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Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses
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Colloidal particles, which are ubiquitous, have become ideal testing grounds for the structural glass transition
theories. In these systems glassy behavior arises as the density of the particles is increased. Thus, soft
colloidal particles with varying degree of softness capture diverse glass-forming properties, observed normally
in molecular glasses. Brownian dynamics simulations for a binary mixture of micron-sized charged colloidal
suspensions show that tuning the softness of the interaction potential, achievable by changing the monovalent
salt concentration results in a continuous transition from fragile to strong behavior. Remarkably, this is found
in a system where the well characterized interaction potential between the colloidal particles is isotropic. We
also show that the predictions of the random first-order transition (RFOT) theory quantitatively describes the

universal features such as the growing correlation length, ξ ∼ ( φK
φ

− 1)
−ν

with ν = 2
3 where φK , the analog

of the Kauzmann temperature, depends on the salt concentration. As anticipated by the RFOT predictions, we
establish a causal relationship between the growing correlation length and a steep increase in the relaxation
time and dynamic heterogeneity as the system is compressed. The broad range of fragility observed in Wigner
glasses is used to draw analogies with molecular and polymer glasses. The large variations in the fragility are
normally found only when the temperature dependence of the viscosity is examined for a large class of diverse
glass-forming materials. In sharp contrast, this is vividly illustrated in a single system that can be experimentally
probed. Our work also shows that the RFOT predictions are accurate in describing the dynamics over the entire
density range, regardless of the fragility of the glasses.
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I. INTRODUCTION

The abiding interest in the structural glass transition (SGT)
problem, which occurs readily in a large class of materials
either by supercooling or by compression, is a testimony
to its importance in condensed matter physics. Extensive
experimental, theoretical, and computer simulation studies
have established that the random first-order transition (RFOT)
theory [1] provides a reasonable description of many impor-
tant characteristics of the SGT. Several reviews [2–7] have
discussed the theoretical underpinnings and applications of
the RFOT theory to not only to SGT but a number of other
fields [7]. Although the RFOT theory was inspired by a class
of precisely soluble mean field spin glass models lacking
inversion symmetry in the presence of quenched randomness
[8–12], it was shown that the major results could also be de-
rived using a density functional Hamiltonian for liquids where
the randomness is self-generated [13], just as in the SGT
(see also Refs. [14,15]). Because the theoretical approaches
were inherently mean field-like, which although one could
argue is accurate in liquids, additional studies were needed
to assess the robustness of the RFOT conclusions. There are
connections between equilibrium and dynamical transitions
in large dimensions [16], which are explicit in spin glass
models without inversion symmetry. These have made precise
in a number of remarkable studies [17–19], which established
that RFOT is exact in d = ∞ dimensions for hard-sphere
glass-forming systems. These studies provide support to the

original suggestion [1,13] that the physics underlying RFOT
describes the SGT problem fairly accurately.

A prediction of the RFOT is that for a generic glass-
forming system there are two major transitions as the liquid is
compressed (increase in the volume fraction of the particles,
φ). We focus on φ, and not the temperature because that is the
the relevant variable in the binary mixture of charged colloidal
suspensions, which undergo a liquid to glass (Wigner glass)
transition at high enough values of φ [20]. At a φ ∼ φd there is
a dynamical transition at which the transport starts to become
sluggish although signatures of slow dynamics is evident even
at values of φ less than φd . As the liquid is compressed further
(φ is increased) there is an ideal glass transition at φK (analog
of the Kauzmann temperature) at which the configurational
entropy vanishes, which in turn results in complete cessa-
tion of motion. If undercooled by lowering the temperature
instead of increasing φ, the ideal glass transition occurs at
TK where there is an essential singularity in the temperature
dependence of the viscosity. Of course, the transition at φd

and the thermodynamic transition at φK are connected, which
is needed to provide a consistent picture of the SGT [2,7]. The
topology of the state space is unremarkable at φ < φd where
collective transport is not prominent. However, for φ > φd the
dynamics slows down because the system is trapped in one
of the exponentially large number of metastable states [13].
Under these circumstances transport becomes possible only
by overcoming free energy barriers separating the metastable
states. The timescales for crossing the barriers can be
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arbitrarily long depending on φ, and becomes essentially infi-
nite at φK . The two transition picture and the associated scal-
ing relations of quantities, such as the growing length scales
and the surface tension between two mosaic states at values
of φ > φd (or T < Td ), approaching the ideal glass transition
volume fraction φK (or TK ), have been measured both in
computer simulations using predominantly hard spheres (HS)
or Lennard-Jones (LJ) or soft sphere (SS) mixtures [21–27]
and experiments [28–31].

One of the hallmarks of glass-forming materials is that they
exhibit dramatically different curvatures when log η is plotted
as a function of Tg

T where η is the shear viscosity, Tg is the
glass transition temperature, which is operationally defined
using η(Tg) � 1013 poise or when the structural relaxation
time reaches about 100 seconds. In the graph of log η as
a function of Tg

T , often referred to as the Angell plot [32],
classic glass formers, such as ortho-terphenyl or Trehalose,
are “fragile,” as are mixtures of HS, LJ, or SS particles. In con-
trast, Si or SiO2, which are network forming materials with
anisotropic interaction potentials, are classified as “strong”
glasses. In fragile glasses, the effective activation free energies
separating the metastable states explored above φd increase
sharply as the system is continuously compressed whereas
they are relatively independent of φ in strong glasses. Fragile
and strong glasses are often discussed in terms of the fragility
index [33].

Here, we have two goals in mind. First, we demonstrate
using mixtures of glass-forming highly charged micron-sized
colloidal suspensions (classical Wigner glasses) that the key
predictions of RFOT are quantitatively validated, adding to
the growing evidence that RFOT theory seamlessly explains
the dynamics both below φd and also in the density range
spanning φd � φ � φK . Second, we show that there is a
crossover from fragile to strong behavior in Wigner glasses as
the concentration of monovalent salt is increased. The large
change in the fragility index needed for the crossover occurs
in just one system even though the interparticle potential is
isotropic. These new predictions can be tested using optical
microscopy techniques [30].

The key to our findings is the recognition that stiffness
of the interparticle potentials in colloids can be changed by
controlling the surface charge or internal elasticity of colloids
[34]. Examples of such systems include emulsions [28], mi-
crogels [35–37], charged colloids [37], and squishable cells
[38,39]. These systems display glass-like properties that are
distinct compared to fragile hard-sphere-like systems. Most
striking impact of the softness on the glass transition is that
“fragility” of colloids can be greatly modified upon change
in the stiffness of the potential, which in turn can be altered
by changing the interaction potentials [35]. For the much
less investigated Wigner glasses, the fragility is a measure of
how steeply the relaxation time τα increases near the glass
transition volume fraction φg. Since the first experiments
using microgels as soft glasses [35], several studies revealed
that the glass transition of soft colloids can be either strong or
fragile depending on the stiffness [40–43]. Upon decreasing
the stiffness of the interaction potential between the colloids
the fragility increases. Thus, soft colloids can be exploited
as important model systems that mimic the characteristics of
diverse glass-forming materials [44].

Despite several examples, the physics underlying the
fragile-to-strong crossover in soft colloids is not fully un-
derstood. First, whether the softness does really contribute
to the drastic change in the fragility remains controversial.
Indeed, in several experiments [36,37,45,46], it was found
that the fragility in soft colloids is insensitive to the softness
of the interaction potentials. Previous simulations with model
soft colloids showed that the drastic variation in the fragility
cannot be reproduced by merely modifying the softness of
the potential [37,47–49]. Thus, some have argued that the
softness does not dominate the fragility of colloidal glasses.
Instead, it was suggested that other mechanisms relying on the
the microscopic details of the soft colloids are important for
the drastic change in the fragility in the previous experiments
[37,50–52]. Here, we elucidate the effect of the softness on
the fragility of soft colloids to resolve the conflicting interpre-
tations.

Second, as a simplest realization of the diverse glass-
forming liquids, whether the glass transition in soft colloids
with a broad spectrum of the fragility can be described univer-
sally is a question of fundamental importance. The sluggish
dynamics near the glass transition is attributed to the sud-
den increase in the effective free energy barriers controlling
structural relaxation at φ > φd . Thus, the fragility of liquids
depends on how steeply the effective free energy barrier
increases near the glass transition. As alluded to above, the
RFOT theory naturally explains the increase in the free energy
barrier near the glass transition, which is due to the emergence
of a growing length scale in which dynamics of the particles
are highly correlated [1,7,53]. In the RFOT the effective
free energy barrier is characterized by a diverging length
scale associated with the amorphous order [26,29,54,55] or
the correlated dynamics [56–59]. According to the RFOT,
therefore, regardless of the fragility of liquids, a significant
increase in τα should be universally described in terms of the
growth of length scales. Testing this prediction of RFOT using
Wigner glasses as an example of soft glasses with a broad
range of tunable fragility is also an important motivation of
this work.

II. METHODS

A. Interaction potential

Nearly four decades ago, Lindsay and Chaikin showed
that increasing the volume fraction of binary mixtures of
highly charged micrometer-sized colloidal particles results
in Wigner glass formation, characterized by the absence of
long-range order but with finite shear modulus [20]. Following
our previous studies [60,61], we model the experimentally
probed system as a mixture of charged spheres. The total
number of the particles is N = N1 + N2, where N1 and N2

are, respectively, the number of small and large colloids.
The bare radii of the particles, a1 and a2, are taken to be
0.0545 and 0.11 μm, corresponding to the ones used in the
experiments. In our simulations, we choose N1 = N2 = 5000.
The interaction between the charged colloids is modeled by
the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential
[62–66], which is given by

Vi j (r) = e2ZiZ j

4πε

(
exp[κai]

1 + κai

)(
exp[κa j]

1 + κa j

)
exp[−κr]

r
. (1)
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In Eq. (1), Zi is the valence of the charged colloids, whose
values are 300 and 600 for small (i = 1) and large (i = 2)
colloids, respectively, r is the interparticle distance, and ε is
the dielectric constant (ε = ε0εr , where ε0 and εr are vacuum
and relative permittivity, respectively). Because the charged
colloids are solubilized in water at temperature T = 298 K,
we use εr = 78. The influence of the counterions and the
added monovalent salt on the interaction between the charged
colloids is implicitly reflected in the inverse Debye-Hückel
screening length κ , given by

κ2 = e2

εkBT

(
ρcz2

c +
n∑
i′

ρi′z
2
i′

)
, (2)

where ρc and zc are the number density and valence of the
counterions, and kB is the Boltzmann constant. For mono-
valent ions |zc| = 1, and therefore due to charge neutrality
ρc is given by ρc = ρ1Z1 + ρ2Z2, where ρ1 and ρ2 are the
number densities of the small and large colloids, respectively.
In Eq. (2), ρi′ and zi′ are the number density and valence of
the added salt, respectively. For monovalent ions,

∑n
i′ ρi′z2

i′

becomes ρadd = ∑n=2
i′ ρi′ . We define the relative number den-

sity of the excess ions as, ρr = ρadd/ρc, and consider values
of ρr ranging from 0 to 10. For simulation efficiency, Vi j (r)
is truncated and shifted at rcut where Vi j (rcut) = 0.001kBT .
Because the interactions in Eq. (1) are screened, it is not
necessary to use Ewald sums, which is usually required
for simulating systems with particles interacting by long-
ranged Coloumb interactions. We investigated the dynamics
of the charged colloids by carrying out extensive Brownian
dynamics (BD) simulations, which we describe below (see
Appendix A).

B. Softness of Vi j (r)

It is important to note that the softness of the interac-
tion of the charged colloids varies with ρr and the volume
fraction, φ = 4π

3L3 (N1a3
1 + N2a3

2). We plot the DLVO potential
V11(r)/kBT for the small colloids as a function of r at different
φ at ρr = 0 [Fig. 1(a)] and for different ρr at φ = 0.09
[Fig. 1(b)]. The graphs in Figs. 1(a) and 1(b) show that
as φ and ρr decrease, the stiffness of the DLVO potential
decreases, which means that V11(r)/kBT decays less steeply
as r increases. The effective range of the repulsive interaction
increases as φ and ρr decrease. We use steepness and the range
of the DLVO potential to characterize the changes illustrated
in Figs. 1(a) and 1(b). The stiffness of the DLVO potential can
be estimated as a slope of the interaction between colloidal
particles as a function of r. Since the force is the negative
slope of the potential, we define the stiffness parameter ki j

as the magnitude of the force of the DLVO potential at r =
lB where Vi j (lB) = kBT . The Debye-Hückel screening length
1/κ is a length scale over which the electrostatic interaction
of the charged colloids is effectively screened by other ions.
Thus, the effective range λDLVO is 1/κ . In Figs. 1(c) and 1(d),
kDLVO and λDLVO are shown for the range of φ considered
in our simulations with varying ρr , respectively. For a fixed
value of ρr stiffness k11 increases dramatically as φ increases
(Fig. 1). Because such changes in the interactions can be
readily achieved in experiments, we can use charged colloidal

(a) (b)

(c) (d)

FIG. 1. Variation in the softness of the interparticle potential of
the charged colloids as a function of added salt. Plot of the DLVO
potential [Eq. (1)] of the small charged colloids V11(r)/kBT as a
function of r (a) for various φ at ρr = 0, and (b) for various ρr

with fixed φ = 0.09. (c) The stiffness parameter of the small charged
colloids k11, and (d) the effective length scale of the DLVO potential
λDLVO as a function of φ for various ρr . k11 in (c) is reduced by
kBT/2a1. The unit of λDLVO in (d) is micrometer (μm).

suspensions to investigate how the nature of glass transition
itself changes as φ and ρr are varied.

III. RESULTS AND DISCUSSION

A. Two transition densities in Wigner glasses

To extract the structural relaxation times as a function
of φ and ρr , we calculated the self-part of the intermediate
scattering function,

Fq(t ) = 1

N

〈
N∑

j=1

exp[−i �q · (�r j (t ) − �r j (0))]

〉
. (3)

We used the wave number q = |�q| = qave = 2π
dave

, where dave =
2 φ1a1+φ2a2

φ1+φ2
, is the volume averaged diameter of the charged

colloids with φ1 and φ2 being the volume fractions of the
small and large colloids, respectively. The reason for using
qave is that that the relaxation times extracted from the time-
dependence of Fqave (t ) correlates well with the shear viscosity
as a function of φ (see Appendix B). In Fig. 2(a), we plot the
time dependence of Fqave (t ) as a function of φ at ρr = 0. As φ

increases, there is a clear two-step decay in Fqave (t ), indicating
that the dynamics of the charged colloids becomes glassy as
the system is compressed. In Fig. 2(b), we show Fqave (t ) for
various ρr at a fixed φ = 0.15. As ρr decreases, the effective
range of the repulsive interaction of the charged colloids
increases [Figs. 1(b) and 1(d)], which results in an increase in
the effective density of the charged colloids, thus explaining
the sluggish dynamics with decreasing ρr [Fig. 2(b)].
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(a) (b)

(c) (d)

FIG. 2. Structural relaxation and glass transition in charged colloids. The self-part of the intermediate scattering function Fqave (t ) (a) for
various φ with ρr = 0 and (b) for various ρr with φ = 0.15. (c) The relaxation time of the charged colloids as a function of φ for various ρr .
The solid and dashed lines indicate VFT and MCT fits to τα , respectively. (d) The characteristic densities φK (red circles) and φd (blue circles)
as a function of ρr .

As stated in the Introduction, a key prediction of RFOT is
that for a generic glass-forming materials that undergo SGT as
it is compressed (or supercooled), there are two characteristic
transitions. One of them is expected at φ = φd , denoting
the start of dynamical arrest. The other is the ideal glass
transition at φK , which is usually difficult to probe in computer
simulations. The onset of sluggish structural relaxation dy-
namics in Figs. 2(a) and 2(b) can be quantified by an increase
in the structural relaxation time, τα . For practical purposes,
we calculated τα using t = τα at which Fqave (τα ) = 0.2. The
dependence of τα as a function of φ for various ρr is shown in
Fig. 2(c). In the φ and ρr range considered here, τα for a given
ρr , increases by nearly 4 orders of magnitude as φ increases.

We analyzed the growth in τα with φ in terms of the two
characteristic transition densities [1,7]. As φ approaches φd

an extensive number of metastable glassy states emerge. At
densities above φd the system is trapped in one of the many
metastable states for arbitrarily long times, and transport oc-
curs through activated transitions involving crossing growing
free energy barriers. The free energy barrier 
F ‡ between
two adjacent mosaic states scales as the size of the mosaic
states ξ , and is given by 
F ‡ ∼ ξ d/2, where d is the space

dimension. The RFOT theory predicts that ξ should increase
without bound as φ → φK (ξ ∼ (φK − φ)−2/d ), which in turn
leads to the essential singularity in τα at φK .

The values of φd and φk can be extracted using the data in
Fig. 2(c). The dynamical transition anticipated in the RFOT
theory is consistent with the prediction of the mode-coupling
theory (MCT), with the caveat that the power law singular-
ity is avoided in reality. We calculated φd using τα ∼ (1 −
φ/φd )−γ , where φd and γ are the fitting parameters. The
values of γ for ρr = 0 and 1 are unusually large (Table I)
especially at low salt concentrations. This could arise because
the estimated φd may already be in the activated regime. It
is difficult to calculate τα accurately at zero and low salt
concentrations over a broad enough range of φ to accurately
to estimate both φd and γ unambiguously. This is likely due to
the long range of the DLVO potential especially when ρr=0.

As the density is increased further, τα follows the Vogel-
Flucher-Tamman (VFT) relation,

τα = τVFT exp

[
DVFTφ

φK − φ

]
, (4)
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TABLE I. Characteristic volume fractions associated with compressed charged colloids.

MCT VFT

ρr φd γ τVFT φK D φg

0 0.10 ± 0.03 4.215 ± 0.0003 0.8 ± 0.1 ×10−3 0.20 ± 0.02 10 ± 2 0.11
1 0.187 ± 0.006 2.7 ± 0.3 1.7 ± 0.2 ×10−3 0.264 ± 0.006 3.2 ± 0.3 0.20
5 0.356 ± 0.003 1.9 ± 0.1 0.9 ± 0.1 ×10−3 0.429 ± 0.004 1.4 ± 0.1 0.38

10 0.431 ± 0.001 1.55 ± 0.03 0.79 ± 0.07 ×10−3 0.502 ± 0.004 0.97 ± 0.07 0.46

where τVFT is τα for φ → 0, and DVFT is the fragility param-
eter. We fit τα to the VFT relation to extract τVFT, DVFT, and
φK . Note that the asymptotic behavior predicted by the RFOT
is well described with a single value of φK obtained by a
VFT fit (see below), which partly validates our determination
of φK . The dashed and solid lines in Fig. 2(c) represent the
power laws and the VFT fits. The significant increase in τα is
accurately fit by the two functional forms in different ranges
of φ.

In Fig. 2(d), we show φd and φK for various ρr (see the
values in Table I). Interestingly, as ρr increases from 0 to 10,
φd and φK increase from 0.10 and 0.22 to 0.46 and 0.50,
respectively. Considering that upon an increase in ρr , the
shape of the DLVO potential becomes more hard-sphere-like
(see Fig. 1 and Appendix C), we expect that φd and φK should
converge to the values for binary hard spheres (φd � 0.59 and
φK � 0.64 [67]) at high values of ρr . The results in Fig. 2(d)
show that φd and φk indeed increase. However, the numerical
values for Wigner glasses and HS differ, which is related to the
range of the DLVO potential. We showed sometime ago that
pair correlation functions of highly charged spherical colloidal
suspensions with bare size a can be mapped onto hard spheres
with diameter dh that is greater than a [65,68]. Thus, a similar
mapping would predict that the volume fractions identified
here would be larger if the effective hard-sphere diameters are
used. With this argument, we conclude that the effective φK

for Wigner glasses at high ρr would achieve the well-known
values for hard-sphere systems. The distances (φK − φg)/φK

at ρr = 10 [Fig. 2(d)] and for hard-sphere-like are virtu-
ally identical, which is also manifested in the fragile-strong
crossover (see below). It is clear that addition of salt influences
the softness of the DLVO potential, which drastically alters the
glass transition behavior.

B. Fragility decreases substantially as ρr decreases

The variations in the fragility can be visualized using the
Angell plot, from which the fragility index may be calculated
by fitting τα on a logarithmic scale with respect to φ/φg

where φg is the volume fraction at the glass transition. The
difference between strong and fragile glasses is evident in
the dependence of τα , which increases gradually as φ/φg

increases for strong glass formers, but for fragile glass formers
the increase is steep. It is worth emphasizing that substantial
variations in the curvatures observed in the dependence of
τα on φ [Fig. 2(c)] is observed in experiments only when
shear viscosity for a very large class of materials as a function
of temperature is simultaneously plotted. Remarkably, here
in binary mixture of charged suspensions, interacting with

isotropic DLVO potential, a similar behavior is observed. The
results in Fig. 2(c) allows us to construct the Angell plot, τα

versus φ/φg where φg is the glass transition density.
To obtain the Angell plot for Wigner glasses, we first

determined φg for various ρr , which is not a trivial task
in the simulations. Typically, φg is obtained from exper-
imental data using τα (φg) = 100s. For colloidal systems,
when τα = 100s, τα/τVFT � 105, thus φg can be obtained
using τα (φg)/τVFT = 105 [36,37]. To calculate φg, therefore,
one should consider the range of φ where τα � 100s or
τα/τVFT � 105, which, unfortunately, is not practical using
computer simulations. Alternatively, assuming that τα for
high φ regime follows the VFT relation [Eq. (4)], we de-
termined φg by extrapolating Eq. (4) to φ where τα/τVFT =
105 (see Table I). The values of τα at φg for various ρr in
our simulations are ∼100s, which justifies our estimation
of φg.

The Angell plot for charged colloids for various ρr values
are shown in Fig. 3(a). We expect τα for strong glasses to
increase linearly as a function of φ/φg [35,36], which implies
that τα ∼ exp[Aφ] [the red dashed line in Fig. 3(a)], where
A is a constant (the red dashed guide line). However, for
hard-sphere colloids that we consider as a reference for a
fragile glass (Appendix D)), τα increases rapidly as φ/φg ap-
proaches 1 (the black circles). Figure 3(a) shows that the slope
of τα near φ/φg = 1 increases significantly as ρr increases,
indicating that the fragility increases with ρr . We quantify the
fragility change using the kinetic fragility index mk , which is
defined as

mk = d log τα

dφ/φg

∣∣∣∣
φ=φg

. (5)

For a strong glass, mk = 5 since log[τα/τVFT] is linear in
φ/φg [the red dashed line in Fig. 3(b)] [36]. The value of
mk in the hard-sphere limit is 104 [the black dashed line in
Fig. 3(b)]. The calculated mk values of the charged colloids
using Eq. (5), displayed in Fig. 3(b), shows that mk increases
from 10 to 64 as ρr increases from 0 to 10. Since the DLVO
potential approaches the hard-sphere potential as ρr increases
(see Appendix C), it is likely that if ρr is increased further,
mk would converge (perhaps slowly) to the values associated
with hard-sphere glasses. Therefore, our simulation results
demonstrate that by merely tuning the salt concentration, mk

of the charged colloids can be changed dramatically. In other
words, addition of a monovalent salt could result in the fragile-
strong crossover in Wigner glasses, which is a prediction that
can be readily validated experimentally.
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(a) (b)

(c) (d)

FIG. 3. Variations in the fragility of charged colloids. (a) Angell plot in which τα for various ρr is shown as a function of φ/φg. The black
open circles (the rightmost curve) are τα of φ for hard spheres. The red dashed line shows the Angell plot for a strong glass. The solid lines are
the corresponding VFT fits. (b) The fragility index mk as a function of ρr . The red and black dashed lines show the fragility of the strong glass
and hard spheres, respectively. (c) Relaxation time as a function of as a function of φ/φg with the stiffness k11 explicitly shown. (d) Fragility
index as a function of k11. For comparison we also show mk [Eq. (5)] for a few other systems.

C. Stiffness of the DLVO potential and dramatic fragility
changes

Significant changes in mk for soft colloids have been
reported previously [35,40–42], but the physics underlying
this behavior in terms of the interparticle interaction has
remained unclear, and perhaps even controversial. It was
found that there is a crossover from fragile to strong glasses
in deformable microgels when the internal elasticity of the
particles decreases. This finding was used to suggest that
softer potentials should result in strong glasses [35]. How-
ever, the drastic variations in mk have not been reproduced
in previous simulations by modification of the softness of
the potential alone [37,47–49]. For instance, Philippe et al.,
considered the soft particles interacting via the Hertz potential
VH (r) = εH (1 − r/σ )2�(r − σ ), where �(x) is the Heaviside
step function, and σ is the diameter of the particles [37].
The softness of the potential was tuned by the value of εH .
Although εH was varied by two orders of magnitude, the
dependence of τα on φ was found to be insensitive to εH

[Fig. 3(d)]. This implied that the fragility is independent of the
softness of the Hertz potential. Thus, they concluded that the
idea the softness of the potential solely controls the fragility
should be revised.

Our results for the glass transition of the charged colloids
provide insights into these seemingly conflicting arguments.
As shown in Fig. 1(b), the DLVO potential becomes soft

as ρr decreases, but even at ρr = 0 the stiffness is altered
significantly by φ. These two features of the DLVO potential
should contribute to the drastic change in mk with ρr in
Fig. 3(b). To distinguish between the influence of the softness
from that of the other, we carried out additional simulations
for the charged colloids whose value of κ in Eq. (2) is fixed
as a function of φ. Note that the softness parameter k11 and λ

are determined by κ . When κ is fixed, therefore, the shape
(and thereby softness of the potential) is not changed with
φ. Accordingly, if the fragility varied with κ (or associated
softness parameters k11 and λ), this would be attributed solely
to the stiffness of the potential.

Figure 3(c) shows the Angell plots for various k11, from
which we evaluate mk as a function of k11 in Fig. 3(d)
(the black open circles). They clearly show that as k11

decreases (as the potential becomes softer), mk decreases.
Therefore, from Fig. 3(d) we conclude that soft potentials
(smaller values of k11) can indeed make glass transition
stronger.

More importantly, the softness of the potential is insuffi-
cient to fully explain the drastic modification of the fragility
shown in Fig. 3(b). We show mk for various ρr in the y axis
of Fig. 3(d) (the horizontal color bars) and the x range of each
color bar represents the range of 1/k11 from φg to φ = φref

at which τα/τVFT = 102. Note that the x axis is drawn in a
log scale, and thus the range of the color bars in the graph
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indicates the extent of how sensitively k11 changes relatively
to k11,φg when φ drops from φg to φref. The graph shows that
as ρr decreases, k11 varies more with φ and mk drops further
from that of the hard sphere (the black dashed line) comparing
to when the softness is fixed with φ (the black circles). This
demonstrates that the variation of the softness with φ should
also play an important role in the drop of the fragility with a
decrease in ρr .

Note that the potential of the deformable microgels in
previous experiments would behave in a similar way upon
packing. The microgels deswell significantly upon packing
due to their polymeric nature, leading to a decrease in the
effective size and an increase in the internal elasticity [36,36].
This may alter the shape of the potential becoming steeper
with increasing φ, which is qualitatively similar to the DLVO
potential. When deswelling upon packing was limited, the
fragility of the migrogels was insensitive to the softness of the
potential [36]. Therefore, it was suggested recently that rather
than softness itself, such variation in the shape of potential
with φ would play a more dominant role in the change in mk

of the microgels [36,37].
Figure 3(d) partly supports this idea. Typical soft micro-

gels in experiments are modeled using the Hertz potential
with εH/kBT � 1000 [69,70], which corresponds to k11 �
60, where k11 of the Hertz potential is expressed as k11 =
2
√

εH/kBT . In Fig. 3(d) we show mk for the Hertz particles
as a function of k11 considered in the previous simulation of
Philippe et al. [37] (the purple open stars). The considered
range of εH/kBT is from 333 to 50000, which corresponds
to k11 in the range from 36 to 447. The mk values for the
Hertz particles is obtained as mk � 125 from the simulation
data in [37], which is independent of k11. Thus, k11 � 60,
which is steep resulting in the glass transition being more
fragile according to Fig. 3(d). This means that the drastic
decrease in mk in microgels could be attributed to other mech-
anisms associated with their deswelling. However, further
investigation is needed to elucidate how much the potential
of the microgels is modified by deswelling and whether this
change in the potential contributes to the fragility of the
microgels.

To conclude this section, we showed that the fragility of
the charged colloids decreases drastically as ρr decreases. As
ρr decreases, the DLVO potential becomes softer, changing
sensitively with φ, which are the determining factors in the
decrease in mk of the charged colloids. Although our results
confirm that the softness of the potential can reduce the
fragility it is not a unique contribution to drastic change of
the fragility observed in the previous experiments. As a result,
the conclusion of the pioneering experiment [35] should be
revisited. The soft nature of inter particle potential is sufficient
but not necessary to observe a broad change in the fragility,
which is a reflection of the dependence of the relaxation times
on φ.

D. RFOT quantitatively accounts for glass transition in charged
colloids

In previous sections, we showed that the nature of glass
transition in charged colloids is modified by the addition of
monovalent salts. In particular, as ρr increases, φK increases

and τα increases more steeply as φ → φK . In this section, we
explore the extent to which the universal aspects of RFOT
are manifested in Wigner glasses. We find evidence for strong
spatial heterogeneity in the dynamics of the charged colloids
as φ approaches glass transition. We also demonstrate that
dynamic heterogeneity is closely associated with a significant
increase in τα , which is a consequence of the increase in length
scale as the system is compressed, which was anticipated by
the RFOT for the SGT problem.

As φ increases above φd , the dynamics of supercooled
liquids becomes spatially heterogeneous, which implies that
particles with similar mobilities are likely to be localized close
to each other. Spatial heterogeneity, resulting in violation of
law of large numbers [7,61,71], is one of the most striking
features of the glass transition [72–74]. The heterogeneous dy-
namics in Wigner glasses is pictorially illustrated in Fig. 4(a).
We prepared the simulation snapshots at values of φ from
φ = 0.3 to φ = 0.45 at ρr = 10. We colored the individual
particles according to their relative mobility Mi defined as
Mi = 
r2

i (τdave )/〈
r2(τdave )〉, where 
ri(t ) is the displace-
ment of particle i at time t , and τdave is a timescale at which
the mean-squared displacement 〈
r2(τdave )〉 is equal to dave.
Note that τdave is comparable to the structural relaxation time
τα , indicating that the structural correlation of whole system
would be vanishingly small at τdave . A typical liquid is ergodic
on the observation timescales τobs that is comparable to τα .
Thus, the structural correlation in liquids in any large enough
subsample would fully vanish for τα . As φ → φd , however,
the system becomes nonergodic even on τobs � τα due to the
emergence of an ensemble of disconnected mosaic states. As
a consequence, relaxation becomes spatially heterogeneous
over large regions. Thus, as φ → φd , the mobilities of the
particles are spatially heterogeneous and many of the particles
in certain regions rarely diffuse. This reveals that the time
evolution of the particles varies from region to region even
if τobs � τdave . This is a clear indication of the dynamic het-
erogeneity and is a consequence of broken ergodicity near φd ,
which is an important consequence of the RFOT [7].

1. Fourth order susceptibility

The extent of dynamic heterogeneity can be quantified by
the fluctuations in the two-point correlation function charac-
terizing the structure relaxation. Hence, we should consider
the four-point susceptibility, first introduced in Ref. [75], of
the intermediate scattering function χ4|Fq (t ) = 1

N [〈Fq(t )2〉 −
〈Fq(t )〉2]. However, the fluctuation of the overlap function
is often used as an alternative for numerical convenience,
whose behavior is qualitatively similar to χ4|Fq (t ). The overlap
function Fo(t ) is defined as

Fo(t ) = 1

N

N∑
i=1

wi(t ), (6)

where wi(t ) = �(a − |�ri(t ) − �ri(0)|) and �(x) is the Heav-
iside step function, which accounts for the fraction of the
slow particles that diffuse a distance less than a. If one uses
a = 0.3dave, Fo(t ) behaves in a qualitatively similar fashion to
Fqave (t ) [57]. Thus, the overlap function can be used to quantify
the structural relaxation of liquids instead of Fqave (t ). The
four-point susceptibility of Fo(t ) for the N particle systems
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(a)

(b) (c) (d) (e)

FIG. 4. Visualization and quantification of heterogeneous dynamics in charged colloids. (a) Snapshots illustrating heterogeneous dynamics.
Equilibrium configurations for various φ with ρr = 10 are prepared. Coloring of the colloids are done according to their relative mobility Mi

(see the definition of Mi in the main text). (b) The four-point susceptibility of the overlap functions χ4|Fo,N (t ) for various φ at ρr = 0. (c)
The rescaled four-point structure factor S4(q, t )/χ4 with respect to the reduced wave number ξ4 when t = τov and ρr = 0. The dashed line
represents Ornstein-Zernicke fit, S4(q, τov)/χ4 = 1/[1 + (qξ4)2]. (d) χ4 and (e) ξ4 of the charged colloids versus φ for various ρr .

is expressed as

χ4|Fo,N (t ) = N[〈Fo(t )2〉 − 〈Fo(t )〉2], (7)

which characterizes the fluctuation of the slow particles. If the
dynamics of liquids becomes spatially heterogeneous, then
χ4|Fo,N (t ) should have a large value. Accordingly, χ4|Fo,N (t )
can be used as a measure of the overall extent of dynamic
heterogeneity. In Fig. 4(b), we plot χ4|Fo,N (t ) as a function
of t for various values of φ at ρr = 0, a = 0.3dave and N =
10000. χ4|Fo,N (t ) has a maximum value near t = τov, which is
the relaxation time of Fo(t ) defined as t at which Fo(t ) = 0.2.
An increase in φ results in the maximum value increasing
drastically, showing the growth in the extent of dynamic
heterogeneity as φ approaches the glass transition.

It should be noted that χ4|Fo,N (t ) obtained directly from
Eq. (7) in simulations is subject to strong finite size effects,
because the contribution of long-range density fluctuations
over the length scale L (the simulation box size) to χ4|Fo,N (t )
is not included [57]. A more exact estimation of the extent
of dynamic heterogeneity can be achieved by the small wave
number behavior of the four-point dynamic structure factor
S4(q, t ) defined as

S4(q, t ) = N[〈Wo(q, t )Wo(−q, t )〉 − 〈Wo(q, t )〉2], (8)

where Wo(q, t ) = 1
N

∑N
j=1 w j (t ) exp[−i �q · �r j (0)]. For small

q, S4(q, t ) can be fit by the Ornstein-Zernicke equation
[57,59,76,77],

S4(q, t ) � χ4|Fo,∞(t )

1 + (
qξ4|Fo (t )

)2 for q → 0, (9)

where χ4|Fo,∞(t ) is χ4|Fo,N (t ) of an infinitely large system and
ξ4|Fo (t ) is a length scale of dynamically correlated regions,
both of which can be determined as fitting parameters. The
results are shown in Fig. 4(c). The values of χ4|Fo,N (t ) and
ξ4|Fo (t ) are maximized near τov [57], allowing us to determine
the dynamic susceptibility and the associated length scale of
the charged colloids as χ4 = χ4|Fo,N (τov) and ξ4 = ξ4|Fo (τov),
respectively. Figures 4(d) and 4(e) provide a quantitative illus-
tration of the growing dynamic heterogeneity of the charged
colloids. They show that χ4 and ξ4 increase as φ approaches
the glass transition density, implying that a significant slow-
down of dynamics near the glass transition is accompanied
by heterogeneous dynamics of the charged colloids. Note that
the magnitudes of such multipoint dynamic susceptibility ξ

and the associated length scale ξ are quantities associated with
the magnitude of the effective energy barrier of the structural
relaxation, indicating that the increase in χ4 and ξ4 leads to
orders of increase in τα . Below, we establish a casual relation-
ship between dynamic heterogeneity and sluggish dynamics
of Wigner glasses using the RFOT theory.

2. Fractal dimension of dynamically correlated regions

The RFOT theory provides a comprehensive explanation
on how the growth of ξ4 and χ4 correlates with a sluggish dy-
namics of the charged colloids. It predicts that as φ increases
beyond φd the nature of the nature of the configurational space
partitions into an exponential number of mosaic states. Further
compression results in the power law divergence of ξ close
to φK , which leads to a dramatic increase in τα . Since the
physical origin of dynamic heterogeneity is closely associated
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(a) (b)

(c) (d)

FIG. 5. Illustrating RFOT behavior in charged colloids. (a) χ4 for various ρr values as a function of ξ4 extracted using Eq. (9). The values
of ξ0 for various ρr are determined to make all the data points collapse onto a single curve for clarity, which does not influence the scaling
relation between ξ4 and χ4. The dashed line (y ∼ x3) is drawn as a guide to the eye. (b) ξ4 for the various ρr as a function of φK/φ − 1. For ρr

the largest φ for which reliable simulations could be done is less than φg [see Fig. 2(c)], which is a great distance away from the extrapolated
φK value (Table I), which is outside the regime of applicability of the RFOT theory. The exponent −2/3 holds for ρr = 1, 5, and 10. (c)
Dependence of the reduced ideal glass transition volume fractions φK,N/φK,∞ on the system size N are shown as (LK,N/L0 )−1/ν is varied. The
dashed line (φK,N/φK,∞ − 1 = (LK,N/L0 )−1/ν) validates that the finite size scaling relation predicted by the RFOT theory. Individual fits are
shown in Fig. 10 in Appendix F. (d) The logarithm of the relaxation time ln τα with respect to ξ

ψ

4 . The dashed guide line (y = x) confirms the
linear relation between the two quantities.

with the emergence of the mosaic states, it is natural to ex-
pect that the properties of the dynamically correlated regions
characterized by ξ4 and χ4 to be consistent with those of the
mosaic states. This implies that the increase of τα should be
described by the growth of ξ4 as the system is compressed.

Although it is unclear if ξ4 behaves in a qualitatively
similar way as ξ [78], many theoretical studies have shown
that the growth of ξ4 plausibly captures the important aspects
of the RFOT associated with the mosaic states [56–59,79,80].
For example, according to the RFOT theory, the shape of
the mosaic states is string-like but would become compact
as φ → φd , which can be captured by the change in the
shape of the dynamically correlated domains [81]. Since χ4 is
often interpreted as the number of particles in the dynamically
correlated domains [82,83], it follows that if χ4 is plotted
with respect to ξ4 in a log-log scale, the exponent should be

associated with the fractal dimension d f of the dynamically
correlated domains. Therefore, if the transition of the shape
of the dynamically correlated regions were associated with
the mosaic states, d f should increase to 3 as φ → φd , and
φ exceeds φd . Flenner et al. computationally showed that the
transition in d f of various types of model glasses occurred uni-
versally as φ (or T ) approached the dynamic transition points
φd (or Td ) [58]. We observe a similar universal transition in
d f in the charged colloidal glasses. Figure 5(a) shows χ4 as a
function of ξ4 for various ρr values. As shown in the graph,
χ4 vs ξ4 for various ρr collapses on to a single curve using an
appropriate rescaling factor ξ0, and d f increase to 3 as φ →
φd . This particular example confirms the relevance between
the dynamically correlated domains and the mosaic states,
which guarantees that the growth of ξ4 with φ characterize
the dependence of ξ on φ.
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3. Increase in length scale upon compression

According to the RFOT theory [1,7], ξ should grow as
φ → φK ,

ξ ∼
(φK

φ
− 1

)−ν

, (10)

where ν = 2
d is the scaling exponent. We confirm that this is

indeed the case when ξ4 is plotted as function of φ. We use φK

obtained in Figs. 2(c) and 2(d), and plot ξ4 for various ρr with
respect to φK/φ − 1 in Fig. 5(b). The slopes of the linear guide
lines in the graph represent the values of ν which are expected
to be 2/d by the RFOT theory. For ρr =1, 5, and 10, ξ4 of φ

follows well Eq. (10) with ν = 2/3. For completeness, we also
plot the results for ρr = 0. In principle, Eq. (10) is applicable
only if φ is relatively close to φK . For ρr = 0, the distances
(
φK = 1 − φ/φK ) between φK and the maximum φmax for
which reliable simulations can be performed [Fig. 5(b)] is
0.65, which is two to four times larger than for φr = 1, 5,
and 10. This results in the deviation from the expected value
in ν when ρr = 0. Thus, to more precisely determine ν for
ρr = 0, it is necessary to estimate ξ4 at larger values of φ,
which is difficult to do in simulations. Nevertheless, the results
in Fig. 5(b) are sufficient to demonstrate that, as predicted by
RFOT, ξ4 for various ρr of the charged colloids would diverge
at φK , thus validating one of the key predictions of the RFOT
theory.

To show that the divergence of τα at φK is due to the
increase in ξ � ξ4, we investigated the finite size effects on
the estimates of φK . Let us assume that the system with size L
is a subsample of an infinitely large system whose φK is φK,∞.
Then, φK of L would be determined as φ at which ξ4 � L.
Therefore, φK and L of the subsystems would follow Eq. (10)
with respect to φK,∞, which leads to the finite size scaling
relation of φK ,

L ∼
(φK,∞

φK,L
− 1

)−ν

, (11)

where φK,L is φK of the subsystem of size L. When N is fixed,
as in our simulation, L is a function of φ, LN ∼ (Nφ)−1/3.
Hence, for constant N system, φK,N would coincide with
φ, which is determined using ξ � LN,K ∼ (NφK,N )−1/3. This
leads to LK,N ∼ (φK,∞/φK,L − 1)−ν , from which φK,N can be
expressed as a function of LK,N as follows:

φK,N = φK,∞
1 + ( LK,N

L0

)−1/ν
, (12)

where φK,N indicates φK associated with finite N and we
define LK,N as LK,N = (N/φK,N )1/3. We carried out additional
simulations for various N and estimated φK,N using the VFT
relation as done in Fig. 2(c). Then, L0 and φK,∞ are de-
termined as fitting parameters in Eq. (12) (see details in
Appendix F). For the purpose of fitting the curves, ν = 2/3 is
used for ρr = 1, 5, and 10, but we use an effective value ν = 1
for ρr = 0. Figure 5(c) shows that φK,N/φK,∞ for various ρr

collapses onto a single curve [y = (1 + x)−1] when plotted
against L−1/ν

K,N , indicating that φK,N follows the scaling relation
in Eq. (12). This clearly demonstrates that it is the growth of ξ4

that contributes to the slow dynamics of the charged colloids
as φK is approached.

4. Free energy barrier and growing length scale

The quantitative relation between the growing length scale
associated with dynamic heterogeneity and the slowing down
of the structural relaxation in Wigner glasses can be explained
using RFOT theory [1]. The activation free energy 
F ‡ of
a configuration to move from one mosaic state to another
increases with an increase in the length scale associated with
the mosaic states, i.e., 
F ‡ ∼ ξψ , where ψ is a scaling
exponent. This implies that the structural relaxation time is
related to ξ as

τα = τ0 exp[kξψ ], (13)

where τ0 is a timescale at ξ → 0 which is comparable to τVFT

and k is a prefactor for 
F ‡. Note that ψ is predicted to be
1/ν, such that by substituting ξ with Eq. (10), Eq. (13) can
recover the VFT relation. We determine τ0 and k at various
values of ρr by fitting τα to Eq. (13). Figure 5(d) shows
ln[τα/τ0] at various ρr values plotted against kξ

ψ

4 , where
ψ = 1/ν in Fig. 5(b). The linear line (y = x) in the graph
is drawn as a guide to confirm the quantitative consistency
between the two quantities. This figure clearly illustrates that
as φ → φK , τα for Wigner glasses at various ρr values can be
quantitatively described by Eq. (13).

E. Analogies between Wigner and molecular glasses

We investigated how the growing length scale relates to the
fragility of the charged colloids. By replacing τα in Eq. (5)
with Eq. (13), we can define the fragility index mξ in terms of
ξ , i.e.,

mξ = k
dξψ

dφ/φg

∣∣∣∣
φ=φg

, (14)

where ξφg is ξ at φ = φg. Since kξ
ψ

φg
= ln[τα (φg)/τ0] and

τα (φg)/τ0 � 105 for the colloidal glass, kξ
ψ

φg
should have a

trivial value. Thus, mξ can be expressed as

mξ = ψkξ
ψ−1
φg

dξ

dφ/φg

∣∣∣∣
φ=φg

∼ d ln ξ

dφ/φg

∣∣∣∣
φ=φg

. (15)

We evaluated mξ using the last term in Eq. (15) by extrapolat-
ing Eq. (13) to ξ4 = ξ4,φg . In Fig. (6), we compare mξ with mk ,
which shows that the two quantities are linearly related.

It is important to note that since the configurational entropy
Sc decreases as φ → φK (or T → TK ) [25,84,85], i.e., Sc ∼
φK/φ − 1 (or Sc ∼ T/TK − 1), mξ can be written as a function
of Sc,

mξ ∼ dS−1
c

dφ/φg

∣∣∣∣
φ=φg

, (16)

which is consistent with the definition of the thermodynamic
fragility index of liquids [86]. Therefore, the linear relation be-
tween mξ and mk indicates that the thermodynamic and kinetic
fragility indices of the charged colloids are proportional to one
another. Such a proportionality has also been found for various
types of molecular glasses. Martinez and Angell measured the
kinetic and thermodynamic fragility index of various organic
glasses and found that they had a linear relation for both strong
and fragile glasses [86]. Similar behavior was also found by
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FIG. 6. The linear relation between mξ and mk . mξ for the
charged colloids as a function of mk for various ρr . The dashed line
in the graph confirms a linear relation between two quantities.

theories and simulations in polymeric glasses [87,88], which
implies that glass transition in soft colloids exhibits strong
analogies to other molecular glasses. This also shows that the
glass transition in simple and complex liquids manifest the
universal features predicted by the RFOT theory.

IV. CONCLUSIONS

We investigated the glass transition in binary charged
charged colloids, which are excellent experimentally control-
lable model soft glasses, by performing extensive Brownian
dynamics simulations. We showed that as concentration of
monovalent salts is increased, the inter particle potential
becomes soft. As a result, the characteristic glass transition
volume fractions φd and φK decreases. In addition, we predict
that by simply tuning the salt concentration, the fragility of
the charged colloids varies greatly. The fragility value changes
from about 10 at low salt concentration to in excess of 50 at
high salt concentration values. Typically, the large values are
associated with molecular systems that interact via anisotropic
potentials. Surprisingly, in Wigner glasses, with isotropic
inter particle interactions, the fragility varies continuously by
altering a single from a low to high value by tuning a single
externally controllable parameter.

Despite the changes in the softness of potential that is
altered by addition of monovalent salts, the sluggish dynamics
can be quantitatively described in terms of the enhanced
dynamic heterogeneity as predicted by the RFOT theory. With
the four-point dynamic structure factor as an appropriate order
parameter, we determined the dynamic susceptibility and the
associated increase in length scale by compressing the system.
The simulations unambiguously show that the growth in the
length scale with increasing φ is closely associated with
the glassy dynamics, which is strikingly consistent with the
prediction of the RFOT theory.

Using the RFOT theory, we found that the kinetic fragility
index of the colloid can be expressed in terms of the length
scales of the heterogeneous dynamics. This indicates that
the kinetic and the thermodynamic fragility indices of the
charged colloids should be linearly related as has been noted

for both molecular glasses, such as organic and polymeric
glasses. Thus, glass transition of diverse materials should be
governed by the same universal principles, as anticipated by
RFOT, regardless of a broad spectrum of their fragilities.
The present simulations and recent developments show that
RFOT provides a comprehensive theory of the structural glass
transition by capturing quantitatively the onset of nonergod-
icity, and divergence of a growing correlation length as the
ideal transition density (or temperature) is approached from
above. Because in Wigner glasses there is a smooth crossover
from fragile to strong glass behavior, we can conclude that the
single unified RFOT is sufficient to describe almost all aspects
of glass-forming materials.
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APPENDIX A: BROWNIAN DYNAMICS SIMULATIONS

The position of the charged colloids is evolved using Brow-
nian dynamics (BD) by numerically integrating the following
equations of motion,

d�ri

dt
= Di,0 �Fi(t )

kBT
δt + √

2Di,0 �Ri(t ). (A1)

In Eq. (A1), δt is the integration time step, �ri(t )
is the position vector of the ith particle at time t, �Fi(t ) is
the total systematic force acting on particle i, and �Ri is the
term for the fluctuation force that satisfies 〈 �Ri(t )〉 = 0 and
〈 �Ri(t ) · �Ri(t ′)〉 = 6Di,0δi jδ(t − t ′), where δi j and δ(t − t ′) are
the Kronecker δ and the Dirac δ function, respectively. The
diffusion coefficient, Di,0, of the ith particle in the infinitely
dilute regime is chosen as 4.53 μm2/s and 2.24 μm2/s for
the small and large colloids, respectively. Various values of
the integration time step δt are considered for accuracy and
efficiency of the simulation. We use δt = 1 μs for ρr = 5 and
10, δt = 5 μs for ρr = 1 and δt = 10 μs for ρr = 0, which
provides numerical accuracy.

To generate equilibrium configurations, first we randomly
placed the binary colloids in the cubic simulation box with
periodic boundary conditions in all directions. The simulation
box size L is determined by the value of φ, ranging from
4.1 μm to 67.9 μm. Then, we performed simulations for t =
10τα ∼ 100τα to obtain the equilibrium configuration, where
τα is the structural relaxation time. After the equilibration
step, we carried out additional BD simulations to calculate
various dynamic properties of the system. We consider three
independent trajectories for each set of φ and ρr to estimate
ensemble averages of various properties. In the range of φ

considered, reentrance behaviors of Wigner glasses were not
shown (see Appendix E). All the simulations were carried out
with LAMMPS.
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APPENDIX B: COMPARISON OF STRUCTURAL
RELAXATION TIME WITH VISCOSITY

The self-part of the intermediate scattering function Fq(t )
characterizes the time-dependent density fluctuation on the
length scale lq = 2π/q. With appropriate choice of q, the
relaxation time of Fq(t ) could capture the viscosity change of
liquid near the glass transition [89]. Although the equivalence
between τα and the shear viscosity η is often made, it is not
always valid. Nevertheless, Fq(t ) is commonly estimated both
in simulations and experiments to investigate the dynamics of
the SGT.

Typically, two types of q are used. One is qmax correspond-
ing to the length scale lmax at the first maximum of the radial
distribution function, and the second is qave related to the
particle size. For liquids with steep potential such as hard
spheres, qmax is comparable to qave, and is only marginally
changed with a change in φ. Thus, the relaxation time τα

obtained using the time-dependence of the Fqmax (t ) and Fqave (t )
does not result in qualitative difference in the characterizing
relaxation dynamics in supercooled liquids. As shown in
Fig. 7(a), however, for charged colloids, qmax varies signifi-
cantly as φ increases although qave is invariant. This leads to
a qualitatively different behavior of τα extracted from Fqmax (t )
and Fqave (t ) upon an increase in φ. When ρr = 0, for example,
τα obtained from the decay of Fqave (t ) increases monotonically
with φ, whereas that calculated from Fqmax (t ) has a minimum
value [Fig. 7(b)]. This implies that the description of glass
transition of the charged colloids should depend on the value
of q.

We confirm that τα extracted from the decay of Fqave (t )
is more relevant to the viscosity change as the system is
compressed. We evaluate the shear viscosity η of the charged
colloid using Green-Kubo formula,

η = V

3kBT

∫ ∞

0
dt

∑
(α,β )′

〈Pα,β (t )Pα,β (0)〉, (B1)

where α and β denote Cartesian components (x, y and z),
(α, β )′ indicates the sum is over three different combinations
of α and β. The pressure tensor Pα,β is defined as

Pα,β = 1

V

∑
i> j

ri j,αri j,β

ri j

∂V (ri j )

∂ri j
. (B2)

In Eq. (B2), ri j is the distance between particles i and j. The
subscript α under the variable represents the α component
in Cartesian coordinate. In Fig. 7(c), we plot τα versus η

for various ρr . The colored filled circles show τα extracted
from the time dependent behavior ofFqave (t ) as a function
of η. The linear lines (y ∼ x), used as a guide to the eyes,
confirm the linearity between τα and η, indicating that τα

from Fqave (t ) captures the viscosity change of the charged
colloidal particles accurately. However, the open red circles
represent τα from Fqmax(t ) when ρr = 0, show that τα calcu-
lated from Fqmax (t ) and η do not correlate. Therefore, we use
Fqave (t ) to characterize the glassy dynamics of the charged
colloids.

(a)

(b)

(c)

FIG. 7. (a) Dependence of qmax as a function of φ when ρr = 0
(the red circles); qmax is given by 2π/lmax, where lmax is a length
scale at which the radial distribution function has the first maximum.
The black dashed line shows that qave = 2π/dave, where dave is
the weight-averaged diameter of the charged colloidal particles, is
independent of φ. (b) Comparison of τα obtained by Fqmax (t ) (the
open red circles) and Fqave (t ) (the filled red circles) when ρr = 0.
(c) Comparison of τα with η for various ρr . τα of the colored
filled circles is obtained by Fqave (t ). The colored guide lines (y ∼ x)
confirm the linear relation of η with τα from Fqave (t ). The open red
circles represent τα from Fqmax (t ) when ρr = 0, clearly indicating that
Fqmax (t ) fails to capture the changes in η.

APPENDIX C: QUANTITATIVE COMPARISON OF THE
DLVO POTENTIAL WITH THE HARD-SPHERE

POTENTIAL

Figure 1(b) qualitatively shows that as ρr increases the
DLVO potential approaches the hard-sphere potential. To
quantify the degree of the similarity between the DLVO
potential with corresponding the hard-sphere potential, we
calculated their excluded volumes vDLVO and vHS, re-
spectively, by relating it to the Mayer f function, v =
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FIG. 8. Comparison of vDLVO with vHS as a function of ρr for
larger charged colloids with φ = 0.4.

4π
∫ ∞

0 drr2{exp[−V (r)/kBT ] − 1}, where V (r) is the inter-
particle potential. For hard spheres with diameter σ, vHS =
(4πσ 3)/3. However, for the DLVO potential with low ρr, v

should exceed vHS. In Fig. 8, we plot vDLVO/vHS of the large
charged colloids (σ = 2.2 μm) as a function of ρr with φ =
0.4. We find that vDLVO/vHS approaches 1 as ρr increases over
20. The difference between vDLVO and vHS is only less than
3% when ρr = 50, which means that the effective diameter
(∼v1/3) differs by less than 1%. This suggests that for suffi-
ciently large ρr , say ρr = 50, the charged colloids could be
modeled by a hard-sphere potential, implying that the glass
transition behavior of Wigner glasses becomes hard-sphere-
like.

APPENDIX D: HARD-SPHERE SYSTEM AS A
REFERENCE FOR FRAGILE GLASSES

To consider a reference system for fragile glasses, we
perform a dynamic Monte Carlo simulation using binary

FIG. 9. gmax,11, gmax,12, and gmax,22 of the charged colloids as a
function of φ at various ρr .

(a)

(b)

(d)

(c)

FIG. 10. Individual fits of Fig. 5(c). φK,N is φK at N , which is
obtained by the VFT fit as in Fig. 2(c). In the each panel, φK,N of
LK,N (the open circles) is fitted to Eq. (12) (the solid lines), by which
φK,∞ and L0 are obtained as fitting parameters.

hard-sphere mixtures, which is found to reproduce well the
dynamic light scattering (DLS) experiments of poly(methyl
methacrylate) (PMMA) particles [67]. Diameters of the big
and small hard spheres are Db = 1.4σ and Ds = 1.0σ , respec-
tively, where σ is the reduced unit of length. We consider N =
1000 hard spheres (the numbers of big and small hard spheres
are equal). The positions of the hard spheres are evolved
using dynamic Monte Carlo (dMC) simulation with a standard
Metropolis algorithm. At every Monte Carlo step, a particle is
randomly chosen and displaced by a random vector, whose
components for each direction are randomly drawn between
−0.1σ and 0.1σ . The unit time t is defined as the number
of MC steps divided by N . Initial configuration is prepared
by randomly placing the nonoverlapped hard spheres in a
periodically replicated (in all dimensions) three-dimensional
simulation box. We equilibrated the initial configurations
by performing dMC simulations for t = 10τα ∼ 100τα , then
production run was performed to obtain the relaxation time τα

which is determined as a characteristic timescale in the decay
of Fq(t ) with qσ = 6.1. We considered φ from 0.5 to 0.59.
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For each volume fraction φ, three to five ensembles are used
to perform an ensemble average.

APPENDIX E: PEAK VALUES OF THE RADIAL
DISTRIBUTION FUNCTION AS A FUNCTION OF φ

For hard-sphere colloids, the height of the peak of the
static structure factor S(q) or that of the radial distribu-
tion function g(r) increases monotonically with an increase
in φ. For the soft colloids, however, they first increase
with φ but begin to decrease at a certain volume fraction
[90,91]. This is attributed to nonequilibrium dynamic behav-
ior due to aging or a compressed exponential decay of Fq(t )
[37,52].

In the range of φ considered in this work, we did not
such nonequilibrium effects. We consider three radial dis-
tribution functions g11(r), g12(r), and g22(r) of the charged
colloids, where gi, j (r) is the radial distribution function be-
tween i and j types of colloids, and the values 1 and 2
indicate small and large colloids, respectively. Figure 9 plots
their peak values gmax,11, gmax,12, and gmax,22 as a function

of φ at various ρr , indicating that all of them increase
monotonously in the range of φ considered in this study.
This behavior, reminiscent of hard spheres, shows that stan-
dard feature of charged colloids may be mapped onto an
equivalent hard-sphere system with a much larger effective
diameter [68].

APPENDIX F: INDIVIDUAL FITS TO DATA IN FIG. 5(c)

To investigate finite size effects on the value of φK for a
given ρr , we first evaluated τα of various φ with N . Note
that the simulation box size L is varied with φ as, L =
( 4

3π
a3

1+a3
2

φ
)1/3 since N is fixed. Then, we estimated φK,N with a

VFT fit [Eq. (4)]. We repeated this process to obtain φK,N for
various N , and compared φK,N of LK,N with Eq. (12). N ranges
from N = 500 to N = 10, 000 for ρr = 0 and from N = 100
to N = 10000 for ρr = 1, 5, and 10.

In Fig. 10, we show how φK,N changes with LK,N as a
function of N . The value of LK,N is given by (N.φK,N )1/3. The
ρr values are shown in Fig. 10.
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[76] N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer,
Spatially heterogeneous dynamics investigated via a time-
dependent four-point density correlation function, J. Chem.
Phys. 119, 7372 (2003).

[77] S. Karmakar, C. Dasgupta, and S. Sastry, Analysis of Dynamic
Heterogeneity in a Glass Former from the Spatial Correlations
of Mobility, Phys. Rev. Lett. 105, 015701 (2010).

[78] E. Flenner and G. Szamel, Characterizing dynamic length scales
in glass-forming liquids, Nat. Phys. 8, 696 (2012).

[79] C. Cammarota, A. Cavagna, I. Giardina, G. Gradenigo, T. S.
Grigera, G. Parisi, and P. Verrocchio, Phase-Separation Per-
spective on Dynamic Heterogeneities in Glass-Forming Liq-
uids, Phys. Rev. Lett. 105, 055703 (2010).

[80] M. Ozawa, C. Scalliet, A. Ninarello, and L. Berthier, Does the
Adam-Gibbs relation hold in simulated supercooled liquids? J.
Chem. Phys. 151, 084504 (2019).

[81] J. D. Stevenson, J. Schmalian, and P. G. Wolynes, The shapes of
cooperatively rearranging regions in glass-forming liquids, Nat.
Phys. 2, 268 (2006).

[82] L. Berthier, G. Biroli, J. P. Bouchaud, and R. L. Jack, Overview
of different characterizations of dynamic heterogeneity, Dy-
namical Heterogeneities in Glasses, Colloids, and Granular
Media (Oxford University Press, Oxford, 2011), Chap. 3.

[83] T. Bauer, P. Lunkenheimer, and A. Loidl, Cooperativity and the
Freezing of Molecular Motion at the Glass Transition, Phys.
Rev. Lett. 111, 225702 (2013).

[84] M. Ozawa, G. Parisi, and L. Berthier, Configurational en-
tropy of polydisperse supercooled liquids, J. Chem. Phys. 149,
154501 (2018).

[85] L. Berthier, M. Ozawa, and C. Scalliet, Configurational entropy
of glass-forming liquids, J. Chem. Phys. 150, 160902 (2019).

[86] L. M. Martinez and C. A. Angell, A thermodynamic connection
to the fragility of glass-forming liquids, Nature 410, 663 (2001).

[87] J. Dudowicz, K. F. Freed, and J. F. Douglas, Fragility of glass-
forming polymer liquids, J. Phys. Chem. B 109, 21350 (2005).

[88] F. W. Starr and J. F. Douglas, Modifying Fragility and Collec-
tive Motion in Polymer Melts with Nanoparticles, Phys. Rev.
Lett. 106, 115702 (2011).

[89] S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry, Break-
down of the Stokes-Einstein relation in two, three, and four
dimensions, J. Chem. Phys. 138, 12A548 (2013).

[90] Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B.
Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh,
Thermal vestige of the zero-temperature jamming transition,
Nature 459, 230 (2009).

[91] D. Paloli, P. S. Mohanty, J. J. Crassous, E. Zaccarelli, and
P. Schurtenberger, Fluid-solid transitions in soft-repulsive col-
loids, Soft Matter 9, 3000 (2013).

032605-16

https://doi.org/10.1063/1.446600
https://doi.org/10.1063/1.446600
https://doi.org/10.1063/1.446600
https://doi.org/10.1063/1.446600
https://doi.org/10.1103/PhysRevA.36.5690
https://doi.org/10.1103/PhysRevA.36.5690
https://doi.org/10.1103/PhysRevA.36.5690
https://doi.org/10.1103/PhysRevA.36.5690
https://doi.org/10.1103/PhysRevE.52.4154
https://doi.org/10.1103/PhysRevE.52.4154
https://doi.org/10.1103/PhysRevE.52.4154
https://doi.org/10.1103/PhysRevE.52.4154
https://doi.org/10.1021/j100352a003
https://doi.org/10.1021/j100352a003
https://doi.org/10.1021/j100352a003
https://doi.org/10.1021/j100352a003
https://doi.org/10.1063/1.467668
https://doi.org/10.1063/1.467668
https://doi.org/10.1063/1.467668
https://doi.org/10.1063/1.467668
https://doi.org/10.1103/PhysRevLett.102.085703
https://doi.org/10.1103/PhysRevLett.102.085703
https://doi.org/10.1103/PhysRevLett.102.085703
https://doi.org/10.1103/PhysRevLett.102.085703
https://doi.org/10.1103/PhysRevA.33.4473
https://doi.org/10.1103/PhysRevA.33.4473
https://doi.org/10.1103/PhysRevA.33.4473
https://doi.org/10.1103/PhysRevA.33.4473
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1103/PhysRevLett.105.025501
https://doi.org/10.1103/PhysRevLett.105.025501
https://doi.org/10.1103/PhysRevLett.105.025501
https://doi.org/10.1103/PhysRevLett.105.025501
https://doi.org/10.1103/PhysRevA.39.3563
https://doi.org/10.1103/PhysRevA.39.3563
https://doi.org/10.1103/PhysRevA.39.3563
https://doi.org/10.1103/PhysRevA.39.3563
https://doi.org/10.1063/1.4795539
https://doi.org/10.1063/1.4795539
https://doi.org/10.1063/1.4795539
https://doi.org/10.1063/1.4795539
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1063/1.4747326
https://doi.org/10.1063/1.4747326
https://doi.org/10.1063/1.4747326
https://doi.org/10.1063/1.4747326
https://doi.org/10.1103/PhysRevA.37.4439
https://doi.org/10.1103/PhysRevA.37.4439
https://doi.org/10.1103/PhysRevA.37.4439
https://doi.org/10.1103/PhysRevA.37.4439
https://doi.org/10.1063/1.1605094
https://doi.org/10.1063/1.1605094
https://doi.org/10.1063/1.1605094
https://doi.org/10.1063/1.1605094
https://doi.org/10.1103/PhysRevLett.105.015701
https://doi.org/10.1103/PhysRevLett.105.015701
https://doi.org/10.1103/PhysRevLett.105.015701
https://doi.org/10.1103/PhysRevLett.105.015701
https://doi.org/10.1038/nphys2437
https://doi.org/10.1038/nphys2437
https://doi.org/10.1038/nphys2437
https://doi.org/10.1038/nphys2437
https://doi.org/10.1103/PhysRevLett.105.055703
https://doi.org/10.1103/PhysRevLett.105.055703
https://doi.org/10.1103/PhysRevLett.105.055703
https://doi.org/10.1103/PhysRevLett.105.055703
https://doi.org/10.1063/1.5113477
https://doi.org/10.1063/1.5113477
https://doi.org/10.1063/1.5113477
https://doi.org/10.1063/1.5113477
https://doi.org/10.1038/nphys261
https://doi.org/10.1038/nphys261
https://doi.org/10.1038/nphys261
https://doi.org/10.1038/nphys261
https://doi.org/10.1103/PhysRevLett.111.225702
https://doi.org/10.1103/PhysRevLett.111.225702
https://doi.org/10.1103/PhysRevLett.111.225702
https://doi.org/10.1103/PhysRevLett.111.225702
https://doi.org/10.1063/1.5040975
https://doi.org/10.1063/1.5040975
https://doi.org/10.1063/1.5040975
https://doi.org/10.1063/1.5040975
https://doi.org/10.1063/1.5091961
https://doi.org/10.1063/1.5091961
https://doi.org/10.1063/1.5091961
https://doi.org/10.1063/1.5091961
https://doi.org/10.1038/35070517
https://doi.org/10.1038/35070517
https://doi.org/10.1038/35070517
https://doi.org/10.1038/35070517
https://doi.org/10.1021/jp053693k
https://doi.org/10.1021/jp053693k
https://doi.org/10.1021/jp053693k
https://doi.org/10.1021/jp053693k
https://doi.org/10.1103/PhysRevLett.106.115702
https://doi.org/10.1103/PhysRevLett.106.115702
https://doi.org/10.1103/PhysRevLett.106.115702
https://doi.org/10.1103/PhysRevLett.106.115702
https://doi.org/10.1063/1.4792356
https://doi.org/10.1063/1.4792356
https://doi.org/10.1063/1.4792356
https://doi.org/10.1063/1.4792356
https://doi.org/10.1038/nature07998
https://doi.org/10.1038/nature07998
https://doi.org/10.1038/nature07998
https://doi.org/10.1038/nature07998
https://doi.org/10.1039/c2sm27654b
https://doi.org/10.1039/c2sm27654b
https://doi.org/10.1039/c2sm27654b
https://doi.org/10.1039/c2sm27654b

