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Sublattice melting in binary superionic colloidal crystals
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In superionic compounds one component premelts, providing high ionic conductivity to solid-state elec-
trolytes. Here we find sublattice melting in colloidal crystals of oppositely charged particles that are highly asym-
metric in size and charge in salt solutions. The small particles in ionic compounds melt when the temperature
increases, forming a superionic phase. These delocalized small particles in a crystal of large oppositely charged
particles, in contrast to superionic phases in atomic systems, form crystals with nonelectroneutral stoichiometric
ratios. This generates structures with multiple domains of ionic crystals in percolated superionic phases with
adjustable stoichiometries.
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I. INTRODUCTION

Colloids of various components have been assembled into
diverse crystalline structures [1–3] and have served as ex-
perimental models to study phase behaviors [4,5] and self-
assembly processes [1,6]. Unlike chemical compounds in
atomic systems, colloidal assemblies do not have constraints
from the number, the symmetry, or the energy of orbitals. This
significantly diversifies possible crystal structures. In the past
few decades, several types of binary colloidal crystals with
different component ratios have been studied, such as AB [7],
AB2 [8], and AB8 [9]. Experiments and computer simulations
have shown that the size ratio [10] or charge ratio [9,11] of
the two components and the ionic strength in the solution
[9] are important factors in the assembling process of binary
superlattices. Most of the work on binary charged colloidal
crystals retains the restricted structures of classical atomic
ionic compounds in which all particle positions are fixed.

In contrast, atomic superionics such as superionic conduc-
tors possess different kinds of structures and properties. In
superionic conductors, due to the low-energy barrier along
cation migration paths [12], one of the components, termed
the fast ions, are mobile and have a delocalized density distri-
bution within the crystal lattice [12,13]. As a result, superionic
conductors have high ionic conductivity at room temperature,
making them the core component of high-performance solid-
state batteries. Superionic phases also have been found in
other microscopic condensed systems such as ammonia [14],
ice [14,15], and polymers [16].

Here we explore the possibility of assembling superionic
conductors from oppositely charged colloids in salt solu-
tions. The charge neutrality restriction in traditional ionic and
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superionic atomic crystals can be removed in charged col-
loidal crystals when the screening from small ions is present
[9,17]. Moreover, the range of the interaction potential can be
readily tuned by controlling the salt concentration in regimes
where the Debye-Hückel approximation is valid [11,17].
Therefore, these colloidal systems may substantially expand
the scope of colloidal science and superionic materials. Re-
cently, a related superioniclike phase was found in binary
colloidal mixtures of large DNA-functionalized gold nanopar-
ticles (DNA-AuNPs) and complementary small DNA-AuNPs
grafted with free strands that hybridize only to the large
DNA-AuNPs [18]. While the simulation predictions were
for monodispersed samples at zero external pressure [19],
in the experiments highly polydispersed small DNA-AuNPs
were used and free linkers that could act as depletants were
added [18]. Therefore, due to the experimental limitations,
we cannot neglect the depletion effects in these systems.
Furthermore, the nature of the transition with the temperature
was not determined in these studies. Instead, by considering
monodispersed colloidal charged particles without grafted
linkers, the possibility of transitions from ionic to superionic
phases can be analyzed. In this paper we find a sharp transition
from ionic to superionic phases in charged colloidal crystals
characterized by a discontinuous jump in the lattice spacing
as the temperature increases as well as by the double-well
shape of the free-energy landscape via molecular dynamics
(MD) simulations. Moreover, we find regions of coexistence
between phases such as ioniclike phases of different stoi-
chiometries at low temperatures or ioniclike phases coexist-
ing with superioniclike phases at intermediate temperatures,
which we analyze by calculating the time average density of
the small particles [20]. Finally, we show that the attractions
provided by the small particles in superioniclike phases are
not depletion-type interactions.
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II. MODEL

Since colloidal mixtures of oppositely charged components
with similar sizes form ionic phases [9,11,17], we concen-
trate our study on binary oppositely charged colloids whose
components differ in charge and size substantially. In our MD
simulations, both large (A) and small (B) particles are modeled
as isotropic charged spheres. The interactions between the
same species are repulsive and thus they cannot form crystal
structures from pure As or Bs in the absence of external
pressure, which is the case simulated here. All the ions are
accounted for implicitly by applying the Debye-Hückel ap-
proximation, which describes pair potentials between charged
nanoparticles at salt concentrations up to roughly 300 mM
of NaCl [21]. Particles interact through the Weeks-Chandler-
Andersen (WCA) potential for excluded volume effects and
the Debye-Hückel potential for the screened Coulombic inter-
actions:

U (r) = UWCA(r) + UDH(r), (1)

UWCA(ri j ) =
{

4ε
[( σi j

ri j

)12 − ( σi j

ri j

)6] + ε, ri j < rcut

0, ri j > rcut,

(2)

UDH(ri j ) = q∗
i q∗

j e
−κri j

ri j/σ
ε. (3)

The energy term of the WCA potential, ε, is chosen to be
the characteristic energy parameter in our simulations. The
cutoff distance of the WCA potential ri j

cutWCA = 21/6σi j , where
σi j is pair dependent and is calculated from the Lorentz-
Berthelot mixing rules σi j = Ri + Rj . Here the radii of the two
species were fixed at RA = 5σ and RB = 1σ , where σ is the
characteristic distance parameter. For the Debye-Hückel po-
tential, κ is the screening strength and q∗

i and q∗
j are effective

reduced charges. For colloidal particles, an extended form of
q∗

i commonly used in simulations includes the hard core via
the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential,
which gives q∗

i = qieκRi/(1 + κRi ) [9,22], yet it is accurate
only for dilute systems. In concentrated colloidal suspensions,
such as in the crystals studied here, q∗ has a more complicated
form [23]. Thus, without losing generality, we directly use
q∗ as simulation parameters that are independent of κ and
the compactness of the system. We keep the exponentially
decaying part with the distance between particles, because it
is preserved in nonlinear models even when water effects and
ions are explicitly included [21]. The cutoff distance of the
Debye-Hückel potential ri j

cutDH = 3κ−1 + σi j .
From the energy unit ε and distance unit σ , the reduced

quantities can be defined, including the reduced tempera-
ture T ∗ = kT/ε, reduced pressure P∗ = Pσ 3/ε, reduced time
τ ∗ = t

√
ε/mσ 2, and reduced charges q∗ = q/

√
4πε0εrσε,

where e is the elementary charge and ε0 and εr are the
dielectric constants of the vacuum and the media, respectively.
In the rest of the paper the prefix reduced will be omitted and
these quantities are in terms of the reduced quantities.

All the MD simulations are done using the LAMMPS soft-
ware package [24]. In the zero-pressure NPT simulation, we
initialize the system by setting large particles in perfect face-

FIG. 1. Simulation box size under different reduced charges of
the small particles (q∗

B) at T ∗ = 0.3, for NB/NA = 8 and q∗
A = −247

at κσ = 0.7. Two distinct phases are observed, superioniclike and
ioniclike; the snapshots are from the [001] direction of the fcc crystal.

centered-cubic (fcc) crystal positions in a periodic cubic box,
with small particles randomly placed throughout the lattice
while avoiding strong overlap. The number of crystal unit
cells in each direction is 6. (We have examined larger systems
and found that the finite-size effect is negligible.) The system
is first thermalized in the canonical (NV T ) ensemble with
a Langevin thermostat and then is slowly compressed to a
close-packing state by reducing the simulation box size. After
the system is equilibrated for 2 × 103τ ∗ (106 time steps), it
is switched to the isobaric-isothermal (NPT ) ensemble with a
large enough external pressure to keep the system compressed
and run for another 2 × 103τ ∗. The pressure is subsequently
relaxed to exactly 0 and the system is further equilibrated for
2 × 104τ ∗ (107 time steps). To simplify the simulations, the
cubic symmetry of the simulation box is maintained during
the run. Removal of this symmetry constraint may allow the
crystal to transfer from fcc to other noncubic structures or
to other cubic structures such as body centered cubic more
easily, however, these additional complexities are beyond the
scope of the present paper.

III. RESULTS

Our results show that under mediate salt conditions, by
reducing the attraction strength between the two components
(A-B attraction) the colloidal crystals can transit from ionic
phases to superionic phases. In Fig. 1 we explore how the
equilibrium size of the simulation box varies with the reduced
charge of small particles q∗

B. Here T ∗ = 0.3, NB/NA = 8,
q∗

A = −247, and κσ = 0.7 1 [Hereafter, the stoichiometric

1If we choose σ = 1 nm, this screening strength would approxi-
mately correspond to a salt concentration of 44 mM NaCl, which is
within the concentration range where the Debye-Hückel approxima-
tion is applicable. Moreover, the large and small nanoparticle sizes
would be 10 and 2 nm, respectively, which are also reasonable values
in experiments.
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FIG. 2. Example of the melting process of unstable colloidal
crystals as pressure approaches 0 in NPT simulations. The simu-
lation box is expanding to infinity simultaneously; here κσ = 0.1,
q∗

B = +11, NB/NA = 8, T ∗ = 0.3, and q∗
A = −247.

ratio of small (B) and large (A) particles NB:NA is given
by NB/NA.] When q∗

B = +11 the particles aggregate into an
ionic crystal in which small particles are fixed at interstitial
positions and form a regular sublattice. As q∗

B decreases,
the A-B attraction decreases and the equilibrium box size
gradually increases. When q∗

B = +5.5 and +4 the attraction
strength is no longer sufficient to localize the small particles
at specific positions but is still able to keep the crystal stable.
Therefore, the sublattice melts and the system transits to a
superioniclike structure. Further decreasing the attractions by
using either smaller q∗

B or larger κ induces the melting of the
whole fcc crystal. Moreover, increasing the A-B attraction by
reducing the salt concentration (κσ = 0.1) also leads to the
crystal melting because the repulsion between large particles
is enhanced and dominates. This results in an equilibrium gas
state where large particles stay far apart with small particles
surrounding each of them. An example of how an unstable
crystal melts as the pressure approaches 0 is shown in Fig. 2.

By increasing the temperature T ∗ above 0.3 in the system
with q∗

A = −247, q∗
B = +11, and κσ = 0.7, we also observe

sublattice melting and that this ionicsuperionic transition is
strongly first order at NB/NA = 8. Note that if we use convert
q∗

i to bare charges qi using the DLVO approximation for the
above parameters, we obtain qA ≈ −34 and qB ≈ +9; as a
reference, when q∗

B = +5.5 the crystal is nearly electroneutral
(qA ≈ −34 and qB ≈ +4), and we also observe sublattice
melting shown in Fig. 1. A comparison of these two crystals
shows that electroneutrality is not a requirement for sublattice
melting providing there is enough screening. To determine
the sublattice melting temperature, we analyze changes in the
equilibrated simulation box size, which is approximately six
times the lattice spacing. Heating curves of the box size with
different number ratios NB/NA [Fig. 3(a)] show that the lattice
expands as the temperature increases; however, at NB/NA =
8 the expansion is discontinuous at a certain temperature
(T ∗ = 0.68). The discontinuous jump in the magnitude of the
lattice spacing, which corresponds to sublattice melting of
small particles, indicates that this melting occurs via a first-
order phase transition. A similar but weaker discontinuous
lattice expansion occurs at NB/NA = 10. For NB/NA = 9 the
lattice has two distinct discontinuous expansions (at T ∗ = 0.3
and 0.46), which later we find are caused by two separate
sublattice melting in two ionic phases with different favorable
stoichiometric ratios (NB/NA = 8 and 10).

We can use a fundamental concept in crystallography,
Wyckoff positions, to understand why this first-order phase

FIG. 3. (a) Heating curves of the box size under different
number ratios NB/NA with q∗

A = −247, q∗
B = +11, and κσ = 0.7.

(b) Schematic plots of the 32 f and 8c Wyckoff positions in the fcc
crystal. Shown on the left is one unit cell containing four atoms
(cyan), eight 8c positions (blue), and thirty-two 32 f positions (red).
On the right is the view from the [001] direction. (c) Radial distri-
bution function of small particles gBB(r) at NB/NA = 7 for T ∗ = 0.4,
0.6, and 0.8.

transition happens only at NB/NA = 8 and NB/NA = 10.
Wyckoff positions are widely used for the determination and
description of crystal structures. They describe the positions
of special sites and their symmetries inside a unit cell [25].
Here we use them to describe where the small particles can
be found in a size-asymmetric binary crystal. In the fcc unit
cell, there are two important Wyckoff positions, the 32 f and
the 8c positions [Fig. 3(b)]. As their names indicate, one fcc
unit cell contains eight c positions (C-centered positions) and
thirty-two f positions (face-centered positions). Since one fcc
unit cell also contains four large particles, the number ratio
between the 32 f positions and the large particles is 8/1 and
between the 8c positions and the large particles is 2/1. Note
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FIG. 4. Heating curves of the box size and the diffusion coeffi-
cient of small particles at NB/NA = 8. The diffusion coefficient also
leaps at the ionic-superionic transition temperature. The diffusion
coefficient is calculated from the mean-square-displacement of small
particles 〈r(t )2〉 over 5 × 106 time steps using D = 〈r(t )2〉/6t .

that there are eight tetrahedral voids inside the fcc unit cell
and the 8c positions are the centers of these tetrahedrons,
while the 32 f positions are the four inner face centers of these
tetrahedrons (such that there are 4 × 8 = 32 of them). In the
size-asymmetric oppositely charged binary crystal, the small
and lower in charge particles on the 32 f positions have lower
energy than on the 8c positions, since each particle on the
32 f positions is closer to oppositely charged large particles
than the 8c positions. Therefore, in the ionic phases, the small
particles tend to first occupy the 32 f positions and then the
8c positions, and fulfilling them will result in two favorable
number ratios NB/NA = 8 and NB/NA = 10. (In fact, the 32 f
positions are commonly the home for the small particles in an
AB8 binary ionic crystal [9,11,17].) At these number ratios
and at low temperatures, the crystal is in the ionic state
that is enthalpically favorable but entropically unfavorable
because the crystal has little defects and the small particles
are basically stuck at their equilibrium places, which is a
great entropy loss compared to the superionic state in which
the small particles can access the whole free space inside
the crystal. As a result, there exists a transition temperature
above which the system favors entropy over enthalpy and ex-
pands the lattice spacing for small particles previously trapped
in the interstitial positions to delocalize (see Fig. 4 for how
the diffusion coefficient of small particles varies with the
temperature).

Based on the volume expansion, the ionic-superionic tran-
sition seems continuous at other number ratios NB/NA < 8.
A possible explanation for it is that the volume expansion is
mainly governed by the thermal expansion in those systems,
because there are vacancy defects (unoccupied 32 f positions)
and the cohesive energy is lower. These superstructures, when
in their ionic state, resemble the interstitial solid solution
(ISS) phase found in a size-asymmetric hard-sphere mixture
under high external pressure [26]. In the ISS phase, the large
spheres form the crystal lattice and the small spheres, whose
number is less than the number of interstitial sites, partly
occupy the interstitial sites and can diffuse among these sites
through vacancies, akin to a fluid. To evaluate the nature

of the transition, an order parameter, generally the density
fluctuation around the mean density δρ, and the correlation
length analyses are required. The change in symmetry of this
order parameter in systems transitioning from isotropic (or
delocalized in space) to periodic (localized on lattice sites)
structures by decreasing the temperature cannot be continuous
[27]. In Fig. 3(c) we examine the radial distribution function
of small particles gBB(r) in the crystal with NB/NA = 7 at
different T values and show that there is a symmetry change
since the long-range ordering and the peak positions are
different in the superionic (T ∗ = 0.8) and ionic phases (T ∗ =
0.4). Therefore, it is possible that sublattice melting at ratios
NB/NA < 8 is weakly first order.

For NB/NA = 9 systems, at low temperatures, we observe
two coexisting ionic phases with local number ratios NB/NA =
8 and NB/NA = 10, and each of these phases transitions into
superionic phases at different temperatures as the tempera-
ture increases. To obtain the local number ratios, we divide
the simulation box into small cubic bins, which have 1/8
the volume of the fcc unit cell and are the smallest chem-
ically identical unit for small particles. After equilibrium,
the average number of small particles in each cube N local

B
is counted from 1000 frames taken every 5000 time steps
(10τ ∗) and local number ratio is then given by NB/NA =
2N local

B as one cube has 1/2 a large particle. The histogram of
local NB/NA at different temperatures T ∗ = 0.2, 0.4, and 0.6
combined with corresponding simulation snapshots (Fig. 5)
reveals that at T ∗ = 0.2 the system consists of two kinds
of ionic crystals with stoichiometric ratios NB/NA = 8 and
NB/NA = 10, respectively. These two ionic phases are both
of microsize (Fig. 6). However, because the 8c positions
have higher energy than the 32 f positions, the NB/NA = 10
ionic phase has a lower sublattice melting temperature than
the NB/NA = 8 phase. Therefore, when the temperature is
raised to 0.4, the NB/NA = 10 phase melts into the superionic
state and we observe the NB/NA = 8 ionic phases coexisting
with superionic phases that have various local number ratios
distributed almost evenly in a wide range. By plotting the
locations of cubes with local NB/NA = 8 we find that instead
of aggregating into a macrocrystal, these ionic cubes form
microphases scattered throughout a percolated structure of
superionic phases (the cluster sizes span from two to six unit
cells in our simulations) probably to decrease the surface
strain generated from the lattice constant mismatch between
the ionic and the superionic phases [see Fig. 3(a)]. Further in-
creasing the temperature melts the sublattice in the NB/NA = 8
phase and the whole system forms a homogeneous superionic
phase with NB/NA = 9. From the phase coexistence informa-
tion, it is clear that the most stable stoichiometry for the ionic
phase in fcc crystals is NB/NA = 8, but we do not know if there
is an optimal stoichiometric ratio for the superionic phase
since that would require equal chemical potential simulations.
It is important to note that with various possible stoichiometric
ratios the system may end up in a glass state in which the large
particles are fixed while the small ones are fluid, similar to
what has been predicted in the charge- and size-asymmetric
ionic system with Coulombic interactions [28]. In the present
work we have restricted the crystal to cubic symmetry with a
fixed stoichiometry. Therefore, the equilibrium structure may
not represent the most stable state when the box symmetry
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FIG. 5. Phase coexistence in the system with NB/NA = 9. To
obtain better statistics, we enlarged the simulation box to 8 × 8 × 8
unit cells. (a) Histogram of the average number of small particles
in subunit cubic bins at different temperatures T ∗ = 0.2, 0.4, and
0.6. Here NC is the number of cubes that have a certain local NB/NA

and N total
c is the total number of cubes, which is 163 = 4096 here.

The inset shows a three-dimensional view of the simulation box,
showing locations of cubes with local NB/NA = 8 inside the crystal
at T ∗ = 0.4. All the cubes satisfying |NB/NA − 8| < 0.2 are colored
blue, while the rest are left blank. (b) Snapshots of the equilibrium
distribution of small particles at T ∗ = 0.2 (left), 0.4 (middle), and
0.6 (right).

restriction and stoichiometric constraint are removed, such as
in the case of deformable crystals that can exchange compo-
nents with the surroundings.

Relative Helmholtz free-energy landscapes are calculated
by thermodynamic integration methods [29]. In thermody-
namics, the Helmholtz free energy F is related to the pressure
by −P = (∂F/∂V )N,T . Therefore, the relative free energy can
be calculated from the integral

Frel(V ) = F (V ) − F (V0) = −
∫ V

V0

P dV

≈ −
∑

i

(Pi+1 + Pi )(Vi+1 − Vi)/2, (4)

where F (V0) is the reference state and midpoint approxima-
tion was used to numerically evaluate the integral.

A series of NV T simulations with a Langevin thermostat is
done for different volumes Vi at NB/NA = 8. The system is first
initialized in the same way as in the NPT simulations. After
being thermalized in the NV T ensemble with a Langevin
thermostat for 2 × 103τ ∗, the initially large simulation box
is deformed to the volume Vi and further equilibrated for
2 × 104τ ∗ to obtain the corresponding ensemble averages of

FIG. 6. The NB/NA = 8 and NB/NA = 10 ionic phases both exist
as microphases when they coexist (overall number ratio NB/NA = 9
and T ∗ = 0.2). Local number ratios are calculated using two differ-
ent cube sizes: 1/8 unit cell (red) and one unit cell (blue). The two
separate peaks (red) merge into one single peak (blue) when using
more coarse-grained cubes, showing that these two ionic phases are
both in microsize. (Inset) Distribution of subunit cubes (1/8 unit
cell) with local NB/NA = 8 in the crystal. All the cubes satisfying
|NB/NA − 8| < 0.2 are colored blue, while the rest are left blank.
Results show that these NB/NA = 8 ionic cubes are nearly evenly dis-
persed within the crystal; hence the whole simulation box is colored
blue. This is because at low temperatures the rearrangement of small
particles can only happen between two neighboring cubes, i.e., two
neighboring cubes with initial local number ratio 9/1 become one
8/1 cube and one 10/1.

pressure P∗
i [Fig. 7(a)]. The curve at T ∗ = 0.68 in Fig. 7(a)

resembles the van der Waals loop. However, this curve results
from the finite size of the simulation box (which means the
loop on this curve will reduce to a flat line in an infinite system
at the equilibrium) [30]. Negative pressures in the simulations
mean that the system tends to aggregate.

Plugging the pressure and volume data into Eq. (4), we
obtain the relative free-energy landscapes for the system with
NB/NA = 8 at different temperatures [Figs. 7(b) and 7(c)]. The
curves are plotted in Frel/T ∗ε = Frel/kT in order to better
compare the depth of minimums with the thermal motion.
In the thermodynamic integration, the points where the pres-
sure goes to zero correspond to extrema in the free-energy
landscape. Generally, one zero in the pressure corresponds
to one well in the landscape, and three zeros correspond to
two wells and one maximum in the landscape. At both low
(T ∗ = 0.3) and high (T ∗ = 0.8) temperatures, the free energy
has only one minimum in the compact state, marking the ionic
and superionic phases, respectively. The double-well shape
around the transition temperature (T ∗ = 0.68) confirms that
sublattice melting is a first-order phase transition when the
system is at the optimal stoichiometry. Volumes at the free-
energy minimums match well with the equilibrium volumes
obtained in previous NPT simulations, although when there
are double wells, NPT simulations tend to sample the state
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FIG. 7. Calculations of the relative Helmholtz free energy in the
NB/NA = 8 systems at different temperatures (T ∗ = 0.3, 0.68, and
0.8) via thermodynamic integration methods. (a) Pressure-volume
plot obtained in the NV T simulations. The inset shows an enlarged
view of the zero points of the pressure. (b) Overall landscape of
relative Helmholtz free energy. The reference volume V0 is (88σ )3 for
all three temperatures. (c) Locations of free-energy minimums. The
reference volumes are (89σ )3 for T ∗ = 0.3, (90.5σ )3 for T ∗ = 0.68,
and (96σ )3 for T ∗ = 0.8. Black arrows mark the state sampled by
previous NPT simulations.

with smaller volume because we initialized the system in
denser configurations.

Depletion forces are widely recognized to drive the as-
sembly of mixtures of colloidal particles with different sizes
[10,31], but they are not important in stabilizing the superi-
onic structures found here. First, in our simulations we do
not have explicit salt which can cause depletion attraction
between the nanoparticles [21] and, in relation to experiments,
provided the experiments are done at 300 mM of NaCl or
less, there is no evidence of monovalent salt-mediated at-
tractions (even in large colloids provided the colloids have

sufficient charge [32]). Second, depletion is mainly entropy
driven and should be enhanced by increasing temperature.
However, in our simulations, all colloidal crystals melt into
gas phases when the temperature is increased above 1.3.
Third, because the box size is not constrained in our zero-
pressure NPT simulation, the system is supposed to expand
infinitely if it is favorable to add more free volume for the
small particles, but instead the system is equilibrated at a
finite size. The average distance between two neighboring
large particles d in our simulations satisfies 2RA < d < 2σAB,
where σAB = RA + RB. Depletion effects can exist when d
is in the interval (2RA, 2σAB). However, the free volume for
small particles Vfree as a function of d in the fcc structure
is given by Vfree(d ) ∝ d3 − 2π (RA + RB)3/3 + π (RA + RB −
d/2)2[4(RA + RB) + d], which monotonically increases in
the interval [2RA, 2(RA + RB)]. Thus the colloidal superionic
structure is not stabilized at any local maximum of Vfree.

IV. CONCLUSIONS

To conclude, we have identified a superioniclike crystal
structure in size-asymmetric charged colloidal systems where
the smaller particles melt and hold the larger particles in
a crystalline lattice via screened Coulomb interactions. By
cooling down the system, the small mobile particles condense
to interstitial positions, resulting in an ioniclike structure.
At the stoichiometric ratio where the number of small col-
loids equals the number of interstitial positions, this colloidal
superionic-ionic transition is first order, demonstrated by the
discontinuous change in lattice constant and the double-well
shape in the free-energy landscape. The addition of more
small colloids inside the lattice leads to the coexistence of
ioniclike domains and percolated superioniclike phases with
multiple stoichiometries. This state of the system may provide
insights for growing heterostructures. Overall, our findings
provide guidelines to assemble metallic or superionic conduc-
tor colloidal crystals and set up the foundation for discovering
exciting properties and functions of multicomponent colloidal
crystals.
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APPENDIX: JUSTIFICATION OF THE PARAMETERS

Here we justify that the parameters used in our simulations
can be converted to reasonable experimental values, which
is helpful for testing our results in experiments. There are
many different ways to convert the quantities from the reduced
units used in our simulations to the real units, and possible
ways of conversion we provide are (i) the distance unit
σ = 1 nm; (ii) the reduced temperature T ∗ = T/(428.6 K),
where T is the real temperature, the transition tempera-
ture in NB/NA = 8 systems is about T ∗ ≈ 0.7, and we as-
sume it corresponds to the room temperature, 300 K, and
hence T ∗/0.7 = T/(300 K) and then T ∗ = T/(428.6 K);
(iii) the energy unit ε = kB × 428.6 K = 5.9 × 10−21 J,
where kB = 1.38 × 10−23 J/K is the Boltzmann constant; (iv)
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the reduced charge q∗ = qr/0.161
√

εre, where qr is the real
charge, e is the elementary charge, and εr is the dielectric con-
stant of the media (this relationship is obtained by plugging
the above quantities into q∗ = q/

√
4πε0εrσε); and (v) the re-

duced pressure P∗ = Pσ 3/ε = P/(5.9 × 106 Pa). From these
conversions, we have the particle sizes RA = 5σ = 5 nm and
RB = 1σ = 1 nm and the screening constant κ = 0.7 nm−1,
which corresponds to a 44 mM NaCl salt solution. For the
charges, assuming the medium is water and εr = 80, plugging
in q∗

A = −247 and q∗
B = +11 we have

qr
A = q∗

A(1 + κRA)/eκRA × 0.161
√

εre = −48e,

qr
B = q∗

B(1 + κRB)/eκRB × 0.161
√

εre = +13e.

Note that we are using the effective reduced charges, which
need to be first converted to the bare charges via the
DLVO approximation and then further converted to the
real charges. In real units, the electrostatic interaction are
governed by

U (ri j ) = qr
i eκRi qr

je
κRj e−κri j

4πε0εr (1 + κRi )(1 + κRj )ri j
. (A1)

All the parameters, after being converted in real units,
are achievable in experiments. Therefore, in order to ver-
ify the ionic-superionic transition found in our simula-
tions, experimentalists can prepare two kinds of particles
with these given size and charge values, mix them in a
44 mM NaCl salt solution, and the transition may be seen at
around 300 K.
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