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Recent experimental studies have demonstrated that cellular motion can be directed by topographical
gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This
phenomenon, known as topotaxis, has been extensively studied for topographical gradients at the subcellular
scale, but can also occur in the presence of a spatially varying density of cell-sized features. Such a large-scale
topotaxis has recently been observed in highly motile cells that persistently crawl within an array of obstacles
with smoothly varying lattice spacing. We introduce a toy model of large-scale topotaxis, based on active
Brownian particles. Using numerical simulations and analytical arguments, we demonstrate that topographical
gradients introduce a spatial modulation of the particles’ persistence, leading to directed motion toward regions of
higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive large-scale topotaxis
and could serve as a starting point for more detailed studies on self-propelled particles and cells.
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I. INTRODUCTION

Whether in vitro or in vivo, cellular motion is often bi-
ased by directional cues from the cell’s microenvironment.
Chemotaxis, i.e., the ability of cells to move in response
to chemical gradients, is the best known example of this
functionality and plays a crucial role in many aspects of bio-
logical organization in both prokaryotes and eukaryotes [1,2].
Yet, it has become increasingly evident that in addition to
chemical cues, mechanical cues may also play a fundamental
role in dictating how cells explore the surrounding space.
Haptotaxis (i.e., directed motion driven by gradients in the
local density of adhesion sites) and durotaxis (i.e., directed
motion driven by gradients in the stiffness of the surrounding
extracellular matrix) are well-studied examples of taxa driven
by mechanical cues [3–5].

In vivo, cells crawl through topographically intricate en-
vironments, such as the extracellular matrix, blood and lym-
phatic vessels, other cells, etc., that can significantly influence
migration strategies [6–13]. A striking manifestation of this
phenomenon, termed “topotaxis,” has been reported by Park
et al. in the context of melanoma cells on a substrate featuring
a spatially varying density of nanosized posts [14]. Depending
on the effective stiffness of the cortical cytoskeleton, cells
have been observed to migrate toward regions of either higher
or lower post density, as a result of the interplay between
two simultaneous signaling pathways activated by the extra-
cellular matrix input. Analogously, adhesive ratchets [15–17]
and several types of anisotropic topographical features at the
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subcellular scale have also been shown to lead to directed cell
migration [15,18–21]. A different manifestation of topotaxis
has been recently demonstrated by Wondergem et al. using
a spatial gradient in the density of cell-sized topographical
features [22]. In these experiments, highly motile, persistently
migrating cells (i.e., cells performing amoeboid migration)
move on a substrate in between microfabricated pillars that
act as obstacles and consequently force the cells to move
around them. If the obstacles’ density smoothly varies across
the substrate, the cells have been shown to migrate toward the
regions of lower obstacle density.

Unlike in the case of the topotactic behavior investigated by
Park et al. in melanoma cell lines [14], the precise biophysical
or biochemical principles behind the topographical guidance
arising from cell-sized obstacles [22] are presently unknown.
Yet, its occurrence for cells performing amoeboid migration
suggests the possibility of cell-type-independent mechanisms
that, separately from the cell’s mechanosensing machinery,
provide a generic route to the emergence of topotaxis at the
large scale. In this article, we explore this hypothesis. Using
numerical simulations and analytical arguments, we demon-
strate that large-scale topotaxis can be mimicked by active
Brownian particles (ABPs) constrained to move within an
obstacle lattice characterized by a spatially varying density of
particle-sized features. In this case, directed motion originates
solely from the spatial modulation of persistence resulting
from the interaction between the particles and the obstacles.

ABPs represent a simple stochastic model for self-
propelled particles, such as active Janus particles [23], and
for cell motility on flat substrates [24]. ABPs perform per-
sistent self-propelled motion in the direction of the particle
orientation in combination with rotational diffusion of this
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orientation. The motion of active particles has been explored
in several complex geometries, including convex [25,26] and
nonconvex [27] confinements, mazes [28], walls of fun-
nels [29], interactions with asymmetric [30,31] and chiral [32]
passive objects, periodic [33] and random [34–37] obstacle
lattices, and porous topographies [38]. For a review, see
Refs. [39,40]. Because of the nonequilibrium nature of active
particles, local asymmetries in the environment can be lever-
aged to create a drift; these particles have been demonstrated
to perform chemotaxis [41,42], durotaxis [43], and photo-
taxis [44]. Furthermore, topographical cues, such as those
obtained in the presence of arrays of asymmetric posts [45,46]
and ratchets consisting of asymmetric potentials [47–49] or
asymmetric channels [50–53], have been shown to produce a
directional bias in the motion of active particles reminiscent of
those observed for cells. Finally, we stress that the topotactic
behavior analyzed here results from gradients in particle-sized
substrate features, and thus has no connection to the examples
of topotaxis reported by Park et al. [14] which originates from
topographical features at the subcellular scale. Furthermore,
while inspired by experiments on amoeboid cell migration,
the goal of our analysis is not to deliver a predictive theory
that could be used in comparison with experiments on mi-
grating cells, but merely to illustrate how large-scale topotaxis
emerges in a toy model of active Brownian particles.

The paper is organized as follows: in Sec. II, we present
our model for ABPs and their interaction with obstacles. In
Sec. III A, we show that in the presence of a gradient in the
obstacle density, ABPs drift, on average, in the direction of
lower density. The speed of this net drift, here referred to as
topotactic velocity, increases as a function of both the density
gradient and the persistence length of the ABPs. In Sec. III B
(numerically) and Sec. III C (analytically), we study ABPs
in regular obstacle lattices and demonstrate that the origin
of topotaxis of active particles can be found in the altered
persistence length of the particles in the presence of obstacles.

II. THE MODEL

Our model of ABPs consists of disks of radius Rp self-
propelling at constant speed v0 along the unit vector p =
(cos θ, sin θ ) and subject to rotational white noise. The dy-
namics of the particles is governed by the following over-
damped equations:

dr
dt

= v0 p + μF, (1a)

dθ

dt
=

√
2Dr ξ, (1b)

where r = r(t ) is the position of the particle, t is time, and
μ is a mobility coefficient. The force F = F(r) embodies the
interactions between the particles and the obstacles. ξ = ξ (t )
is a random variable with zero mean, i.e., 〈ξ (t )〉 = 0, and time
correlation 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). The extent of rotational
diffusion is quantified by the rotational diffusion coefficient
Dr , whereas translational diffusion is neglected under the
assumption of large Péclet number: Pe � 1. Overall, this
setup provides a reasonable toy model for highly motile cells
such as those used in experimental studies of large-scale
topotaxis [22,54,55]. For a study on the influence of the Péclet

number on the motion of ABPs around obstacles, see, for
example, Refs. [33,35].

In free space (i.e., F = 0), ABPs described by Eqs. (1)
perform a persistent random walk (PRW) with mean displace-
ment 〈�r(t )〉 = 0 and mean squared displacement,

〈|�r(t )|2〉 = 2v2
0τ

2
p

(
t

τp
+ e−t/τp − 1

)
, (2)

where �r(t ) = r(t ) − r(0) and 〈·〉 represents an average over
ξ (see, e.g., Ref. [40]). The constant τp = 1/Dr , commonly
referred to as persistence time, quantifies the typical timescale
over which a particle tends to move along the same di-
rection. Thus, over timescales shorter than the persistence
time, t � τp, ABPs move ballistically with speed v0, i.e.,
〈|�r(t )|2〉 ≈ (v0t )2, while over timescales larger than the
persistence time, t � τp, ABPs diffuse, i.e., 〈|�r(t )|2〉 = 4Dt ,
with D = v2

0τp/2 the diffusion coefficient. From τp, one can
define a persistence length, lp = v0τp, as the typical distance
traveled by a particle before losing memory of its previous
orientation. Consistently, the autocorrelation function of the
velocity v = dr/dt (v = v0 p in free space) is given by

〈v(t + �t ) · v(t )〉 = v2
0e−�t/τp . (3)

Our ABPs roam within a two-dimensional array of circular
obstacles of radius Ro. Following Refs. [26,27], the interac-
tions between particles and obstacles are modeled via a force
of the form

F =
{− v0

μ
(p · N) N if �ro � R

0 otherwise,
(4)

where N is a unit vector normal to the obstacle surface, |�ro|
is the distance between the obstacle center and the particle
center, and the effective obstacle radius R is the sum of the
obstacle and the particle radii: R = Ro + Rp. Equation (4)
describes a frictionless hard wall force that cancels the ve-
locity component normal to the obstacle surface whenever the
particle would penetrate the obstacle, and vanishes otherwise.
Therefore, the obstacle force F is either repulsive or zero, but
never attractive. We stress that the wall force does not influ-
ence the particle orientation p. Thus, a particle slides along an
obstacle until either the obstacle wall becomes tangential to p
or rotational diffusion causes the particle to rotate away. This
is consistent with experimental observations on self-propelled
colloids [25] as well as various types of cells [56,57]. For
details of the numerical implementation of Eqs. (1) and (4),
see Appendix A. In the following sections, we measure time
in units of the persistence time, i.e., t̃ = t/τp, and length in
units of the effective obstacle radius, i.e., �̃ = �/R.

III. RESULTS

The motion of ABPs in different lattices of obstacles is vi-
sualized in Fig. 1. Each panel shows 20 simulated trajectories
with persistence length l̃p = 5. Figures 1(a) and 1(b) show
regular square lattices with dimensionless center-to-center ob-
stacle spacings of d̃ = 2.5 and d̃ = 4, respectively. In Fig. 1,
the obstacles are graphically represented as disks of radius R
and the ABPs as point particles. To avoid biasing the statistics
of the particle trajectories, ABPs start at a random location
inside the unit cell of the regular square lattice [Fig. 1(c)] at
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FIG. 1. Simulated trajectories of 20 active Brownian particles
(ABPs) with persistence length l̃p = v0τp/R = 5 in different lattices
of obstacles. The obstacles are graphically represented as disks of
radius R and the ABPs as point particles. (a),(b) ABPs in regular
square lattices of obstacles with center-to-center obstacle spacings
d̃ = d/R = 2.5 and d̃ = 4, respectively. The particles start at t̃ = 0
at a random location in the unit cell of the lattice and are simulated
for a total time of t̃ = 3. (c) The unit cell of the regular square
lattice showing the starting points (crosses) of the 20 trajectories in
(b). (d) ABPs in a lattice with a linear gradient in obstacle spacing,
quantified by a dimensionless parameter r = 0.07 (see Appendix B),
and d̃ = 5 at the center of the gradient region. The particles start at
t̃ = 0 in the origin and are simulated for a total time of t̃ = 5.

t̃ = 0 with random orientation. All trajectories are shown for
a total time of t̃ = 3. Comparing the spreading of the active
particles in Fig. 1(a) with that in Fig. 1(b), we observe that
the more dense the obstacle lattice is, the more it hinders the
diffusion of the active particles. We will quantify this later.

To study topotaxis, we define an irregular square lattice
comprising a linear gradient of the obstacle spacing in the
positive x direction. The latter is quantified in terms of a
dimensionless parameter r representing the rate at which
the obstacle spacing decreases as x increases. Thus r = 0
corresponds to a regular square lattice, whereas large r values
correspond to rapidly decreasing obstacle spacing. Figure 1(d)
shows this lattice for r = 0.07 with 20 particle trajectories,
starting in the origin at t̃ = 0 with a random orientation,
plotted for a simulation time of t̃ = 5, where d̃ = 5 represents
the obstacle spacing in the center of the gradient region. The
gradient region has a finite width [not visible in Fig. 1(d)]
and is flanked by regular square lattices to the left, with
lattice spacing d̃min = 2.1, and to the right, with lattice spacing
d̃max = 2d̃ − d̃min. The minimal and maximal obstacle-to-
obstacle distances (d̃min and d̃max, respectively) do not depend
on the steepness of the gradient, and consequently the width
of the gradient region decreases for steeper gradients (larger

FIG. 2. The emergence of topotaxis in density gradient lattices.
(a) 〈x̃〉 = 〈x〉/R as a function of time t̃ = t/τp for several values
of the density gradient r, with d̃ = d/R = 5 and l̃p = v0τp/R = 5.
(b) Topotactic velocity, defined in the main text, in the x direction
as a function of the density gradient r based on the data in (a).
(c) 〈x̃〉 = 〈x〉/R as a function of time t̃ = t/τp for several values
of the persistence length l̃p = v0τp/R, with d̃ = d/R = 5 and r =
0.07. (d) Topotactic velocity in the x direction as a function of
the persistence length l̃p based on the data in (c). Data in (a) and
(c) represent averages over 106 particles. Error bars in (b) and (d) are
given by the standard error of 〈x〉(t )/(R t ) at t = 30 τp.

r). For a detailed description of both the regular and gradient
lattices as well as an image of the gradient lattice including
the regular lattices on the left and right, see Appendix B.

A. The emergence of topotaxis

To quantify topotaxis, we measure the average x and y
coordinates, 〈x̃〉 and 〈ỹ〉, as a function of time for 106 particles.
The results are given for five values of the dimensionless
density gradient r in Figs. 2(a) and 7(a) (Appendix C) for x
and y, respectively. The emergence of topotaxis is clear from
Fig. 2(a): the active particles move, on average, in the positive
x direction, and hence in the direction of lower obstacle
density. As expected by the symmetry of the lattice, there is
no net motion in the y direction independently of the value
of r [Fig. 7(a), Appendix C]. To further quantify topotaxis,
we define the topotactic velocity as the average velocity in the
positive x direction in a time interval �t , vtop = 〈�x〉/�t , and
evaluate it between t̃ = 0 and t̃ = 30. Figures 2(a) and 2(b)
show that ṽtop is approximatively constant in time and propor-
tional to the density gradient r.

Next, we investigate the effect of the intrinsic motion of the
ABPs on topotaxis. This intrinsic motion is characterized by
the persistence length lp = v0τp, which uniquely determines
the statistics of the particle trajectory in free space. Namely,
if two types of ABPs have different v0 and τp, but the same
lp, their trajectories have the same statistical properties, even
though faster particles move along these trajectories in a
shorter time. Figure 2(c) shows 〈x̃〉 as a function of time for
five values of l̃p. The speed of topotaxis is again approx-
imately constant in time and increases with l̃p [Fig. 2(d)].
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FIG. 3. Regular square lattices of obstacles modify the effective
parameters of the persistent random walk. (a) Dimensionless mean
square displacement 〈|�r̃|2〉 = 〈|�r|2〉/R2 as a function of dimen-
sionless time t̃ = t/τp for l̃p = v0τp/R = 10 in free space (d → ∞,
black line) and in the presence of square lattices with obstacle
spacings d̃ = d/R = 2.5 (blue) and d̃ = 4 (red). The effective dif-
fusion coefficient Deff is obtained from a linear fit to the long-time
(t > τp) regime of the log-log data. (b) Dimensionless velocity auto-
correlation function 〈ṽ(t + �t ) · ṽ(t )〉 = 〈v(t + �t ) · v(t )〉τ 2

p /R2 as
a function of �t̃ = �t/τp for l̃p = v0τp/R = 10 in free space (d →
∞) and in the presence of square lattices with obstacle spacings d̃ =
2.5 and d̃ = 4. The effective velocity veff and effective persistence
time τeff are obtained from a exponential fit to the autocorrelation
function. MSD and VACF data represent averages over 104 particles.

This trend partly results from the fact that increasing the
persistence length corresponds either to an increment in v0

or τp, both resulting into an increase of ṽ0. However, Fig. 2(d)
shows that ṽtop increases faster than linear as a function of l̃p,
suggesting an additional effect caused by the obstacle lattice.
As we will see in Sec. III B, this effect is caused by the fact
that the lattice hinders ABPs with large persistence lengths
more than ABPs with smaller persistence lengths. Finally, we
note that there is no net motion in the y direction irrespective
of the persistence length, as expected by symmetry [Fig. 7(b),
Appendix C].

B. The physical origin of topotaxis

The observed occurrence of topotaxis of ABPs is intuitive,
as particles migrate in the direction where there is more
available space. However, the mechanism by which ABPs are
guided toward the less crowded regions is not obvious from
the results in Sec. III A. To gain more insight into the phys-
ical origin of topotaxis, we investigate how particle motility
depends on the local obstacle spacing. In doing so, we take
inspiration from recent works [43,58,59] that have shown, in
the context of durotaxis, that persistent random walkers, mov-
ing in a spatial gradient of a position-dependent persistence
length, show an average drift toward the region with larger
persistence. As is the case in our system (Sec. III A), this
effect is stronger in the presence of larger gradients [43,58].
In order to understand whether or not such a space-dependent
persistence might explain the observed topotactic motion, we
study and characterize the motion of ABPs in regular square
lattices. To do so, we measure the mean squared displacement
(MSD) 〈|�r(t )|2〉 as a function of time and the velocity auto-
correlation function (VACF) 〈v(t + �t ) · v(t )〉 as a function
of the time interval �t for 104 particles for various lattice
spacings d̃ and persistence lengths l̃p.

Figure 3(a) shows a log-log plot of the MSD for l̃p = 10.
The curve with d̃ → ∞ (black) represents the theoretical
MSD in free space [Eq. (2)] and exhibits the well-known
crossover from the ballistic regime (slope equal to 2) to the
diffusive regime (slope equal to 1) around t̃ = 1 (t = τp). The
hindrance of the obstacles is evident from the data obtained
in regular lattices with d̃ = 4 (red curve) and d̃ = 2.5 (blue
curve), as the MSD is smaller than the MSD in free space at
all times (see, also, the inset). Moreover, the MSD is smaller
for the smaller lattice spacing, as we already observed qual-
itatively in Figs. 1(a) and 1(b). The hindrance also manifests
itself in the short-time (t < τp) regime, where the slope of the
red and blue curves is slightly smaller than that of the black
curve. When not interacting with obstacles, individual ABPs
still move ballistically, but interactions with obstacles prevent
them from moving along straight lines, thus enhancing the
tendency to turn, which, in free space, originates solely from
rotational diffusion.

The slope of the curves at timescales larger than the persis-
tence time, on the other hand, is independent of the presence
of obstacles and equal to 1 (see inset). In other words, even
though the motion of the ABPs is hindered by the obstacles
at all timescales, the long-time motion remains diffusive, as
was also observed for ABPs in random obstacle lattices of
low density [35]. Fitting the MSD at long times allows one to
define an effective diffusion coefficient Deff , namely,

〈|�r(t )|2〉 −−→
t�τp

4Defft . (5)

Figure 3(b) shows the velocity autocorrelation function
(VACF) on a semilogarithmic plot as a function of the time
interval �t̃ = �t/τp for l̃p = 10. The d → ∞ curve again
represents the theoretical curve in free space and shows ex-
ponential decay [Eq. (3)]. Interestingly, in the presence of
increasing obstacle densities, and hence for smaller lattice
spacings d̃ , the velocity autocorrelation decreases but remains,
to good approximation, exponential. From this numerical
evidence, we conclude that the average motion of ABPs in a
two-dimensional square lattice can be described as a persistent
random walk with an effective velocity veff and an effective
persistence time τeff [35],

〈v(t + �t ) · v(t )〉 = v2
effe

−�t/τeff . (6)

Figure 4 shows Deff , τeff , and veff , normalized by their free
space values, as a function of the obstacle spacing d̃ for three
values of the free space persistence length l̃p. Starting with the
effective diffusion coefficient [Fig. 4(a)], we observe that for
every value of the persistence length, the effective diffusion
coefficient Deff increases as a function of d̃ until it approaches
the free space diffusion coefficient D for large d̃ . This is con-
sistent with what we observed in Figs. 1(a), 1(b), and 3: ABPs
on low density lattices spread out more than ABPs on high
density lattices. Moreover, the effective diffusion coefficient
deviates more from its free space value for large l̃p than it does
for small l̃p. This is intuitive because more persistent particles
tend to move longer along the same direction and therefore
are hindered more in their motion by the obstacle lattice.

The effective persistence time τeff [Fig. 4(b)] and the
effective velocity veff [Fig. 4(c)], both extracted from the
velocity autocorrelation function [Eq. (6)], show a similar
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FIG. 4. Effective parameters of the persistent random walk in
regular lattices of obstacles. (a) Normalized effective diffusion
coefficient Deff/D, obtained from the mean squared displacement
[Eq. (5)], as a function of the normalized obstacle spacing d̃ = d/R
for three values of the normalized persistence length l̃p = v0τp/R.
Inset shows Deff for l̃p = 5 obtained via the mean squared displace-
ment (MSD) and via the velocity autocorrelation function (VACF),
using Deff = v2

effτeff/2. (b) Normalized effective persistence time
τeff/τp, (c) normalized effective velocity veff/v0, both obtained from
the velocity autocorrelation function [Eq. (6)], and (d) normalized
effective persistence length leff/lp = veffτeff/(v0τp) as functions of
the normalized obstacle spacing d̃ = d/R for three values of the
normalized persistence length l̃p = v0τp/R. Data points represent the
average of 10 independent measurements from MSD or VACF data
(Fig. 3). The error bars show the corresponding standard deviations.

trend: they increase as a function of d̃ until they approach
their free space values at high d̃ , and they deviate more from
their free space values for large l̃p than they do for small
l̃p. These data show that the obstacles cause the ABPs, on
average, to move slower and turn more quickly. Despite the
orientation p not being affected by the obstacles [see Eq. (4)],
the latter force the particles to move tangentially to the wall,
thus enhancing their tendency to turn. The decreased effective
velocity, with respect to free space, is intuitive given the
interactions between particles and obstacles [Eq. (4)], which
slow down the ABPs. The decreased effective persistence
time, on the other hand, is less obvious as one could imagine
the periodic obstacle lattice to guide ABPs along straight
lines, as reported in Refs. [33,60]. Apparently, this potential
guiding mechanism is outcompeted in our system by the fact
that encounters of ABPs with individual obstacles at shorter
timescales cause them to change their direction of motion
more quickly than in free space. In Sec. III C, we will study
these short-timescale interactions in greater detail.

Combining the effective persistence time [Fig. 4(b)] and
the effective velocity [Fig. 4(c)] gives the effective persistence
length leff = veffτeff and the effective diffusion coefficient
Deff = v2

effτeff/2. The inset of Fig. 4(a) shows the effective
diffusion coefficient for l̃p = 5, calculated both by using the
effective persistence time and effective velocity from the
velocity autocorrelation function (VACF) and by a direct

measurement from the mean squared displacement (MSD).
The excellent agreement between Deff measured at short and
long timescales (using the VACF and MSD, respectively) is
another indication that the motion of the ABPs in regular
square obstacle lattices can indeed be considered to be an
effective persistent random walk.

The effective persistence length leff = veffτeff is plotted
in Fig. 4(d). As anticipated, the effective persistence length
increases with increasing lattice spacing d̃ , consistent with
findings of ABPs in random obstacle lattices [35] and a
model of persistently moving cells in a tissue of stationary
cells [61]. This effect increases with the free space persistence
length, as the motion of less persistent particles is randomized
before they can reach an obstacle. Furthermore, the difference
between data with l̃p = 5 and l̃p = 10 is negligible, indicating
that the free space persistence length l̃p affects particle motion
only when it is comparable with the lattice spacing.

These observations, combined with those in
Refs. [43,58,59] which demonstrate a net flux of persistent
random walkers toward regions of larger persistence,
ultimately explain the origin of topotaxis in our system. ABPs
migrate, on average, toward regions of higher persistence,
and hence to regions of lower obstacle density. Moreover, the
dependence of the effective persistence length leff on the free
space persistence length l̃p [Fig. 4(d)] justifies the superlinear
increase of the topotactic velocity ṽtop as a function of l̃p

[Fig. 2(d)]. In addition to the normal speed-up due to the
higher persistence, more persistent particles experience a
larger gradient in persistence.

C. Fokker-Planck equation for regular lattices

As we explained in Sec. III B, topotaxis in our model of
ABPs crucially relies on the fact that even when trapped in
an array of obstacles, ABPs still behave as persistent random
walkers. The physical origin of this behavior is, however,
less clear from the numerical simulations. In this section, we
rationalize this observation using some simple analytical ar-
guments. The probability distribution function P = P(r, θ, t )
of the position and orientation of an ABP, whose dynamics is
governed by Eqs. (1), evolves in time based on the following
Fokker-Planck equation:

∂P

∂t
= −v0 p · ∇P − μ∇ · (PF ) + DR

∂2P

∂θ2
, (7)

subject, at all times, to the normalization constraint,∫
dr dθ P(r, θ, t ) = 1, (8)

with dr = dx dy. Equation (7) cannot be solved exactly, but
useful insights can be obtained by calculating the rate of
change of the mean squared displacement 〈|�r|2〉. Here we
assume r(0) = 0, which yields |�r|2 = |r|2 = x2 + y2, and

∂〈|r|2〉
∂t

=
∫

dr dθ |r|2 ∂P(r, θ, t )

∂t
. (9)

Upon substituting Eq. (7) in Eq. (9) and integrating by parts,
we obtain

∂〈|r|2〉
∂t

= 2v0〈r · p〉 + 2μ〈r · F〉. (10)
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Analogously, the term 〈r · p〉 evolves accordingly to

∂〈r · p〉
∂t

= v0 − DR〈r · p〉 + μ〈p · F〉. (11)

In free space (F = 0), Eqs. (10) and (11) can be solved
exactly, using the boundary condition r(t = 0) = 0, to find

〈r · p〉F=0 = v0

DR
(1 − e−DRt ), (12)

and the mean squared displacement 〈|r|2〉 given by Eq. (2). A
generic nonzero F compromises the closure of the equations,
thus making the problem intractable with exact methods. Nev-
ertheless, it is possible to use some simplifying assumptions
to obtain intuitive results about Deff and τeff (Fig. 4) at short
(t � 1/Dr = τp) and long (t � 1/Dr = τp) timescales.

At short timescales, we can assume a particle to be still
relatively close to its initial position, r(0) = 0. Thus one can
expand the force in Eq. (11) at the linear order in r, i.e.,
F(r) ≈ F(0) + ∇F(0) · r. Evidently, such an expansion is ill
defined for discontinuous forces such as that given by Eq. (4).
However, one can imagine to smoothen the force (for instance,
using a truncated Fourier expansion) without altering the
qualitative picture. Under this approximation, the short-time
motion is then analogous to that of ABPs confined by a
harmonic trap (see, e.g., Refs. [62–65]). By the symmetry of
the obstacle lattice, F(0) = 0, ∂yFx(0) = ∂xFy(0) = 0, and the
constant ∂xFx(0) = ∂yFy(0) < 0, as the horizontal (vertical)
component of the force experienced by a particle moving in
the positive x direction (y direction), becomes more negative
as the particle moves away from the origin. The approxima-
tion allows us to write

〈p · F〉|t�τp
= ∂Fx

∂x
(0) 〈r · p〉, (13)

and by inserting Eq. (13) into Eq. (11), we find

∂〈r · p〉
∂t

∣∣∣∣
t�τp

= v0 −
[

Dr − μ
∂Fx

∂x
(0)

]
〈r · p〉. (14)

Solving Eq. (14) yields

〈r · p〉|t�τp = v0

Dr,eff
(1 − e−Dr,eff t ), (15)

with Dr,eff = Dr − μ ∂xFx(0) > Dr . A plot of 〈r · p〉 versus
�t/τp, obtained from our numerical simulations, is shown in
Fig. 5, demonstrating that despite the force given in Eq. (4)
being discontinuous, the trend entailed in Eq. (15) is pre-
served. By comparing Eq. (15) with its free space equivalent
[Eq. (12)], we identify Dr,eff as an increased effective rota-
tional diffusion coefficient. This implies a decreased effec-
tive persistence time, consistent with the data in Fig. 4(b).
The above analysis shows that, to first order, the observed
decrease in effective persistence time simply results from the
short-time interactions, within a unit cell of the lattice, that
cause the particles to turn more frequently than in free space.
Finally, substituting Eq. (15) in Eq. (10) and taking again the
first-order Taylor expansion for F allows one to solve Eq. (10)
exactly. Expanding this exact solution at the second order in
time yields

〈|r|2〉|t�τp = v2
0t2, (16)

FIG. 5. The correlation function 〈r · p〉 vs �t/τp obtained from
a numerical integration of Eqs. (1) in a regular obstacle lattice for
different values of lattice spacings, namely, d̃ = d/R = 2.5 (black)
and d̃ = 10 (blue). The green (red) lines show the fit of the data for
d̃ = 2.5 (d̃ = 10) using Eq. (15). We find that the numerical data
from our model match qualitatively with the analytical expression
of Eq. (15) at short times, and on average plateaus to a con-
stant value at long times, consistent with our analytical predictions
in obtaining Eq. (17). From the analytical fits, we find Dr,eff =
1.02847Dr (Dr,eff = 1.32592Dr) for d̃ = 10 (d̃ = 2.5). This verifies
that Dr,eff (d̃ = 2.5) > Dr,eff (d̃ = 10) > Dr (free space), i.e., the ef-
fective rotational diffusion coefficient increases with an increase in
obstacle density.

which is the standard ballistic regime of the mean squared dis-
placement. Hence, the decreased effective velocity observed
in Fig. 4(c) originates from interactions with obstacles at
larger timescales [t ∼ τp; see, also, Fig. 3(b)].

In the long timescale (t � 1/Dr = τp), the particles reach
a diffusive steady state, and thus ∂t 〈r · p〉 = 0 (see Fig. 5 for
�t/τp � 1). Hence, solving Eq. (11) for 〈r · p〉 and substitut-
ing in Eq. (10) yields

∂〈|r|2〉
∂t

∣∣∣∣
t�τp

= 2v2
0

Dr

(
1 + μ

v0
〈p · F〉 + μDr

v2
0

〈r · F〉
)

. (17)

As the long-time behavior is diffusive, the expression on the
right-hand side of Eq. (17) is constant and equal to 4Deff .
Now, according to Eq. (4), μ(p · F ) = 0 if |�ro| > R, and
μ(p · F ) = −v0(p · N)2 otherwise. Thus, 〈p · F〉 < 0. This
term shows that diffusion is slowed down because the obstacle
force F always slows down the particles (but never accelerates
them). Moreover, for more dense obstacle lattices, particles
interact with obstacles more often, which explains the ob-
served dependence of Deff on the obstacle spacing in Fig. 4(a).
Analogously, since particles move in an open space and, on
average, away from the center, 〈r · F〉 < 0 (i.e., the repulsion
forces due to the obstacles are directed more often toward the
origin than toward infinity, further slowing down diffusion).
Thus Deff < D, consistent with our numerical simulations
[Figs. 3 and 4(a)].

Finally, in the presence of very steep gradients in the
obstacle density, when ABPs are unable to sample a large
number of unit cells before experiencing a change in obstacle
density, we expect the long-time behavior of the particles,
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hence veff , to change compared to the simple picture presented
here, possibly affecting the topotactic mechanism.

IV. DISCUSSION AND CONCLUSIONS

In this article, we investigated topotaxis, i.e., directed mo-
tion driven by topographical gradients, in a toy model of ABPs
constrained to move within a two-dimensional array of obsta-
cles of smoothly varying density. We found that ABPs migrate
preferentially toward regions of lower density with a velocity
that increases with the gradient in the lattice spacing and with
the particles’ persistence length. In our model, the origin of
topotaxis crucially relies on the fact that even when moving in
a lattice of obstacles, ABPs still behave as persistent random
walkers, but with renormalized transport coefficients: τeff and
veff . As these depend on the topography of the substrate, here
quantified in terms of lattice spacing, topographical gradients
result in spatially varying persistence in the motion of the
particles, which in turn drives directed motion toward regions
of larger persistence [43,58,59]. We note that the motion
we report here, just like the durotactic motion described in
Refs. [43,58], is perhaps better described as a “kinesis” than
as a “taxis” because the underlying mechanism of transport
is a nondirectional change in behavior induced by a purely
positional cue. This is in contrast to the true directional bias
underlying, for instance, the chemotaxis of E. coli [66] which
leads to significantly more efficient transport [59].

Several questions remain open to future investigation. For
instance, how is the picture affected by translational diffusion?
Is topotaxis robust against competing directional cues, such
as chemotaxis [22]? How sensitive is the performance of
topotaxis with respect to the obstacles’ shape [25,45,46],
the type of motion (e.g., persistent random walk, run-and-
tumble, Lévy walk, etc. [25,28,38,67–69]), and the details
of particle-obstacle interactions [36,45,70–72]? For instance,
one can expect that specific anisotropic shapes could be
devised with the purpose of focusing the particles, thus tuning
the topotactic behavior. Similarly, another interesting setting
of the problem could be obtained by considering random
arrangements of obstacles, where, unlike in the lattices studied
here, particles can be trapped into convex-shaped features that
can significantly alter their motion [35,38].

Finally, although here we demonstrated that topotaxis can
be solely driven by the interplay between topographical gra-
dients and persistent random motion, whether this is sufficient
to explain large-scale topotaxis of cells remains an open prob-
lem. A quantitative comparison between our numerical data
and experiments on highly motile cells [22] shows, in fact,
discrepancies that could be ascribed to the enormously more
complex interactions between cells and their environment.
Specifically, the topotactic velocity in our simulations is of the
order of 1% of the intrinsic particle speed (Fig. 2), whereas
in the experiments on cells this ratio is approximately 5%,
provided that the obstacles are not spaced further apart than
the cell size [22]. In order to better understand this surpris-
ing efficiency, the large-scale topotactic response of several
types of persistently and individually moving cells, such
as amoeba [73], invasive (amoeboid) cancer cells [74,75],
or leukocytes [76], could be compared. On the theoretical
side, we are currently addressing the problem using more

biologically realistic models of cell motility based on the
cellular Potts model [61,77], which allow explicitly taking
into account effects such as the resistance of cells against
deformations, adhesion between cells and obstacles, and more
realistic cell-obstacle interactions.
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APPENDIX A: NUMERICAL METHODS

We numerically generate particle trajectories that perform
a persistent random walk by discretizing the equations of
motion as follows [43]: a particle starts at position r0 at
t = 0, after which the particle is moved by a distance v0�t
in a random initial direction −π < θ1 < π , such that the
new position is r1 = r0 + v0�t p(θ1). For all subsequent time
steps, the angle at time step n, θn, is updated by adding a
small deviation angle to the angle of the previous time step,
θn = θn−1 + δθ . Here, −π < δθ < π is extracted randomly
from a Gaussian distribution with mean 0 and variance σ 2 =
2�t/τp using the Box-Muller transform. The new position of
the particle, rn, is then found by rn = rn−1 + v0�t p(θn), with
rn−1 the position at the previous time step.

If the update step moves the particle into an obstacle,
however, the particle-obstacle force [Eq. (4)] is triggered. In
that case, the normal component of the attempted displace-
ment is subtracted, and the actual displacement is given by
the tangential component of the attempted displacement, rn =
rn−1 + v0�t[p(θn) · T ]T , with T the tangent unit vector of the
obstacle surface at the point of the surface closest to rn−1. This
procedure is implied by Euler integration of Eq. 1(a) with the
force F described by Eq. (4). We choose the time step �t such
that it is much smaller than the persistence time, �t � τp, and
such that every displacement is much smaller than the obstacle
radius, v0�t � R. In all reported simulations we have used
�t = 0.01τp.

APPENDIX B: OBSTACLE LATTICES

We define a regular square lattice of obstacles with the
coordinates of the centers of the obstacles given by

x(n, m) = nd + d

2
, (B1a)

y(n, m) = md + d

2
, (B1b)

where n, m ∈ Z are the obstacle numbers and d is the distance
between the centers of two neighboring obstacles. The term
d/2 is added to make sure that the origin of the coordinate
system is in the middle of four obstacles. An illustration of
this lattice is given in Figs. 1(a) and 1(b).
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FIG. 6. Snapshot of the gradient lattice as described in
Appendix B. The gradient region is characterized by r = 0.15 and
d̃ = d/R = 5. The obstacles are graphically represented as disks of
radius R. The lattice spacing varies from d̃min = 2.1 to d̃max = 7.9
over the x range [xmin, xmax] = [−19, 19]. The gradient region is
flanked by a regular square lattice with d̃ = d̃min on the left (x < xmin)
and by a regular square lattice with d̃ = d̃max on the right (x > xmax).
Only the first two columns of both (infinitely large) regular lattices
are shown.

We define an irregular square lattice with a linear gradient
of the obstacle spacing in the positive x direction. The gradient
region has a finite width, is centered in the origin, and is
flanked by regular square lattices to the left and to the right.
The coordinates of the centers of the obstacles in the gradient
region are given by

x(n, m) = d

1 − e−r
(ern − 1) + d

2
, (B2a)

y(n, m) = d

(
m + 1

2

)
ern, (B2b)

where n, m ∈ Z are again the obstacle numbers, d is the
distance between the centers of obstacles with (n, m) = (0, 0)
and (n, m) = (−1, 0) (i.e., the lattice spacing in the origin),
and r is a dimensionless number that quantifies the gradient in
the obstacle spacing.

Equation (B2) represents an obstacle lattice where the
lattice spacing depends exponentially on the horizontal ob-
stacle number n, such that x(n, m) − x(n − 1, m) = dern and
y(n, m) − y(n, m − 1) = dern. This exponential gradient in
the obstacle spacing, as a function of the obstacle number n,
leads to a linear gradient in the obstacle spacing as a function
of the horizontal coordinate x. This can be seen by calculating

FIG. 7. There is no average drift in the y direction in density
gradient lattices. (a) 〈ỹ〉 = 〈y〉/R as a function of time t̃ = t/τp for
five values of the density gradient r, with d̃ = d/R = 5 and l̃p =
v0τp/R = 5. (b) 〈ỹ〉 = 〈y〉/R as a function of time t̃ = t/τp for five
values of the persistence length l̃p = v0τp/R, with d̃ = d/R = 5 and
r = 0.07.

the difference in obstacle distance between two adjacent pairs
of obstacles, divided by the distance between those two pairs,

[x(n + 1) − x(n)] − [x(n) − x(n − 1)]

x(n) − x(n − 1)
= er − 1, (B3)

which is independent of n, as required for a linear gradient.
In the limit of r → 0, Eqs. (B2) reduce to the regular square
lattice given in Eqs. (B1).

The gradient lattice is cut off on the left side at xmin < 0,
where the vertical distance between two neighboring obsta-
cles, y(n, m) − y(n, m − 1), would otherwise become smaller
than a minimal distance dmin = 2.1R. At the first column of
obstacles for which this is the case, the vertical coordinates
[Eq. (B2b)] are replaced by y(n, m) = mdmin + dmin/2. To the
left of this transition column (x < xmin), a regular obstacle
lattice with spacing dmin is placed such that the transition
column is part of this regular lattice.

On the right side, the gradient lattice is cut off at xmax =
−xmin. To the right of this cutoff (x > xmax), a regular obstacle
lattice with spacing dmax = 2d − dmin is placed such that
the horizontal distance between the rightmost column of the
gradient lattice and the leftmost column of the regular lattice
is equal to dmax. Thus, the gradient lattice connects two regular
square lattices of lattice spacings dmin and dmax. The width
of the gradient region, 2xmax, then depends on the gradient
parameter r. For an illustration of the gradient lattice for
r = 0.15 and d̃ = d/R = 5, see Fig. 6.

APPENDIX C: AVERAGE MOTION IN y

We plot 〈ỹ〉(t̃ ) of 106 particles moving in a density gradient
lattice with d̃ = 5, starting in the origin with a random orien-
tation, for several values of the dimensionless density gradient
r in Fig. 7(a), and for several values of the persistence length
l̃p in Fig. 7(b). As expected, there is no average drift in the y
direction. The fluctuations in 〈y〉 are of the order of 10% of
the effective radius R.
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