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Identifying protein-protein interactions is crucial for a systems-level understanding of the cell. Recently,
algorithms based on inverse statistical physics, e.g., direct coupling analysis (DCA), have allowed to use
evolutionarily related sequences to address two conceptually related inference tasks: finding pairs of interacting
proteins and identifying pairs of residues which form contacts between interacting proteins. Here we address two
underlying questions: How are the performances of both inference tasks related? How does performance depend
on dataset size and the quality? To this end, we formalize both tasks using Ising models defined over stochastic
block models, with individual blocks representing single proteins and interblock couplings protein-protein
interactions; controlled synthetic sequence data are generated by Monte Carlo simulations. We show that DCA is
able to address both inference tasks accurately when sufficiently large training sets of known interaction partners
are available and that an iterative pairing algorithm allows to make predictions even without a training set. Noise
in the training data deteriorates performance. In both tasks we find a quadratic scaling relating dataset quality
and size that is consistent with noise adding in square-root fashion and signal adding linearly when increasing
the dataset. This implies that it is generally good to incorporate more data even if their quality are imperfect,
thereby shedding light on the empirically observed performance of DCA applied to natural protein sequences.

DOI: 10.1103/PhysRevE.101.032413

I. INTRODUCTION

Most cellular processes are carried out by interacting pro-
teins, and mapping functional protein-protein interactions is
a crucial question in biology. Since genomewide experiments
remain challenging [1], an attractive possibility is to directly
exploit rapidly expanding sequence databases in order to
identify protein-protein interaction partners.

Methods inspired by inverse statistical physics [2] have
recently received increasing interest in computational protein
biology, as reviewed in Ref. [3]. The basic idea is simple: In
the course of evolution, proteins diversify considerably their
amino acid sequences, while keeping their three-dimensional
structure, their biological function and, most importantly in
our context, their interprotein interactions remarkably well
conserved. Families of homologous proteins, i.e., proteins
of common evolutionary ancestry, therefore offer samples of
highly variable sequences of common structure and function.
In many cases, these families contain 103–106 distinct se-
quences, and statistical approaches are well adapted to analyze
sequence variability and to unveil hidden information about
the proteins’ behavior and the selective forces acting on
sequence evolution.
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In the case of individual protein families, global statistical
models [4] based on the maximum-entropy principle [5] and
assuming pairwise interactions, known as Direct Coupling
Analysis (DCA) [6,7], Protein Sparse Inverse COVariance
(PsiCOV) [8], or Generative REgularized ModeLs of proteINs
(GREMLIN) [9], have been used with success to predict
three-dimensional protein structures from sequences [10,11]
to analyze mutational effects [12–17] and conformational
changes [18,19].

In the more complex case of interacting proteins, two
protein families are investigated jointly, cf. Ref. [20] for
a recent review. Inference is based on the idea that the
amino acid sequences of interacting proteins are correlated,
in particular because contacting amino acids need to maintain
physicochemical complementarity through evolution. At least
three questions can be asked:

(i) Do the two families interact, i.e., is there a substantial
number of interacting protein pairs with the two interac-
tion partners belonging to the two protein families? DCA-
based approaches have been proposed, detecting interac-
tion via the strength of statistical couplings between protein
families [21–24].

(ii) Which specific proteins from the two families interact?
While this problem can be partially solved by pairing proteins
that exist in the same species (i.e., the same genome), a
given genome often contains several homologous members
(called paralogs) of each of the two protein families, thus
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FIG. 1. Schematic illustration of our model, the data generation
procedure and the inference tasks: Interacting proteins are repre-
sented as blocks in a stochastic block model. Data are generated by
equilibrium Monte Carlo simulations of an Ising model defined on
the SBM graph; they are subdivided into groups mimicking species
and split into half chains A and B corresponding to individual SBM
blocks and representing single proteins. The original pairing between
chains A and B is blinded. The resulting inference tasks are the
reconstructing of the interblock couplings (predicting residue con-
tacts between proteins) and the pairing of chains A and B (predicting
interacting protein pairs).

making interaction-partner matching a nontrivial problem.
Global statistical models [25], and in particular DCA, can
address this question both in the cases when a substantial
[26] or small [27] training set of known interaction partners is
available, and even in the absence of such a training set [28].
Iterative algorithms have been developed in the last two cases
[27,28]. In practice, training sets may correspond to pairs of
interacting partners known from experiments or from genomic
colocalization [26], but in cases where it is not known whether
the two protein families considered interact or not, there is no
training set.

(iii) How do these proteins interact, i.e., which residues
form the interaction interface? DCA-type approaches have
helped in finding residue contacts between known interaction
partners and in protein-complex assembly [6,22,29–32].

While promising applications have been presented for all
three questions, theoretical problems related to the underlying
inference procedures remain open. Here we address the last
two questions, which involve two coupled inference tasks:
inferring interaction partners among paralogs from sequence
data and inferring contacts between amino acids. How do
these two tasks couple together? What is the impact of dataset
size and quality on their performance?

To address these questions, we propose the well controlled
setting for synthetic data generation schematically represented
in Fig. 1. The interacting proteins are mimicked by a stochas-
tic block model (SBM) [33], a well-known random graph
model used to represent modular networks by incorporating
blocks with different connectivities inside the blocks and be-
tween them. Concretely, there is a certain number of internal
couplings in each block, and there are a certain number of in-
terblock couplings. Here we consider two blocks, representing
the two interacting proteins: Vertices represent amino acids,

while edges represent either intraprotein or interprotein cou-
plings, depending on their location inside or between proteins.
Data are generated by equilibrium Monte Carlo simulations
according to an Ising Hamiltonian with identical couplings on
all edges of the SBM graph, cf. details in Appendix A.

To mimic the situation found in real proteins, spin chains
are randomly divided into groups (representing species) and
split into two halves (chains A and B, representing pro-
teins) according to the two blocks, cf. Fig. 1. We next blind
the pairings between halves, i.e., a spin chain A could in
principle be paired with any of the spin chain B inside the
same group. This represents the fact that interaction partners
have to belong to the same species and that within a species,
pairings among paralogs are not a priori known. The sets
of all sampled chains A and of all sampled chains B each
represent a multiple-sequence alignment (MSA) of a protein
family. Based on this construction, our two inference tasks can
be formalized:

(i) Can we infer the couplings, or edges, between the two
blocks of the original SBM graph from data?

(ii) Can we determine the correct pairing between the spin
chains A and B in the blinded data?

We start by addressing these problems in the presence
of a training set, i.e., an ensemble of paired chains A and
B generated together. With natural data, ideally, the training
set contains only correct pairs of interacting partners, but in
reality there may be incorrect pairs in the training set, e.g., due
to experimental challenges [1]. Therefore, here we explicitly
address the realistic case where some pairings in the training
set are incorrect, i.e., associate two independently generated
chains A and B, which introduces noise into the inference
problem. Next we consider the case without a training set.

The paper is organized as follows. Section II briefly defines
the model and the data generating process, with details in the
Appendices. In Sec. III, we address the problem of inferring
interblock couplings and consider the impact of training set
size and quality. A similar analysis for the partner prediction
problem follows in Sec. IV. To quantify the impact of training
set size and quality, we present a scaling analysis of the influ-
ence of noise in the training set in Sec. V. The case without
a training set is presented in Sec. VI. Finally, conclusions are
presented in Sec. VII.

II. MODEL AND DATA GENERATION

The model illustrated in Fig. 1 is defined over an SBM
graph having two blocks A and B, each one with L = 100 ver-
tices, yielding a total of 200 vertices. Any two vertices inside a
block are connected with probability pintra = 0.025, while any
two vertices belonging to different blocks are connected with
pinter = 0.02. We have checked that the qualitative results do
not depend on these specific values, cf. Appendix C for the
case of smaller blocks of size L = 50.

In addition to this graph, we define a ferromagnetic model
having an Ising spin on each vertex and equal couplings on all
edges of the graph. It is defined by its Hamiltonian

H (�σ ) = −
∑

(i j)∈E
σiσ j, (1)
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where �σ = (σ1, . . . , σ2L ) ∈ {±1}2L is a vector of 2L Ising
spins and E the set of edges of the SBM graph. We will
denote (σ1, . . . , σ2L ) as chain AB and the halves (σ1, . . . , σL )
[respectively, (σL+1, . . . , σ2L )] corresponding to block A (re-
spectively, B) as chain A (respectively, B).

Data are generated from this model using Monte Carlo
simulations, see Appendix A for details. The sampling scheme
was designed to obtain spin chains corresponding to identi-
cally and independently distributed equilibrium spin chains at
a formal temperature slightly above the ferromagnetic phase-
transition temperature of our graph (see Appendix C). We
have also studied the impact of varying sampling temperature
(see Fig. 13), showing that good performance is also obtained
in the ferromagnetic phase slightly below the phase transition.
For sample averaging, we generated a sample of 150 000
equilibrium spin chains for one specific SBM graph and
randomly extracted disjoint training and testing sets from this
large sample. We did not average over different realizations
of the graph, since in the protein case we are interested in
the influence of dataset size and quality for a given pair of
interacting protein families, i.e., the model does not change,
but the data do. Because interprotein contacts are sparse, and
often sparser than intraprotein ones, we have further compared
the results obtained with our baseline graph to those obtained
with variants of this graph, namely one with lower interblock
connectivity and one with interblock couplings restricted to a
subset of sites of each block (see Appendix F, Fig. 16).

Compared to natural protein sequences, our synthetic data
are idealized, because it is fully at equilibrium, and all cor-
relations are from actual couplings, excluding any impact of
phylogeny. This is because our aim here is to quantitatively
understand the bases of prediction of interaction partners
thanks to contacts. Correlations arising in protein sequences
due to their common evolutionary history [34–40] can fur-
ther contribute to the success of DCA-based approaches at
predicting protein-protein interactions from natural protein
sequences [41,42], while they obscure the identification of
contacts [6,10,36]. Besides, generalizing the present model
to Potts spins and including local fields to tune residue con-
servation would make it more similar to the models inferred
by DCA from natural protein sequences. One could also go
beyond our simple ferromagnetic model and test the impact
of the heterogeneity of interactions, since matching residue
conservation in synthetic data with that of natural protein
sequences has shown that protein alignments may lie in the
frozen phase of a frustrated system [43]. More generally, the
question of which phase is relevant in natural data is a very
interesting one, with several studies suggesting that natural
data may be close to criticality [44]. In this paper, we have
chosen to use the simplest nontrivial model to address the
coupled inference problems of finding interacting spins and
interacting chains, aiming to extract quantitative laws in a
well-controlled case.

III. INFERENCE OF COUPLINGS

Consider the first inference problem, namely that of cou-
plings between spin sites. To address it, we first apply DCA
[3,6] within the mean-field approximation [7,45] to infer a

FIG. 2. PPV of the inferred interblock couplings, i.e., fraction
of the top inferred interblock couplings that are actual interblock
couplings in the SBM random graph used to generate the data,
plotted versus the number of top interblock couplings considered.
Data are generated using a SBM(0.025,0.02) graph with L = 100
spins per single chain A or B at a sampling temperature T = 5.0. We
then randomly extract (without replacement) a training set from the
total generated dataset, and DCA inference is performed. Averages
over 100 realizations corresponding to different training sets are
shown. (a) Training sets with no mismatches comprising different
numbers Mtrain of chains AB. (b) Training sets with total number
Mtrain = 1000 of chains AB, comprising different numbers Mmis of
mismatched pairs AB.

Hamiltonian

HDCA(�σ ) = −
∑

i< j

Ji jσiσ j, (2)

which a priori contains couplings Ji j for each pair (i, j) of
sites. This simple mean-field approximation has been used
with success for protein structure prediction [7,10] and is
computationally fast, which is important in our framework
since the determination of interaction partners in natural se-
quence data involves iterative procedures where the inference
task is performed multiple times [27,28]. Next we ask whether
the top inferred couplings Ji j correspond to actual couplings
within the model, i.e., to edges of the underlying SBM graph
(see Appendix B for details on this inference method). We
distinguish the case of intrablock couplings and of interblock
ones, with the intuition that the blinding of pairings between
chains A and chains B within each species may obscure the
inference of interblock couplings more than that of intrablock
ones. Figure 2 focuses on interblock couplings, and shows
the positive predictive value (PPV) of the inferred couplings,
and Fig. 14 shows a similar analysis in the case of intrablock
couplings. Note that because we are working with Ising spins,
PPV is defined directly with the inferred couplings Ji j , without
the need to compress the data obtained with each amino acid
type for a given pair of sites (i, j). For natural sequences, this
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compression step is usually done using direct information [6]
or Frobenius norm [46].

We first consider the case where chains AB are correctly
paired in the training set used to construct the DCA model
(see Appendix B). Figure 2(a) shows that it is necessary to
have a large enough training set (Mtrain ∼ 500 chains AB)
in order to obtain good performance on interblock couplings
and that performance is almost perfect for a training set of
Mtrain ∼ 1000 chains AB. Although the exact training set size
required for good performance will depend on the number
of states per site and on the number of sites, the order of
magnitude is consistent with the (effective) number of suffi-
ciently different protein sequences needed for DCA to infer
contacts between amino acids [6,7,10]. Figure 14(a) shows
very similar results in the case of intrablock couplings. Indeed,
with perfectly paired chains AB in the training set, we do not
expect inter- and intrablock couplings to behave differently.

Next we investigate the impact of having mismatches be-
tween chains A and B in the training set, which would occur in
natural data if the interaction partners were not or imperfectly
known to begin with. Figure 2(b), which employs a training
set of Mtrain = 1000 chains AB including various numbers
Mmis of mismatched pairs, shows that mismatches deteriorate
the inference of interblock couplings. Conversely, we observe
no deterioration of the inference of intrablock couplings due
to the mismatches in Fig. 14(b).

In Sec. V, we will investigate in more detail the impact
of both (training) dataset size and quality and demonstrate
how performance scales with them, both for the inference of
couplings (present problem) and for the inference of partners
(next problem).

IV. INFERENCE OF PARTNER PAIRINGS

Let us now address the second inference problem, namely
that of inferring partner chains AB in a testing set where part-
nerships are blinded, from a training set where partnerships
are known. By “partner chains” we mean pairs that come
from the same complete chain AB generated from the the
stochastic block model. To mimic the realistic case where
possible interacting partners among proteins would consist of
proteins within the same species, we use the before-mentioned
random split of our testing set into groups, here with 10 pairs
AB each, and then we blind the pairings within each of these
groups, cf. Fig. 1.

Given that the correct pairs were generated by equilibrium
sampling from the Hamiltonian associated to an SBM graph,
we expect that they will feature smaller interaction energies,

Eint = −
L∑

i=1

2L∑

j=L+1

Ji jσ
A
i σ B

j , (3)

than incorrect ones (note that the Ji j employed are the inferred
couplings). This idea has been used with success to predict
interaction partners among paralogous proteins in ubiquitous
prokaryotic protein families [26–28]. Figure 3(a) shows that
this is indeed the case on average, but there is overlap between
the observed distributions of interaction energies of correct
and incorrect pairs AB. This is problematic when using Eint as
a pairing score, in particular since a species with k chains AB

FIG. 3. Histograms of the interaction energies Eint [see Eq. (3)]
for correct and incorrect within-species pairs AB in the testing set.
The couplings in Eq. (3) are computed employing a training set
where all pairs AB are correct (no mismatches). (a) Normalized
histograms. (b) Raw count histograms (same data). The testing
and training sets respectively comprise Mtest = 500 and Mtrain =
2000 spin chains AB. In the testing set, species comprising 10
pairs AB each are randomly constructed, and matchings are then
blinded within each species. Data are generated using the same
SBM(0.025,0.02) graph with L = 100 spins per single chain A
or B as in Fig. 2, also at a sampling temperature T = 5.0.

allows for k correct pairings, but also for k(k − 1) incorrect
ones. In the raw histograms of Fig. 3(b), the overlapping
region therefore becomes dominated by the more abundant
incorrect pairings. Note that this issue will increase with the
number k of chains AB per species [Fig. 3(b) uses k = 10].

Starting from the idea that pairs AB with smaller values of
Eint are more likely to be correct partners, there are several
ways to make predictions. The first one is to simply take
the chain B that has the smallest value of Eint for each
chain A. Another one is to include the hypothesis that match-
ings are one to one and to therefore disallow matching several
A chains with the same B chain and vice versa. This can be
done in a greedy way within each species, first taking the pair
AB with the lowest Eint in the species and then suppressing
the corresponding A and B from further consideration and
moving on to the next lowest Eint in the species, until all
A and B chains are matched [28]. Another possibility is to
find the one-to-one assignment that minimizes the sum of
all interaction energies Eint within the species [41,42], i.e.,
to construct the overall optimal matching. This can be done
exactly using the Hungarian algorithm (also known as the
Munkres algorithm) [47–49]. Figure 4 demonstrates that the
performance of matching prediction increase when moving on
from the first method to the second one and from the second
one to the third one.
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FIG. 4. PPV of pairing prediction, i.e., fraction of the top ranked
predicted pairs of chains AB that are correct partners, plotted versus
the number of top predicted pairings considered. Data are generated
using the same SBM(0.025,0.02) graph with L = 100 spins per
single chain A or B as in Fig. 2, also at a sampling temperature
T = 5.0. We then randomly extract (without replacement) a training
set and a testing set from the total generated dataset, comprising
Mtrain = 2000 and Mtest = 500 complete chains AB, respectively.
The DCA Hamiltonian is inferred on the spin chains AB of the
training set, where no mismatches are introduced. Next the chains
in the testing set are randomly partitioned into species with 10 pairs
AB each, and within each species, pairings are blinded. Pairs AB
are then predicted within each species using the interaction energy
Eint , either allowing multiple B chains to be matched with the same
A (“promiscuity”), or not, or employing the Hungarian algorithm
that minimizes the sum of interaction energies. Finally, predicted
pairs are ranked using two different confidence scores, namely the
interaction energy Eint and the energy gap �Eint . Averages over
100 realizations corresponding to different training and testing sets
are shown.

Because of the overlap of the distributions of interaction
energies Eint (see Fig. 3), the comparison of Eint values does
not ensure perfect predictions of correct partners. Therefore,
it is also useful to assess confidence in the predictions made
employing Eint values. The simplest way to do this is to
rank them by increasing order of Eint. In Ref. [28], a more
sophisticated confidence score based on the energy gap �Eint,
namely the difference of interaction energies between the
predicted pair and the next best possible pair involving the
same chain A, was successfully employed on natural sequence
data. Note that in Ref. [28], the energy gap was corrected
to incorporate the fact that matchings are easier in species
with fewer pairs of sequences, yielding better performance,
but this confidence score reduces to the gap in the simplified
setting we consider here, since all our species contain the same
number of pairs of sequences. When using the Hungarian
algorithm, the associated energy gap score is defined in a
global way for each predicted pair, by using the difference of
scores between the optimal assignment of pairs in the species
and the best alternative assignment that does not involve this
predicted pair [41]. Note that for the natural data considered
in Refs. [28,41], the use of this corrected gap score together
with the greedy algorithm slightly outperformed the use of

FIG. 5. (a) PPV for interblock coupling prediction evaluated
at the total number ninter = Ninter of actual interblock couplings
versus the fraction xmis = Mmis/Mtrain of mismatched chains AB in
the training set. (b) Number ninter of correct interblock coupling
predictions obtained at PPV = 0.8 versus xmis. Averages over 50
realizations corresponding to different training sets are shown. Data
are generated using the same SBM(0.025,0.02) graph with L = 100
spins per single chain A or B as in Fig. 2, also at a sampling
temperature T = 5.0.

the Hungarian algorithm with the associated gap in the case
of DCA inference [41].

Thus motivated, we tested the performance of the energy
gap as a confidence score. Figure 4 confirms that the energy
gap is a more efficient score than the interaction energy to
rank possible pairs AB in the case of our synthetic data. The
most efficient inference and ranking method here corresponds
to using the Hungarian algorithm with the associated (global)
energy gap score.

V. IMPACT OF DATASET SIZE AND QUALITY
ON INFERENCE

After having shown that DCA can simultaneously solve the
inference of couplings and of partners in our synthetic dataset,
let us investigate in more quantitative detail the impact of
dataset size and quality on these coupled inference problems.

Figure 5(a) shows the impact of the fraction xmis =
Mmis/Mtrain of mismatched chains AB in the training set on the
PPV for interblock coupling prediction evaluated at the total
number ninter of actual interblock couplings for different train-
ing set sizes Mtrain. Figure 5(b) shows the impact of xmis on the
number of correct interblock coupling predictions obtained
at PPV = 0.8. Both of these figures show that mismatches
decrease the quality of predictions, consistently with Fig. 2(b).
Furthermore, they demonstrate that the larger the training
set, the more robust predictions become to mismatches (at
equal mismatch fractions xmis). In other words, for a large
training set, good predictions can be obtained even if the
fraction of mismatches is large. As a concrete example, for
Mtrain = 32000, the PPV at ninter predictions is still very close
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FIG. 6. (a) PPV for partner prediction evaluated at the total num-
ber of partners npartner = Mtest of pairs of correct partners in the testing
set versus the fraction xmis = Mmis/Mtrain of mismatched chains AB
in the training set. (b) Number of correct partner predictions obtained
at PPV = 0.8 versus xmis. Partners were predicted employing the
Hungarian algorithm and ranked by decreasing gap score. Data were
generated using the same SBM(0.025,0.02) graph with L = 100
spins per single chain A or B as in Fig. 2, also at a sampling
temperature T = 5.0. Training sets and testing sets comprise Mtrain =
2000 and Mtest = 500 paired chains AB, respectively, and the testing
sets were randomly partitioned into species with 10 pairs AB each.
Averages over 50 realizations corresponding to different training and
testing sets are shown.

to 1 (specifically, 0.98) for xmis = 0.8, which corresponds to a
strongly corrupted dataset [see Fig. 5(a)].

Similarly, Fig. 6(a) shows the impact of the fraction xmis

of mismatched chains AB in the training set on the PPV for
partner prediction evaluated at the total number of partners
npartner = Mtest of pairs of correct partners in the testing set
for different training set sizes Mtrain, and Fig. 6(b) shows the
impact of xmis on the number of correct partner predictions
obtained at PPV = 0.8. Overall, the same trends are observed
as in Fig. 5 for the interblock coupling predictions, but the
prediction of partners appears to be slightly more demanding
in terms of training set size and quality than that of interblock
couplings. As a concrete example, for Mtrain = 32000, the
PPV at npartner = Mtest predictions is 0.67 for xmis = 0.8, sig-
nificantly lower than the optimal value of 0.96 observed for
xmis = 0 [see Fig. 6(a)], while the performance of interblock
coupling prediction is still almost optimal for such a training
set [see Fig. 5(a)]. Note, however, that the difficulty of the
pairing task depends on the number of pairs per species, which
we held fixed to 10 here.

Let us now quantify the important observation that the
larger the training set, the more robust both types of predic-
tions become to mismatches (see Figs. 5 and 6). In order
to do this, we vary both the size of the training set Mtrain

and its quality via the number of mismatched pairs Mmis

in it. Specifically, for each number Mtrue of correct pairs
in the training set, we find the maximum number Mmis of
mismatched pairs that can be added to them (thus forming

FIG. 7. Maximum number Mmis of mismatched chain pairs AB
that can be tolerated in a training set comprising Mtrue correct
pairs while still attaining a given average PPV value for interblock
coupling prediction evaluated at the total number ninter = Ninter of
actual interblock couplings. Data were generated using the same
SBM(0.025,0.02) graph with L = 100 spins per single chain A or B
as in Fig. 2, also at a sampling temperature T = 5.0. Averages over
100 realizations of the training set are shown (see Appendix E).

a training set of Mtrain = Mmis + Mtrue pairs total) while still
attaining a given inference performance, namely a given
PPV value, either for interblock contact predictions or for
pairing prediction in a testing set. PPVs are averaged over
many realizations of the training set and testing sets, see
Appendix E for details of the procedure. Figures 7 and 8 show
that for both inference problems, with large-enough training
sets, the results scale like Mmis ∝ M2

true. This is consistent with
the hypothesis that signal adds linearly, ∝ Mtrue, while noise
adds in a square-root fashion, ∝ √

Mmis, and that what matters
for performance is the signal-to-noise ratio ∝ Mtrue/

√
Mmis.

This scaling quantifies our finding that lower quality can be
tolerated for larger training sets.

The figures also show that in both problems a minimum
number Mtrue of correct matches in the training set is required
to actually reach the desired PPV value. The almost vertical
initial slope of the curves on Figs. 7 and 8 shows the im-
mediate robustness of the predictions as soon as this minimal
value of Mtrue has been crossed. The comparison of both the
minimal Mtrue and the allowed Mmis at given Mtrue illustrate
again the fact that partner prediction is harder than coupling
prediction for species comprising k = 10 pairs AB (recall that
the difficulty of partner prediction increases with k).

VI. MAKING PREDICTIONS WITHOUT A TRAINING SET

In Ref. [28], an Iterative Pairing Algorithm (IPA) based on
DCA (DCA-IPA) was introduced to solve the partner predic-
tion problem for two protein families, even in the absence of
any training set. To initialize the iterative process without a
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FIG. 8. Maximum number Mmis of mismatched chain pairs AB
that can be tolerated in a training set comprising Mtrue correct
pairs while still attaining a given PPV value for partner prediction
evaluated at the total number of partners npartner = Mtest of pairs of
correct partners in the testing set. Data were generated using the
same SBM(0.025,0.02) graph with L = 100 spins per single chain
A or B as in Fig. 2, also at a sampling temperature T = 5.0. Testing
sets comprise Mtest = 500 paired chains AB, respectively, and were
randomly partitioned into species with 10 pairs AB each. Averages
over 100 realizations of the training and testing sets are shown.

training set, each protein chain A is randomly matched with
a protein chain B from the same species. A DCA model is
inferred from the resulting joint MSA of M sequence pairs
(for simplicity, the overall sequence number M is assumed
to be the same for both protein families). Next, the resulting
interaction energies Eint are used to predict new pairings
between chains A and B, but only the Nincrement predictions
with the largest energy gaps �Eint are used in order to learn
a second DCA model and to make new partner predictions.
The procedure is iterated, employing the first (n − 1)Nincrement

pairings in terms of �Eint from iteration n − 1 to build the nth
DCA model. Therefore, a growing number of paired chains is
employed to build the DCA model at each iteration. The IPA
terminates when (n − 1)Nincrement = M.

Figure 9(a) shows that for sufficiently small increment
steps Nincrement, the DCA-IPA allows us to make highly ac-
curate pairing predictions for our controlled synthetic dataset
even when starting without any training set. Furthermore, in
order to obtain such a good performance, a large enough total
dataset (large M) is required, as shown in Fig. 9(b).

Actually, the PPV of the first partner prediction based on
random within-species pairings (blue curve) is very close to
the one obtained from a dataset with a mismatch fraction
xmis = (k − 1)/k = 0.9. Indeed, a random matching leads, on
average, to one correct pair AB per species (i.e., 10% in the
case of k = 10 sequences per species), and to k − 1 mis-
matches. Given the results of the last section, the signal from
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FIG. 9. (a) PPV of pairing prediction, i.e., fraction of the pairs of
chains AB that are correctly predicted by the DCA-IPA starting from
no training set, plotted versus the increment step Nincrement. (b) PPV
of pairing prediction obtained in the initial and final iterations of the
DCA-IPA starting from no training set, plotted versus the total num-
ber of pairs in the dataset. In both panels, data are generated using the
same SBM(0.025,0.02) graph with L = 100 spins per single chain
A or B as in Fig. 2, also at a sampling temperature T = 5.0. We
then randomly extract (without replacement) a dataset from the total
generated dataset, comprising a fixed number of complete chains AB
[4000 in (a)]. The chains in this dataset are randomly partitioned
into species with 10 pairs AB each, and within each species, pairings
are blinded. Averages over 50 realizations corresponding to different
datasets are shown. The dashed line indicates the random expecta-
tion, corresponding to random within-species one-to-one matches.

the correct pairs adds more constructively than the noise from
mismatches: This favors correct partners over mismatches,
all the more that the dataset is large. Consequently, pairing
performance results significantly above random expectation
for large datasets, even when using the first DCA model.

The iterative process yields very large additional improve-
ments (red curve), in particular for large datasets. We observe
in Fig. 9(b) that the increase of PPV with dataset size is

032413-7



CARLOS A. GANDARILLA-PÉREZ et al. PHYSICAL REVIEW E 101, 032413 (2020)

10 0 10 1 10 2 10 3

Number of predicted inter-block couplings

0.0

0.2

0.4

0.6

0.8

1.0

In
te

r-
bl

oc
k 

P
P

V

Perfect predictor
Mtrain = 8000; DCA-IPA, Final
Mtrain = 8000; DCA-IPA, Iteration 1
Mtrain = 8000; DCA-IPA, Initial
Mtrain = 1000; DCA-IPA, Final
Mtrain = 1000; DCA-IPA, Iteration 1
Mtrain = 1000; DCA-IPA, Initial

FIG. 10. PPV of the inferred interblock couplings, i.e., fraction
of the top inferred interblock couplings that are actual interblock
couplings in the SBM random graph used to generate the data,
plotted versus the number of top interblock couplings considered.
Results are shown for two dataset sizes (1000 and 8000 paired chains
AB), at the initial stage, i.e., for a DCA model constructed on a
dataset of random within-species one-to-one matches, after the first
iteration, and after the final one. Data were generated using the
same SBM(0.025,0.02) graph with L = 100 spins per single chain A
or B as in Fig. 2, also at a sampling temperature T = 5.0. We then
randomly extract (without replacement) a training set from the total
generated dataset, and DCA inference is performed. Averages over
50 realizations corresponding to different datasets are shown.

more abrupt with iterations than without, in good agreement
with the sharp onset of the curves in Fig. 8, which indicated
a minimum training set size required for accurate partner
prediction, but also an immediate robustness to noise.

The IPA also allows to strongly improve the prediction
of interblock couplings, as shown in Fig. 10. Note however
that for large enough datasets, even predictions from random
matches are already much better than random, in agreement
with the stochastic matching strategy of Ref. [22].

VII. CONCLUSION

Conceptually, determining pairs of residues that are in con-
tact in the three-dimensional structure of protein complexes
and identifying interaction partners among paralogous pro-
teins from sequence data are two coupled inference problems,
which can be addressed together by DCA. In this paper, we
have employed controlled synthetic data generated by Monte
Carlo sampling of spin chains based on a stochastic block
model Hamiltonian where the two blocks represent the two
interacting proteins. This enabled us to assess the impact of
dataset size and quality on their performance. Consistently
with results obtained with natural data, we found that, pro-
vided that the training set contains ∼1000 synthetic sequences
at least, DCA accurately identifies interchain and intrachain

couplings, as well as the pairs of synthetic sequences (spin
chains) that actually come from one single chain generated
by the model, and that model interaction partners in proteins.
Furthermore, we show that mismatches between partners in
the training set deteriorates the inference of interchain cou-
plings and of other partners in a testing set, while being almost
immaterial to the inference of intrachain couplings. Both for
inference of interchain couplings and for inference of partners,
we found a quadratic scaling relating dataset quality and size
that is consistent with noise adding in square-root fashion and
signal adding linearly as dataset size is increased. This implies
that it is often good to incorporate more data even if its quality
is imperfect. An IPA, where the top-scored predictions are
gradually incorporated in the dataset employed to construct
the DCA model, is useful to further increase performance, and
allows to obtain good performance even in the absence of a
training set.

It is important to note that in our synthetic data, all cor-
relations are from actual couplings, excluding any impact of
phylogeny. This is because our aim here is to quantitatively
understand the bases of prediction of interaction partners
thanks to contacts. By contrast, correlations arising in protein
sequences due to their common evolutionary history, i.e.,
phylogeny [34–40], can contribute to the success of DCA-
based approaches at predicting protein-protein interactions
from real protein sequences [41,42], while they obscure the
identification of contacts [6,10,36], thus leading to a more
complex situation. Here, thanks to our controlled synthetic
data sampled at equilibrium using Monte Carlo simulations,
we isolated correlations from interactions from such other
signals. Incorporating phylogeny, as well as considering Potts
spins, including local fields, and incorporating the hetero-
geneity of interactions [43] would all be interesting further
directions making the synthetic data more realistic. This could
give insight into what matters most for performance in natural
protein sequence data.

Our results help to understand the success of interprotein
contact determination by DCA employing random within-
species pairings between the paralogs of two protein families
and considering the contacts appearing repeatedly in multiple
random pairings [22]. Indeed, remarkably, these very good re-
sults were obtained despite the presence of multiple incorrect
pairings, but the dataset was large (∼20 000 sequences total in
both protein families considered). Our results also shed light
on the reasons of the success of iterative DCA-based methods
at predicting interaction partners among the paralogs of ubiq-
uitous prokaryotic protein families [27,28], in particular on
the fact that predictions can be made without any training set,
starting from random within-species pairings [28]. Indeed, at
the first iteration, where random one-to-one pairings are made
within each species, the expectation of the fraction of correct
pairs is small, specifically 1/〈k〉 where 〈k〉 = M/Nspecies is
the average number of sequences per species, and Nspecies the
number of species while M is the total number of sequences.
Nevertheless, predictions become better and better during the
iterative process. The fact that signal from couplings adds
more constructively than noise, as quantitatively demonstrated
here, is one of the ingredients that explain this bootstrap-
ping of the iterative pairing algorithm. Another one is that
among pairs AB constructed by pairing a chain A and a
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chain B from the same species, correct pairs of partners
possess more neighbors in terms of sequence similarity than
incorrect pairs. Reference [28] called this the Anna Karenina
effect, in reference to the first sentence of Tolstoy’s novel.
This effect, which is strong in natural datasets [28] as well as
in datasets comprising phylogenetic correlations [42], favors
correct pairs in the iterative pairing algorithm, especially at
early iterations [28]. In natural data, we expect both of these
effects to contribute to yield good performance in predicting
interaction partners when starting without a training set.
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APPENDIX A: DATA GENERATION

We consider chains of spins generated from a Hamiltonian
with pairwise couplings between sites linked by edges in
a random graph. Therefore, the coupled sites represent the
amino acids that are in contact in the case of proteins. For
simplicity, we assume that all coupling strengths are the
same, and set them to 1, thereby setting our energy unit. The
associated Hamiltonian reads:

H (�σ ) = −
∑

(i, j)∈E
σiσ j, (A1)

where �σ = (σ1, . . . , σ2L ) is the chain of spins with total length
2L and E is the set of edges of the random graph considered.

For our random graph, we consider a stochastic block
model [33], a well-known random graph model, which is
used in statistics, machine learning, and network science to
represent modular networks. This model incorporates blocks
with different connectivities inside the blocks and across
them. Here we consider two blocks A and B, each of them
representing a protein, so that intrablock couplings represent
intraprotein contacts while interblock couplings represent in-
terprotein contacts. This allows us to incorporate the fact
that interprotein contacts tend to be sparser than intraprotein
ones. In practice, each of our two blocks comprises L = 100
vertices, yielding 200 vertices total, and edges between pairs
of vertices are chosen randomly among all possible pairs,
with fixed probabilities pintra = 0.025 inside the blocks and
pinter = 0.02 across them. We construct the random graph
once and retain it throughout. The chosen graph has 192
interblock edges and 260 intrablock edges. In order to assess
the possible impact of finite size effects, we also consider a
graph with L = 50 vertices in each block and probabilities
pintra = 0.05 inside the blocks and pinter = 0.04 across them,
so that the number of edges per vertex is the same on average
in our two graphs, ensuring similar properties such as the
phase-transition temperature.

FIG. 11. (a) Average absolute value of magnetization 〈|m|〉 plot-
ted versus the number τ of accepted spin flips. (b) Autocorrelation
of the absolute magnetization |m| [see Eq. (A3)] plotted versus the
number τ of accepted spin flips. Data were generated using the same
SBM(0.025,0.02) graph with L = 100 spins per single chain A or B
as in Fig. 2, and different sampling temperatures T were employed.
Statistical averages denoted by 〈.〉 were computed over 10 000 spin
chains.

Data are generated employing a Monte Carlo sampling
procedure according to the Hamiltonian in Eq. (A1) with the
set of edges E defined by our stochastic block model random
graph. Specifically, for each chain of spins, we start from a
random chain of spins, propose spin flips, and accept them or
not using the Metropolis criterion, i.e., all flips that lower the
energy computed according to Eq. (A1) are accepted, while
those that raise it are accepted with a probability e−�H/T

where �H is the energy variation associated to the spin flip,
while T is the sampling temperature, and we have set the
Boltzmann constant to 1. We continue flipping spins until
2000 spin flips have been accepted, which is sufficient for
the system to reach equilibrium. Indeed, the average of the
absolute value of the magnetization of the chain

m =
2L∑

i=1

σi (A2)

converges after ∼1000 accepted spin flips for all sampling
temperatures considered, as shown in Fig. 11(a). Furthermore,
∼1000 accepted spin flips are also enough to lose correlation
between an equilibrated spin chain and a further evolved one,
as shown in Fig. 11(b). Specifically, the correlation of absolute
magnetization is shown versus the number of accepted spin
flips τ in Fig. 11(b):

C|m|(τ ) = 〈|m(t )||m(t + τ )|〉 − 〈|m(t )|〉〈|m(t + τ )|〉
〈|m(t )|2〉 − 〈|m(t )|〉2

, (A3)
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FIG. 12. Histograms of magnetization m at different sampling
temperatures. Data were generated using the same SBM(0.025,0.02)
graph with L = 100 spins per single chain A or B as in Fig. 2. Each
histogram was computed over 10 000 spin chains.

where t is chosen so that equilibrium has been reached, in
practice t = 2000. Note that therefore the correlation value
does not depend on t .

An important parameter of the data generation process
is the sampling temperature T . In particular we expect a
ferromagnetic-paramagnetic transition as T is increased. This
can be seen on Fig. 11(a), as the absolute magnetization is
close to zero for small temperature and close to one for large
ones. Furthermore, Fig. 11(b) is indicative of a slowing down
of the relaxation of correlation for T close to 4.2, which hints
at a phase transition at this temperature. The phase transition
can be studied in more detail by plotting the histograms of
magnetization. As shown in Fig. 12, there is a switch between
a bimodal distribution at large absolute magnetization, either
negative or positive, for small T , corresponding to the ferro-
magnetic phase [Fig. 12(a)], and a unimodal one centered on
0 for large T [Fig. 12(c)], corresponding to the paramagnetic
phase. The value of T where the histogram of magnetization
becomes wide and flat corresponds to the phase-transition
temperature: Here it is close to T = 4.2 [Fig. 12(b)], which
matches well the slowing-down observation on Fig. 11(b).

APPENDIX B: INFERENCE METHOD

In DCA [3,6,7,10], one starts from the empirical covari-
ances measured between all pairs of sites (i, j) in the training
set: Ci j = 〈σiσ j〉 − 〈σi〉〈σ j〉, where σi represents the spin state
at site i (−1 or 1) and the average denoted by brackets ranges
over all chains of the training set. Importantly, here we are
considering complete chains AB, and i and j range from 1 to
the total length 2L of such a chain (where L is the length of
chain A or B). DCA is based on building a global statistical
model from these covariances (and the one-body frequencies)

FIG. 13. (a) PPV for interblock coupling prediction evaluated at
the total number ninter = Ninter of actual interblock couplings, plotted
versus the sampling temperature T . (b) PPV for partner prediction
evaluated at the total number of partners npartner = Mtest of pairs
of correct partners in the testing set, plotted versus the sampling
temperature T . Partners were predicted employing the Hungarian
algorithm and ranked by decreasing gap score. In both panels, the
vertical black dashed line indicates the approximate transition tem-
perature T = 4.2. In both panels, for L = 100, data were generated
using the same SBM(0.025,0.02) graph as in Fig. 2. For L = 50,
data were generated using an SBM(0.05,0.04) graph (the same one
in both panels). Training sets comprise Mtrain = 2000 paired chains
AB, and in (b), testing sets include Mtest = 500 paired chains AB,
and were randomly partitioned into species with 10 pairs AB each.
Averages over 100 realizations corresponding to different training
[and different testing sets in (b)] are shown.

[3,6,7,10], through the maximum entropy principle [5]. This
results in a 2L-body probability distribution P of observing
a given sequence (σ1, . . . , σ2L ) that reads P(σ1, . . . , σ2L ) =
exp [

∑
i< j Ji jσiσ j + ∑2L

i=1 hiσi]/Z , where Z is the partition
function and ensures normalization. This corresponds to the
Boltzmann distribution associated to an Ising model with
couplings Ji j and fields hi [3]. Inferring the coupling strengths
that appropriately reproduce the empirical covariances is a
difficult problem, known as the inverse Ising problem [2].
Within the mean-field approximation, which is employed
here, these coupling strengths can be approximated by Ji j =
−C−1

i j [7,10,45].
The effective interaction energy Eint of each possible pair

AB in the testing set, constructed by concatenating a chain A
and a chain B, can then be assessed via

Eint = −
L∑

i=1

2L∑

j=L+1

Ji jσ
A
i σ B

j . (B1)

In real proteins, approximately minimizing such a score has
proved successful at predicting interacting partners [28]. Note
that we only sum over interchain pairs (i.e., pairs of sites
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FIG. 14. PPV of the inferred intrablock couplings, i.e., fraction
of the top inferred intrablock couplings that are actual intrablock
couplings in the SBM random graph used to generate the data,
plotted versus the number of top intrablock couplings considered.
Data are generated using the same SBM(0.025,0.02) graph with
L = 100 spins per single chain A or B as in Fig. 2, also at a
sampling temperature T = 5.0. We then randomly extract (without
replacement) a training set from the total generated dataset, and
DCA inference is performed. Averages over 100 realizations cor-
responding to different training sets are shown. (a): Training sets
with no mismatches comprising different numbers Mtrain of chains
AB. (b): Training sets with total number Mtrain = 1000 of chains AB,
comprising different numbers Mmis of mismatched pairs AB.

involving one site in A and one in B) because we are interested
in interactions between A and B.

APPENDIX C: IMPACT OF SAMPLING TEMPERATURE
AND CHAIN LENGTH ON INFERENCE

Throughout this paper, we have employed a sampling
temperature T = 5 to generate data. This is slightly above the
ferromagnetic-paramagnetic transition in our model, as can
be seen on Figs. 11 and Fig. 12, which show that the phase-
transition temperature is close to T = 4.2. It is interesting to
investigate the impact of sampling temperature on the per-
formance of inference. Figure 13 demonstrates that maximal
performance for the inference of interblock couplings and of
partners is obtained close to the phase-transition temperature
and that the temperature range where performance is near
optimal is wider for interblock coupling inference [Fig. 13(a)]
than for partner inference [Fig. 13(b)]. In addition, Fig. 13
shows the robustness of our results to changing the length of
single chains A or B from L = 100 to L = 50 while simultane-
ously doubling the probabilities pintra and pinter of presence of
edges used to generate the graph, so that the number of edges
per vertex is similar in the two specific graphs considered.

APPENDIX D: PREDICTING INTRACHAIN COUPLINGS

While Fig. 2 showed the impact of training set size
and quality on the performance of inference of interblock
couplings, here we show in Fig. 14 the case of intrablock
couplings. Figure 2(a), which is obtained in the absence of
mismatched pairs in the training set, is extremely similar to
Fig. 14(a). Indeed, with perfectly paired chains AB in the
training set, we do not expect inter- and intrablock couplings
to behave differently. Furthermore, we observe no deterio-
ration of the inference of intrablock couplings due to the
mismatches in Fig. 14(b), which stands in contrast with the
case of interblock couplings shown in Fig. 2(b).

APPENDIX E: CONSTRUCTION OF THE SCALING PLOTS

In Figs. 7 and 8, we quantified the impact of dataset size
and quality on our two coupled inference tasks. Here we
explain in detail how these plots were constructed. Specifi-
cally, for each number Mtrue of correct pairs in the training
set, we investigated how many mismatched pairs Mmis can be
added to the training set while still attaining a given inference
performance, namely a given PPV, either for interblock con-
tact predictions (Fig. 7) or for pairing prediction in a testing
set (Fig. 8). To this end, for each given value of Mtrue, we

FIG. 15. PPV for partner prediction evaluated at the total number
of partners npartner = Mtest of pairs of correct partners in the testing
set, plotted versus the number Mmis of mismatched pairs AB in the
training set, for various numbers Mtrue of correct pairs in the training
set. Data were generated using the same SBM(0.025,0.02) graph with
L = 100 spins per single chain A or B as in Fig. 2, also at a sam-
pling temperature T = 5.0. Testing sets comprise Mtest = 500 paired
chains AB, respectively, and were randomly partitioned into species
with 10 pairs AB each. Averages over 100 realizations are shown.
In each realization, Mtrue correct training pairs, Mmis mismatched
training pairs and Mtest testing pairs are randomly sampled from a
large dataset of pairs.
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FIG. 16. (a) PPV for interblock coupling prediction evaluated at
the total number ninter = Ninter of actual interblock couplings plotted
versus the sampling temperature T . (b) PPV for partner prediction
evaluated at the total number of partners npartner = Mtest of pairs of
correct partners in the testing set, plotted versus the sampling temper-
ature T . Partners were predicted employing the Hungarian algorithm
and ranked by decreasing gap score. Red curves correspond to data
generated using the same SBM(0.025,0.02) graph as in Fig. 2 and
throughout. Blue, black, and yellow curves respectively correspond
to a realization of one of the three variant graphs described in
Appendix F. Training sets comprise Mtrain = 2000 paired chains
AB, and in (b), testing sets include Mtest = 500 paired chains AB
and were randomly partitioned into species with 10 pairs AB each.
Averages over 100 realizations corresponding to different training
[and different testing sets in (b)] are shown.

gradually increased Mmis and computed the corresponding
PPV, averaged over many replicates, as shown in Fig. 15.
Each replicate corresponds to a different realization of the
training set (and for partner prediction, of the testing set),
constructed by randomly picking different pairs from the large
dataset of 150 000 spin chains AB constructed as explained in
Appendix A. For each value of Mtrue, the value of Mmis such
that a given PPV is reached can be read off from these results:

In Fig. 15, it corresponds to the intersections between the
colored curves and the dashed lines.

APPENDIX F: ROBUSTNESS TO DIFFERENT GRAPH
CONNECTIVITIES

So far, we have mainly focused on one specific realization
of an SBM graph having two blocks A and B, each one with
L = 100 vertices, and intra- and interblock connectivities of
pintra = 0.025 and pinter = 0.02, respectively, and the impact
of L at constant number of edges per vertex was discussed
in Appendix C. In order to further test the robustness of
our conclusions to the values of these connectivities, and
motivated by the fact that interprotein contacts are sparse, and
often sparser than intraprotein ones, we now consider variants
of this graph:

(i) an SBM graph with the same parameters as our base-
line model (L = 100 and pintra = 0.025), except for a lower
interblock connectivity pinter = 0.005;

(ii) a graph called “Interfaces 1” where interblock cou-
plings are restricted to a random subset of sites of each block,
namely 20 sites out of 100 in each of the two blocks, and with
pinter = 0.125, thus featuring the same average number (50)
of interblock contacts as the first variant described above.

(iii) a graph called “Interfaces 2” that has the same intra-
block contacts as SBM(0.025,0.02) and 57 interblock contacts
mainly located in two small subsets of sites of each of the two
blocks.

For each of these graphs, we investigated the perfor-
mance of both inference tasks. Because the temperature of
the ferromagnetic-paramagnetic transition depends on the
graph connectivity, and because performance depends on the
difference between sampling temperature and this transition
temperature (see Appendix C), we present results as a function
of sampling temperature in Fig. 16.

Figure 16 demonstrates that while details depend on graph
structure, the overall behavior of inference performance is
the same for our two variant graphs as for our baseline
graph. Note that we approximately determined the transition
temperature for each of these graphs (as in Figs. 11 and 12),
and observed that its value strongly impacts the temperature
where performance is highest. Therefore, our main results
are robust to graph structure. Nevertheless, we observe that
the maximum PPV attained for partner prediction tends to
decrease when interblock couplings are sparser. Indeed, these
couplings have a smaller impact on the state of spins com-
pared to the intrablock ones if there are fewer of them.
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