UB =

(k)∑
s′,S′

BS′P(1)
s′S′ .

(B10)

2. Reduction to single equation for k = 3

We start from the master equations (39). Two quasilinear
relations follow from the equation for P30 and its combination
with that for P20: P10 = φh2P20 and P20 = φh3P30, where φ =
l/u. Adding the equations for P00 and P01 yields one more
relation:

P00 + P01 = φh1(P10 + P11). (B11)

Another type of a relation is deduced if we add the equations
for P01 and P11:

P00 + P10 = �H1(P01 + P11) (B12)

with � = L/U .
Let us show that Eqs. (B11) and (B12) can be split. Using

their definitions, L and U can be eliminated from the LU part,
say, of the equation for P01 to yield

−H1P01L + P00U = −H1P01P10 + H1P00P11. (B13)

Then the equation for P01 takes the following form:

(1/h1)P01

P11
= H1/h1P00 + l

H1P10 + u
. (B14)
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The numerator and denominator of the left-hand side of this
proportion multiplied by H1 are added to those of the right-
hand side [93] resulting in

P01

h1P11
= H1/h1P00 + l + H1/h1P01

H1P10 + u + H1P11
. (B15)

Next, the equation for P00 is transformed making use of
relation (B13) to the following:

(1/h1)P00

P10
= l + H1/h1P01

u + H1P11
. (B16)

Owing to the same property of a proportion [93], frac-
tion (1/h1)P00/P10 appears to equal the right-hand side of
Eq. (B15) resulting in P00/(h1P10) = P01/(h1P11). Equation
(B11) shows now that these fractions are equal to φ or
P00 = φh1P10 and P01 = φh1P11. These relations rewritten as
h1P10l − P00u = 0 and h1P11l − P01u = 0 immediately split
the lu and LU parts in the corresponding master equations.
Then

H1P01L − P00U = 0, H1P11L − P10U = 0, (B17)

i.e., P00 = �H1P01 and P10 = �H1P11 splitting Eq. (B12).
Now, we derive an equation for φ. The normalization

condition is multiplied by ρ1 and ρ2 and subtracted from ρ1-
and ρ2-fixing conditions (35) to yield

(k)∑
s,S

PsS (ρ1 − s) = 0,

(k)∑
s,S

PsS (ρ2 − S) = 0. (B18)

All the probabilities are expressed through P30 as

P00 = φ3h1h2h3P30,

P10 = φ2h2h3P30,

P20 = φh3P30,

P01 = φ3h1h2h3

�H1
P30,

P11 = φ2h2h3

�H1
P30 (B19)

and inserted into Eqs. (B18) resulting in a closed set for φ

and �:

ρ1φ
3 + ρ1 − 1

h1
φ2 + ρ1 − 2

h1h2
φ + ρ1 − 3

h1h2h3

+ φ2

H1�

[
ρ1φ + ρ1 − 1

h1

]
= 0,

ρ2

(
φ3 + 1

h1
φ2 + 1

h1h2
φ + 1

h1h2h3

)

+ φ2

H1�
(ρ2 − 1)

[
φ + 1

h1

]
= 0. (B20)

When we eliminate � from these equations, we obtain a single
equation for φ, which is Eq. (41).

Having obtained the solution in terms of φ, we need to
reconstruct the probabilities. P11 can be written in terms of
φ using P01 = φh1P11 and the ρ2-fixing condition as P11 =

ρ2/(1 + h1φ). Hence

P01 = ρ2h1φ

1 + h1φ
. (B21)

Remaining probabilities are computed using relations (B19).
Since all PsS are now expressed through φ, and H1 = (A1 +
B1)/(a + b) does not enter the final equation for φ, it follows
that the steady-state probabilities do not depend on the jump
rates of big particles, A1 and B1.

APPENDIX C: ONE-SPECIES GENERALIZED ASEP
WITH POCKETS

1. Master equation

In case on the chain composed of a backbone and pockets
attached to each backbone cell, the equation for one-site
probability P(1)

sz can be written as

d

dt
P(1)

sz = xL + xR + y, (C1)

where xL = x−
L + x+

L , xR = x−
R + x+

R , while y = y− + y+ de-
scribes one-site processes involving jumps to and from the
pocket. We again write these terms through selective functions
l and u which are now specified for each pair (s, z):

x−
L = −bsl

L
sz − δ̃s,kuL

sz,

x+
L = δ̃s,kbs+1lL

s+1,z + δ̃s,0uL
s−1,z,

x−
R = −asl

R
sz − δ̃s,kuR

sz,

x+
R = δ̃s,kas+1lR

s+1,z + δ̃s,0uR
s−1,z. (C2)

Expressions for the functions l and u are as follows:

lL
sz =

k−1∑
s′=0

P(2)
s′+,sz, uL

sz =
k∑

s′=1

as′P(2)
s′+,sz,

lR
sz =

k−1∑
s′=0

P(2)
sz,s′+, uR

sz =
k∑

s′=1

bs′P(2)
sz,s′+,

(C3)

where total summation is understood over the pocket index
denoted by subscript “+,” as in, e.g.,

P(2)
s′+,sz =

k∑
z′=0

P(2)
s′z′,sz (C4)

since the pocket state does not influence on jumps. The loss
and gain contributions,

y− = −δ̃z,qcsP
(1)
sz − δ̃s,kdzP

(1)
sz ,

y+ = δ̃s,k δ̃z,0cs+1P(1)
s+1,z−1 + δ̃z,qδ̃s,0dz+1P(1)

s−1,z+1,
(C5)

describe entering and leaving the pocket being in state s, z
(direct processes) and their inverses, respectively; δ̃’s come
to play for fully occupied and empty pocket or site.

The current between two neighboring sites is defined by

j =
k∑

s=1

k−1∑
s′=0

asP
(2)
s+,s′+ −

k−1∑
s=0

k∑
s′=1

bs′P(2)
s+,s′+ (C6)

with total summations taken over the pocket indices denoted
by “+,” as before.
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In the mean-field approximation we neglect correlations
between sites, P(2)

sz,s′z′ ≈ P(1)
sz P(1)

s′z′ . In this approximation, the
selective functions are lL

sz = lR
sz ≈ P(1)

sz l , uL
sz ≈ P(1)

sz ua, uR
sz ≈

P(1)
sz ub, where

l =
k−1∑
s′=0

P(1)
s′+, ua =

k∑
s′=1

as′P(1)
s′+, ub =

k∑
s′=1

bs′P(1)
s′+. (C7)

2. Reduction to single equation for k = 1

When the backbone cell accepts at most one particle, the
master equations read, according to Eq. (47),

P00 : 0 = (a + b)[h1P10l − P00u],

P10 : 0 = (a + b)[−h1P10l + P00u] − c1P10 + d1P01,

. . .

P0z : 0 = (a + b)[h1P1zl − P0zu] + c1P1,z−1 − dzP0z,

P1z : 0 = (a + b)[−h1P1zl + P0zu] − c1P1z + dz+1P0,z+1,

. . .

P0q : 0 = (a + b)[h1P1ql − P0qu] + c1P1,q−1 − dqP0q,

P1q : 0 = (a + b)[−h1P1ql + P0qu], (C8)

with the mean-field l and u defined as

l =
k−1∑
s=0

q∑
z=0

Psz, u =
k∑

s=1

hs

q∑
z=0

Psz, (C9)

and h1 = 1. Consecutive adding splits the set (C8) into
two subsets: 0 = P1zl − P0zu|z=0,1,...,q and 0 = −c1P1z +
dz+1P0,z+1|z=0,1,...,q−1 resulting in 2q + 1 relations:

P0z = φP1z, P0z = γzP1,z−1, (C10)

where φ = l/u, γz = c1/dz. We combine these equations to
obtain the recurrence P1,z−1 = φ

γz
P1z which yields

P1z = φq−z

γz+1 . . . γq
P1q, P0z = φq−z+1

γz+1 . . . γq
P1q. (C11)

P1q can be expressed in terms of φ by inserting these formulas
into the normalization condition

∑
s,z Psz = 1:

P1q = γ1γ2 . . . γq

×
[
φq+1 +

q∑
z=1

γ1 . . . γz−1(γz + 1)φq+1−z + γ1 . . . γq

]−1

.

(C12)

Now, the density-fixing condition is subtracted from the nor-
malization condition multiplied by ρ1 to yield

k∑
s=0

q∑
z=0

Psz(ρ1 − s − z) = 0. (C13)

When we insert into (C13) expressions (C11) for the proba-
bilities, we obtain the equation for φ:

ρ1φ
q+1 +

q∑
z=1

γ1 . . . γz−1(γz + 1)(ρ1 − z)φq+1−z

+ γ1 . . . γq[ρ1 − (q + 1)] = 0. (C14)

If the rates satisfy dz = zd , we have γz = γ /z with γ = c/d
and the equation for φ has the form

q∑
z=0

γ z−1(γ + z)

z!
(ρ1 − z)φq+1−z + γ q

q!
[ρ1 − (q + 1)] = 0.

(C15)

The site state and the pocket state appear to be uncorre-
lated. Functions l and u in the case k = 1 are reduced to
P0+ = ∑q

z′=0 P0z′ and P1+ = ∑q
z′=0 P1z′ (with h1 = 1.) Thus,

relation P0z/P1z = l/u can be rewritten as P0zP1+ = P1zP0+.
The normalization condition in the form P0+ = 1 − P1+ is
substituted into the right-hand side to yield P1z = P1+P+z,
where P+z = P0z + P1z. This result exactly means no correla-
tion between site state s = 1 and arbitrary pocket state z. The
case s = 0 is similar, and we obtain Psz = Ps+P+z.

3. Reduction to single equation for k � 2

Numerical study of the model with k = 2 and q = 1 shows
that the solution to the master equations in the special case
h1 = 1, h2 = 2 and c1 = c, c2 = 2c are such that the jump and
pocket parts of each equation equals zero separately. In other
words, each master equation splits onto zero-value jump and
pocket parts. Numerical calculations for the model with k = 2
and q = 2 with occupancy-proportional rates show the same
feature.

Within the assumption of such splitting, two sets of rela-
tions can be derived from Eq. (47):

P0z = φh1P1z,

P1z = φh2P2z,

. . .

Pk−1,z = φhkPkz, (C16)

with z = 0, 1, . . . , q, and

γ1,z+1P1z = P0,z+1,

γ2,z+1P2z = P1,z+1,

. . .

γk,z+1Pkz = Pk−1,z+1, (C17)

with z = 0, 1, . . . , q − 1 and γs,z+1 = cs/dz+1. We require
that these relations do not contradict each other. For example,
P21 can be expressed through P22 in two ways: using the
relation with P31, to yield P21 = φh3P22/γ32 and alternatively
by the relation to P12 which reads: P21 = φh2P22/γ22. These
two expressions are not contradictory if h3/γ32 = h2/γ22 or
h3/c3 = h2/c2. The general form of the conditions of consis-
tency reads

hs+1

cs+1
= hs

cs
, s = 1, 2, . . . , k − 1. (C18)

If the rates as, bs, and cs are proportional to s, these require-
ments are satisfied.

The two sets of relations (C16) and (C17) can be used to
express all the probabilities through Pkq as

Psz = wszPkq. (C19)
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This expression is inserted into the normalization condition
resulting in

Pkq =
[

k,q∑
s,z=0

wsz

]−1

. (C20)

Let us obtain wsz. Using relation Psz = φhs+1Ps+1,z repeatedly
we get

Psz = φk−shs+1hs+2 · · · hkPkz. (C21)

Pkz can be related to Pkq by repeated application of the
recurrence relation Pkz = φhkPk,z+1/γk,z+1, which gives

Pkz = (φhk )q−z

γk,z+1γk,z+2 · · · γkq
Pkq. (C22)

Substitution of this expression into Eq. (C21) yields

wsz = hs+1hs+2 · · · hk hq−z
k

γk,z+1γk,z+2 · · · γkq
φk+q−s−z. (C23)

We derive the equation for φ from relation

k,q∑
s,z=0

wsz(ρ1 − s − z) = 0 (C24)

obtained by insertion of Eqs. (C19) into the difference of
the normalization condition multiplied by ρ1 and the ρ1-
fixing condition. Combination of this relation with Eq. (C23)
produces the following equation:

k∑
s=0

q∑
z=0

γk1γk2 · · · γkz

h1h2 · · · hs hz
k

φk+q−s−z(ρ1 − s − z) = 0. (C25)

All {h} are included here. Regarding the pocket rates, only
combinations γkz = ck/dz are present, whereas other cs are not
involved owing to conditions (C18). For k = q = 3, Eq. (C25)
has the form

ρ1φ
6 + 1

h1

(
1 + γ31

h1

h3

)
(ρ1 − 1)φ5

+ 1

h1h2

(
1 + γ31

h2

h3
+ γ31γ32

h1h2

h2
3

)
(ρ1 − 2)φ4

+ 1

h1h2h3

(
1 + γ31 + γ31γ32

h2

h3

+ γ31γ32γ33
h1h2

h2
3

)
(ρ1 − 3)φ3

+ γ31

h1h2h2
3

(
1 + γ32 + γ32γ33

h2

h3

)
(ρ1 − 4)φ2

+ γ31γ32

h1h2h3
3

(1 + γ33)(ρ1 − 5)φ

+ γ31γ32γ33

h1h2h4
3

(ρ1 − 6) = 0. (C26)

In the case of hs = s, cs = sc, and dz = zd it is reduced to
Eq. (51).

APPENDIX D: TWO-SPECIES GENERALIZED ASEP
WITH POCKETS

1. Master equation

We construct the master equation by combining the results
for the two-species generalized ASEP and the one-species
generalized ASEP with pockets, Eqs. (B1) and (C1). The
master equation has the form

d

dt
P(1)

sS,zZ = xL + xR + y + XL + XR + Y. (D1)

Each term in the right-hand side has a loss (−) and a gain (+)
part. The terms corresponding to jumps along the backbone
are

x−
L = −bsl

L
sS,zZ − δ̃s+2S,kuL

sS,zZ ,

x+
L = δ̃s+2S,kbs+1lL

s+1,S,zZ + δ̃s,0uL
s−1,S,zZ ,

(D2)
x−

R = −asl
R
sS,zZ − δ̃s+2S,kuR

sS,zZ ,

x+
R = δ̃s+2S,kas+1lR

s+1,S,zZ + δ̃s,0uR
s−1,S,zZ ,

and

X −
L = −BSLL

sS,zZ − ˜̃δs+2S,kU
L
sS,zZ ,

X +
L = ˜̃δs+2S,kBS+1LL

s,S+1,zZ + δ̃S,0U
L
s,S−1,zZ ,

X −
R = −ASLR

sS,zZ − ˜̃δs+2S,kU
R
sS,zZ ,

X +
R = ˜̃δs+2S,kAS+1LR

s,S+1,zZ + δ̃S,0U
R
s,S−1,zZ . (D3)

The corresponding selective functions l , u and L, U read

lL
sS,zZ =

(k−1)∑
s′,S′

P(2)
s′S′++;sS,zZ , uL

sS,zZ =
(k)∑

s′,S′
as′P(2)

s′S′++;sS,zZ ,

lR
sS,zZ =

(k−1)∑
s′,S′

P(2)
sS,zZ;s′S′++, uR

sS,zZ =
(k)∑

s′,S′
bs′P(2)

sS,zZ;s′S′++,

(D4)

and

LL
sS,zZ =

(k−2)∑
s′,S′

P(2)
s′S′++;sS,zZ ,

U L
sS,zZ =

(k)∑
s′,S′

AS′P(2)
s′S′++;sS,zZ ,

(D5)

LR
sS,zZ =

(k−2)∑
s′,S′

P(2)
sS,zZ;s′S′++,

U R
sS,zZ =

(k)∑
s′,S′

BS′P(2)
sS,zZ;s′S′++,

where “++” in the subscripts denote total summation over
pocket indices, e.g.,

P(2)
s′S′++;sS,zZ =

(q)∑
z′,Z ′

Ps′S′,z′Z ′;sS,zZ (D6)
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(and analogously in all other cases), where the upper summa-
tion limit “(q)” means that the summation is restricted by the
condition z′ + 2Z ′ � q. The contributions of pocket processes
for small and big particles can be written as

y− = −δ̃z+2Z,qcsP
(1)
sS,zZ − δ̃s+2S,kdzP

(1)
sS,zZ ,

y+ = δ̃s+2S,k δ̃z,0cs+1P(1)
s+1,S,z−1,Z

+ δ̃z+2Z,qδ̃s,0dz+1P(1)
s−1,S,z+1,Z ,

Y − = − ˜̃δz+2Z,qCSP(1)
sS,zZ − ˜̃δs+2S,kDZP(1)

sS,zZ ,

Y + = ˜̃δs+2S,k δ̃Z,0CS+1P(1)
s,S+1,z,Z−1

+ ˜̃δz+2Z,qδ̃S,0DZ+1P(1)
s,S−1,z,Z+1. (D7)

The currents of small and big particles are as follows:

j =
(k)∑
s,S

(k−1)∑
s′,S′

asP
(2)
sS++;s′S′++ −

(k−1)∑
s,S

(k)∑
s′,S′

bs′P(2)
sS++;s′S′++, (D8)

J =
(k)∑
s,S

(k−2)∑
s′,S′

ASP(2)
sS++;s′S′++ −

(k−2)∑
s,S

(k)∑
s′,S′

BS′P(2)
sS++;s′S′++.

(D9)

2. Mean-field approximation

The mean-field approximation P(2)
sS,zZ;s′S′,z′Z ′ ≈ P(1)

sS,zZ P(1)
s′S′,z′Z ′

within the periodic bounary conditions splits the selective
functions:

lL
sS,zZ = lR

sS,zZ = P(1)
sS,zZ l, uL

sS,zZ = P(1)
sS,zZ ua,

uR
sS,zZ = P(1)

sS,zZ ub, (D10)

where

l =
(k−1)∑
s′,S′

P(1)
s′S′++, ua =

(k)∑
s′,S′

as′P(1)
s′S′++, ub =

(k)∑
s′,S′

bs′P(1)
s′S′++,

(D11)

and

LL
sS,zZ = LR

sS,zZ = P(1)
sS,zZ L, U L

sS,zZ = P(1)
sS,zZUA,

U R
sS,zZ = P(1)

sS,zZUB, (D12)

with

L =
(k−2)∑
s′,S′

P(1)
s′S′++,

UA =
(k)∑

s′,S′
AS′P(1)

s′S′++, UB =
(k)∑

s′,S′
BS′P(1)

s′S′++. (D13)

In the case k = q = 3 explicit expressions for functions l , L
and u, U defined in (55) read

l = P00,++ + P10,++ + P20,++ + P01,++,

u = h1P10,++ + h2P20,++ + h3P30,++ + h1P11,++,

L = P00,++ + P10,++,

U = H1P01,++ + H1P11,++. (D14)

If the rates are proportional to occupancies, the set of sta-
tionary master equations can be reduced to two equations for
φ = l/u and ψ = U/L in the way discussed in Appendix C 3.
This way we get the pair of equations (58) and (59).
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