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A model of physiological age, accompanied by nonlinear diffusion in space, is studied analytically and
numerically, and is shown to develop nonstationary traveling population waves. A window of intermediate
growth rates is found where collective supercycles are formed from individual (stochastic) life cycles. Supercycle
periods can be considerably different (larger or smaller) than the average longevities of contributing individuals,
while the time-averaged spatial expansion rate has a local maximum in the supercycling mode. A method of
adiabatic similarity solutions is used to derive dependencies of the solution parameters on source and sink
inhomogeneities, and obtain closed coupled dynamic equations for the age structure and leading and trailing
fronts. Analytical results are compared with numerically computed similarity and full solutions for several types
of population waves. We discuss possible model applications to development of lichen thallus, multiyear patterns
of agricultural crop yields, and autocorrelation of locust swarming.
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I. INTRODUCTION

Spontaneously synchronized oscillations in mixtures of
organic molecules are currently hypothesized to be a precursor
of life [1,2]. At different levels of biological aggregation, be it
cells, cellular organisms, or groups of organisms, one finds ex-
amples of recurrent cycles—which are not necessarily strictly
periodic but exhibit considerable cycle elasticity. Historical
data exist in the literature for some of these cycles. We will
confine ourselves with three examples below. Lichen colonies
of Parmelia conspersa may display periodic thallus growth
with a period of several weeks [3]. Many agricultural yields
display striking multiyear patterns [4,5]. Swarming of locusts
in eastern Australia [6], although not at all periodic, displays
significant autocorrelation with peak-to-peak lags of several
years, despite all the control efforts.

In the absence of any obvious external drivers or internal
“dedicated clocks,” these cycles suggest flexible interorgan-
ism regulation, and the key question is—How does a re-
current behavior emerge from the lower scale life cycles of
the involved organisms or cells, a behavior which is clearly
robust while being different from these lower-level variable
life cycles?

We use the term “cells” here to refer to individual live
agents, which could literally be independent motile cells, such
as bacteria, but could also entirely depend on hosts for trans-
port as viruses do [7,8], or to be multicellular organisms, such
as swarming insects [9] or plants and their fruits, exhibiting
cycles [4]. Synchronization by collective transport is charac-
teristic of relatively early stages of collective organization,
when cell density is small as compared to close packing.

Here we analyze theoretically a model of collective cell
behavior and pattern formation on timescales not reducible
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to the duration of individual life cycles. There are, in
principle, several approaches at hand. First, collective and
self-organized motion of interacting agents in swarms, and
flocking mechanisms are often described micro- and meso-
scopically by means of particle- or agent-based models [10].
These models can satisfactorily account for different aspects
of the aggregated motion of elementary agents, but none
of them, to our knowledge, contemplates the emergence
of temporal supercycles from steady-moving waves. Peri-
odic traveling population waves can be modeled via two-
species reaction-diffusion systems of equations [11], which
are capable, as in chemically reactive species, to account
for cyclic spatiotemporal patterns characterized by population
synchronicities across the spatial domain. However, there is
no net propagation of individuals in these waves, limiting their
biological applications. A different class of models is based on
the generalization of the Kolmogorov-Petrovsky-Piskunov-
Fisher (KPPF) equation [12,13], a type of reaction-diffusion
equation which produces steady state patterns after inclusion
of nonlocal competition terms, with both linear and nonlinear
diffusion [14,15]. Beyond pure random motion, the chosen
form of nonlinear diffusion may boost (superdiffusion) or
hinder (subdiffusion) individual displacements depending on
the local population density, favoring the mobility of some
cohorts with respect to others, to avoid or enhance crowd-
ing. Nonlinear diffusion plays an important role in spatially
inhomogeneous population dynamics [16] and has been used
to model insect dispersal [17] and bacterial chemotaxis [18].
Here we will show theoretically how, combined with a nonlo-
cal functional dependence plus physiological aging variabil-
ity, nonlinear diffusion may give rise to a rich phenomenology,
which includes self-organized swarming aging structures.

In what follows we will use the notion of physiological
age of individual cells or organisms as a measure of the phase
or stage of the individual life cycle. This age was introduced
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by VanSickle as “some measure of maturity or physiological
development of individuals in a population . . . [such as]
chronological age, body size, chemical composition or any
other physiological feature which is an accurate indicator of
an individuals reproductive status and potential for survival”
[19]. VanSickle considered a deterministic physiological age
which had its own accumulation rate. The chronological
age was recovered if the growth rate is 1. In VanSickle’s
approach, a distribution of deterministic physiological rates
encounters a problem with multiple stages or development:
with a deterministic rate one can predict the timing of the
future stages, including death, based upon the time it took to
achieve past stages.

We have previously studied the variability of physiological
age in a stochastic setting. An age-resolved population dy-
namics in space and time was introduced for Proteus mirabilis
[20]. This paper contained analysis of a model where variable
age-resolved population is described by an integro-differential
equation. The model bore mathematical similarities to the
Boltzmann kinetic equation in the theory of ideal gases and
was termed “kinetic.” A corresponding minimal model with-
out integral terms, and with potentially broader applicability,
was presented in Ref. [21], where the diffusion (Fokker-
Planck) approximation was introduced along the age axis
for age-structured populations. The present paper contains a
quantitative study of pulsating waves or “supercycles” in the
diffusion approximation along the age axis and discusses its
potential applications.

To aid with the analytical study, we use a method of para-
metrically driven similarity solutions, based on their stability
[22]. In this method, the evolution under the influence of slow
external changes in the population is projected on similarity
solutions with adiabatically updated parameters.

II. THE MODEL

A multicellular organism controls birth, development and
apoptosis of individual cells. This is a flexible control which,
to some extent, has to tolerate individual advances and delays
of cell development. Groups of cells forming internal struc-
tural elements may pass through different development phases
at different times. For modeling purposes we assume that each
element, be it a cell, or a group of cells (we call these elements
cells until noted otherwise), has a life trajectory which can be
parameterized quantitatively by the physiological age θ . The
properties of this variable are as follows. When an observer
is presented with a group of individuals born at the same
time, she may conclude that the individuals appear to be
at somewhat different physiological stages, and continue to
mature differently at any chronological age. For example,
the onset of flowering in a grove may vary by several days
[23] depending on the tree, or even vary by several weeks,
depending on the species [24].

A. Physiological stages

In discrete time setting, t/�t = 0, 1, 2, . . ., the physiolog-
ical age θt advances as

θt+�t = θt + a0 + a1z, (1)

where a0, a1 > 0 are constants and z is a Bernoulli vari-
able, having values 1 and 0 with probabilities p and 1 − p,
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FIG. 1. Evolution of the leading (solid lines) and trailing (dashed
lines) fronts depending on initial conditions and growth rates, as
obtained by numerical integration of Eqs. (5) and (6). Parameters:
m = 4, θ0 = 1, θe = 2, D0 = 1, a = 0.005, w0 = 1, n0 = 1. Blue
lines correspond to a peaked initial condition n(θ, x, 0) = N0δ(θ −
θ0/2) (δ being the Dirac δ function), with N0 = 10, and x � w0.
Green lines correspond to the uniform initial condition n(θ, x, 0) =
N0/θ0, with N0 = 0.3, and x � w0. In all cases n(θ, x, 0) = 0 for
x > w0.

respectively. If time step �t is sufficiently small for a given
time t , the limit of this process, is a sum of drift and diffusion,
θt = (a0 + a1 p)(t/�t ) + a1Z[p(1 − p)(t/�t )]1/2, where Z is
a standard normal random variable. Since the scale of phys-
iological age θ is arbitrary at this point, we may adjust it
by dividing over (a0 + a1 p)/�t so that the average advance
of the parameter is the same as that of the chronological
time. As for the adjusted variability, in the continuous limit,
it comes from a diffusion term with diffusivity a = a2

1 p(1 −
p)/[2�t (a0 + a1 p)2].

The variability of physiological aging grows here as a
square root of time, based on linear diffusion of θ . This is
closer to observations than VanSickle’s distributed determin-
istic physiological aging where deviations grow linearly in
time; see, e.g., Fig. 1 and Table 1 (for age groups less than
60 years old) in Ref. [25]. The diffusivity, a, has units of time.
For example, in olive orchards, the physiological age diffusion
“length,” (2at )1/2, reaches about a week, over 250 days (to
account for winter dormancy),

√
2 × a × 250 = 7 gives a of

about one-tenth of a day.
With insects, such as the South American locust Schis-

tocerca cancellata, in controlled laboratory conditions, the
duration of adult female and male stages were measured to
be 87 ± 35 and 90 ± 27 days, respectively [26]. This gives
much larger age diffusivity values of a ∼ 7 days for female
and a ∼ 4 days for male stages.

In the continuous setting, a modeled cell with physiological
age θ and spatial coordinate x will proceed as

dθ = dt + √
2a dW1, (2)

dx = √
2D dW2, (3)
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where D is spatial diffusivity, and W1,2 are corresponding
Wiener processes. The Fokker-Planck equation for the proba-
bility of a cell having a given age θ at x is [27]

∂P

∂t
+ ∂P

∂θ
= ∂

∂x

[
D

∂P

∂x

]
+ ∂

∂θ

[
a
∂P

∂θ

]
. (4)

The 2D density of cells in (x, θ ) is obtained by multiplying
this probability P by the total number of cells.

B. Model equations

For modeling the propagating population front we have
considered the following ingredients:

(i) The underlying organization, at the cell level, is the cell
cycle expectancy, θe, which comprises two alternating stages.
These are the motile phase and the nonmotile phase. They can
also be named individual phase and collective phase. In this
analysis, both phases are of equal duration, although other
choices are possible.

(ii) Physiological maturity is not a deterministic process
but can be accelerated or delayed, according to the physiolog-
ical age diffusivity a.

(iii) The motile phase is characterized by nonzero spatial
diffusivity. At age 0 cells are not motile. As they grow older
and reach θ0, they acquire the ability to spatially diffuse. The
diffusion coefficient will depend nonlinearly on cell density,
and its form fosters collective migration. If the total “cell”
density is too high (cutoff n0) cells freeze. When we speak
about “rebirth,” we mean a simple clock reset to θ = 0, at
which individual motility ceases. These choices are discussed
more in detail below.

(iv) Whether the individual cell dies physically or not after
the motile, collective phase, is not the key issue. The key is
that mobility ceases for these cells, their clock is reset, and we
say that they “regain individuality.” An example of this be-
havior at the cell level of organization is the Proteus mirabilis
swarmers. At the ecological level, the locust outbreaks. Please
note that neither cells nor insects die after their respective
motile (or collective) phase ceases.

(v) At any time, cells reproduce with Malthusian rate
and their offspring inherit their age, which mostly implies
their state, either individual or collective. While offspring
born with the age of their parents may seem an awkward
artifact, think only that the age of offspring when unicellular
organisms replicate is undefined. Moreover, in the Proteus
mirabilis bacterial system, it has been shown that cell aggre-
gates (swarmers), consisting of several nuclei, continue expo-
nential growth of their bodies without septating. Locusts do
not replicate like unicellular organisms either, but following
instead a complex developmental process. However, insects
born within a gregarious phase group together as soon as they
start to feed. That means, they are not first isolated, randomly
moving and feeding individuals (immobile phase) and later
they become mobile locusts. Contrarily, nymphs born in the
band stay and march within [28]. We may assume then, that
locusts’ offspring are born “locusts,” because they move with
the band as soon as eggs hatch and need to feed themselves.

(vi) We will be focusing on the properties of the pop-
ulation in the vicinity of a leading front, where abundance
of “nutrient” is assumed. This is the case for early growth

mechanisms, well represented by means of a Malthusian
parameter, a simple but appropriate model which we will
consider here. In standard microbiological tests for instance,
many generations of cells can be supported before nutrients
are exhausted. With this in mind, presently we will not
account for cell mortality. Other growth dynamics, like the
logistic model, might be considered, but under certain range
of parameters the dynamics presented here will be recovered.

(vii) Models in the literature sometimes require that a gra-
dient in nutrient concentration (chemotaxis) promotes faster
growth of the fronts [18] where cells have easier access to the
nutrients, following the Keller-Segel model [29]. Under the
assumption of unlimited access to nutrients at the propagating
front, here we do not consider these effects.

(viii) Last, we must bear in mind that this is a population
model: none of the individual lives is represented by the model
equation any better than the trajectory of one single water
molecule is represented by the Navier-Stokes equations.

Growth and diffusion are very elementary mechanisms.
Growth is related to the need of expansion and colonizing
new spaces, and isotropic diffusion—however, nonlinear and
nonlocal, is the most general mechanism at hand to explore
the new surroundings for whatever purpose: mating, feeding,
dispersing seeds, or maturing and growing, that is, occupying
previously empty spaces.

Consider Malthusian growth of a population in presence
of variable physiological stages, “rebirth” (as a switching
mechanism between them) and nonlinear spatial diffusiv-
ity. Topologically, the physiological age θ , 0 � θ � θe is a
transport process on a circle, S, with average drift of aging
accompanied by a natural variability around it [30]. The age θ

axis here is therefore proportional to the angle of cylindrical
coordinates, the proportionality coefficient being the constant
radius of the cylinder, θe/2π . The collective transport in space
is a process defined in Rd , so in a one-dimensional setting,
−∞ < x < ∞, the model is posed on a cylinder, S × R1,
with time t � 0.

The model equation for the time evolution of the popula-
tion density, n(x, θ, t ) reads as follows:

∂n

∂t
+ ∂n

∂θ
= ∂

∂x

[
D(n)

∂n

∂x

]
+ a

∂2n

∂θ2
+ γ n. (5)

The field n describes cells of a multicellular organism (such
as a plant) whose parts have average life expectancy cell-
cycle expectancy θe and physiological variability a. Unless
explicitly stated to the contrary, we will be working with a
nonlinear spatial diffusivity,

D(n, θ ) = D0 f (η)H (θ − θ0), (6)

with H being the Heaviside step function, and

η = 1

n0

∫ θe

θ0

ndθ, f (η) =
{
ηm, η < 1
0, η � 1, (7)

which favors collective migration or “quorum sensing.” Here
m > 0 and θ0 is the age when cells acquire motility, 0 < θ0 <

θe. The lower limit of the integral (7) may be set to a different
value within the interval [0, θe], the results being qualitatively
similar.
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Our choice of spatial diffusion D(n) prioritizes two essen-
tial modeling elements:

(1) The case where a density increase enhances diffu-
sion, as in models of insect dispersal [17], where D(n) =
D0(n/n0)m for an age-independent density n. Migration of in-
sects is generally contingent on crowding [31]. Such nonlinear
diffusion coefficient assumes that without insects there is no
diffusion, implying a front profile that goes steeply to zero,
with a divergent slope for m > 1, supported by experimental
observations in bacterial colonies. Studies of locust swarms
[28,32] reveal that individuals at the leading front (where
density is smaller than in the bulk) slow down and turn more
often towards those behind. This behavior reduces their net
displacement in comparison to the rest of the marching band
(i.e., smaller diffusivity), serves to maintain cohesion, and
creates a dense front.

(2) The diffusivity cutoff in Eq. (6) set at a concentration
n0, is consistent with the objective of the nonlinear or col-
lective transport to occupy new areas which are challenging
for individuals. When this goal is accomplished, reproduction
is attempted and spatial mobility is no longer favored. In
other words, slowing down is associated with density and
reproduction. Indeed, the internal regions of Proteus mirabilis
colonies are immobile, while their concentration of cells is
the highest [33]. Growth inside the central part of lichen
colonies is arrested; see Sec. VI A. Mosquitoes, locusts, etc
aggregate for ovipositioning, during which they do not mi-
grate. Migratory birds move in flocks, which require a certain
density. They have specialized habitats for breeding where
they form dense colonies, and cease migration while breeding
[34]. Notwithstanding the above, inside the colony, away from
the leading front, at yet higher densities one might expect a
density-dependent decline of reproduction [12,13,17] due to
nutrient shortages, build-up of by-products, etc. These pro-
cesses are not considered here. Due to the diffusivity cutoff,
the population beyond n0 does not contribute to the spatial
dynamics of the colony. We thus expect an active band of
cells, contained in the spatial region where the diffusivity is
nonzero: between the leading front, x0(t ), defined by absence
of cells ahead, and the trailing front, x1(t ), where mobility
ceases due to the diffusivity cutoff at n = n0.

III. NUMERICAL SIMULATION

We first integrate Eqs. (5) and (6) numerically, in the (x, θ )
domain, using centered finite differences and explicit integra-
tion in time. A fifth-order WENO scheme is used for the age
advection term, to model sharp age profiles at vanishing age
diffusivity when needed (for larger age diffusivities, a simple
second-order advection scheme is sufficient). The Courant
number is 0.8. Spatial and age diffusion terms are handled by
a second-order scheme. The grid is uniform in both directions,
with step sizes �x, �θ . To resolve cusps near the fronts one
need small spatial steps, hence small time steps. The age axis,
0 � θ � θe, is a ring, whereas the spatial domain has its upper
limit set to a value well ahead of the leading front x0 so that
in simulation time it never interacts with the boundary. Due
to the mobility cutoff n0, the only portion of the population
which is of interest here is that contained between the leading
and the trailing fronts (see discussion in the previous section),

i.e., inside the interval x1(t ) � x � x0(t ). Initially, N0 cells
are born at time t = 0 uniformly in the interval, x1(0) = 0,
x0(0) = w0 and the initial distribution is such that the trailing
front is x1(0) = 0. With the explicit scheme, in addition to the
CFL condition, both age and spatial diffusion limit the time
step for stability, �t � min [(�x)2/4D0, (�θ )2/4a]. Due to
C0 continuity, tracking of the moving front requires rather
small step sizes �x. This turns Eq. (5) into a stiff problem.
Our MATLAB code is available to the reader as Supplemental
Material [35].

Figure 1 shows representative trajectories of the leading
and trailing fronts in time for two types of initial conditions
(peaked and uniform) and different values of the growth
parameter γ0.

Slower growth rates γ0 are shown in the left panel of
Fig. 1, with the transition from linear growth (γ0 = 1) to
supercycles. At γ0 = 1 the long-term asymptotic is linear
growth. Oscillations of the peaked initial condition are only
a transient, albeit a persistent one; the cells will eventually
smooth out to a constant speed when peaked cells diffuse over
the entire age axis, at times t ≈ θ2

e /a = 800. At γ0 = 5 the
long-term asymptotic is supercycles, regardless of the initial
condition. Higher growth rates γ0 are shown in the right panel
(note the change of the y scale). In cases when supercycles are
formed, one can see by counting the number of oscillations,
that the cycle period depends on the growth rate, γ0, and it is
not equal to the life cycle span of individual cells (θe = 2 is
the same for all plots). The supercycle period may be lesser
(left panel) or greater (right panel) than θe, depending on
parameters. In particular, we show that for γ0 = 85, the period
is T ≈ 2.751θe, and for γ0 = 102 is ≈5.22θe. One can also see
a systematic decrease of relative durations of consolidation
phases, although we chose the motility threshold to be in the
middle of the age interval, 2θ0 = θe.

These numerical results suggest that different types of
asymptotic solutions may be obtained, depending on the
parameters. In the case γ0 = 1, the steady-moving fronts are
faster than pulsating fronts. In other cases, the converse is
true: even age-uniform initial conditions develop supercycles,
and pulsating fronts advance faster than the steady-moving
wave, in agreement with Saarloos marginal stability [36]. In
the case γ0 = 5 one can see additional inflection points on
the front trajectories, hinting on different types of supercycles.
Finally, if the growth rate, γ0, is further increased, the period
of supercycles increases until a linear growth in space is
apparently recovered; see Sec. V.

We now introduce a method of parametrically driven sim-
ilarity solutions, to obtain a closed system of ODEs for the
propagating fronts. The reader not interested in theory and
methodology may entirely dismiss Sec. IV.

In what follows, the 2D density n(x, θ, t ) is referred to as
“density,” the 1D density N (θ, t ) = ∫

n(x, θ, t ) dx is called
age density, and the 1D density n(x, t ) = ∫

n(x, θ, t ) dθ is
called concentration. The quantity N(t ) = ∫

n(x, θ, t ) dx de-
notes the total number of cells.

IV. PARAMETRICALLY DRIVEN
SIMILARITY SOLUTIONS

The method presented here is valid when spatial transport
is fast as compared to the source-sink terms.

032412-4



SYNCHRONIZATION OF LIFE CYCLES BY COLLECTIVE … PHYSICAL REVIEW E 101, 032412 (2020)

A. Age-independent dynamics

Consider first the age-independent case, where there is no
concentration cutoff for cell motility, no motility threshold,
θ0 = 0, and no age diffusion, a = 0, so that the nonlinear dif-
fusivity Eq. (6) in this case is age-independent. We introduce,
however, time-dependent growth rates γ (t ) > 0. Integrating
Eq. (5) over the θ axis, we obtain

n(x, t ) =
∫ θe

0
n(x, t, θ ) dθ,

∂n

∂t
= ∂

∂x

[
D(n)

∂n

∂x

]
+ γ n.

(8)

With unrestricted nonlinear diffusivity, this equation may be
integrated for an arbitrary growth rate γ (t ) and the concentra-
tion profile n(x, t ), is given by a hull-shaped even function of
x, with finite support, |x| � x0(τ ), as derived in Appendix A,

n(x, t ) = Ah(t )

x0(τ )

[
1 − x2

x2
0 (τ )

]1/m

. (9)

where A is an integration constant, and

τ =
∫ t

t0

hm(t1) dt1, log h =
∫ t

t0

γ (t1) dt1. (10)

Here t0 is an arbitrary initial time, when the initial concentra-
tion profile has been forgotten. The point in space where n = 0
defines the leading front of the wave, x0(τ ), which satisfies the
first-order ODE (see the Appendices for details)

x′
0

x0
= 2D0Am

mnm
0 xm+2

0

, (11)

giving the solution

x0(τ ) =
[

2(m + 2)D0Amτ

mnm
0

]1/(m+2)

. (12)

Since D(n) = D0(n/n0)m, nonlinear diffusion is faster in
dense regions than at lower concentrations, thus the leading
front becomes the bottleneck of expansion. As a result, the
solution is governed by the front motion, and this regime
is different from regular diffusion, which propagates as the
square root of time. Integrating this profile from −x0(τ )
to x0(τ ) we find 2N0h(t ) = bAh(t ) (2N0 is the initial total
number of particles, or N0 for each half-axis), which fixes the
integration constant,

A = 2N0

b
. (13)

Here b is expressed through the β function,

b = B

(
1

2
,

1

m
+ 1

)
. (14)

Formulas (9), (12), and (13) define the intermediate asymp-
totics or similarity solution. This solution forms a two-
parameter family, with the first parameter being the initial
total number of cells, N(0) = 2N0, and the second parameter
being an initial time, t0, which enters through the integration
limits in Eq. (10). Functions τ (t ) and h(t ) are expressed
through the growth rate term and for the simplest case of pure
nonlinear diffusion (γ = 0), one should set h = 1, τ = t .

B. Diffusion lengths and parametrically driven
similarity approximation

Consider the case of pure nonlinear diffusion, γ = 0, τ =
t . As one can see from Eq. (9) the local diffusivity (which is
proportional to nm) has a parabolic profile inside the domain
−x0 � x � x0,

D(x, t ) = D0

[
2N0

x0(t )bn0

]m[
1 − x2

x2
0 (t )

]
. (15)

It is instructive to compare the diffusion length, L(x, t ) as-
sociated with this diffusivity and the population size, x0.
Taking the maximal value of the diffusivity at x = 0 and using
Eq. (12), we find

L(0, t )

x0(t )
= 21/2

x0(t )

[∫ t

t0

D(0, t1) dt1

]1/2

=
√

m

2
. (16)

For strong nonlinearity, m � 1, the diffusion length greatly
exceeds the support of the distribution, x0(t ). Correspond-
ingly, the concentration profile inside the occupied domain,
Eq. (9), is almost uniform. If the diffusion length exceeds
the domain size many times over, under conditions of de-
creasing diffusivity, D(0, t ) ∝ t−m/(m+2), the equilibration of
the similarity profile should be quick. To get a timescale
perspective on this, let’s compute the time tx it takes for cells
with diffusivity D(0, t ) to expand over the distance x0(t ).
Using Eq. (16), with integration ending at L(0, tx ) = x0(t ), we
obtain

tx
t

=
(

2

m

)(m+2)/2

, (17)

which displays a super exponential m dependence, and implies
that for large m the similarity solution, if perturbed, is quickly
restored.

Close to the leading front, at any point inside, |x| < x0(t ),
�x = x0 − |x| 	 x0(t ), the local diffusion length L(x, t ), al-
though getting small, L(x, t ) 	 L(0, t ), still greatly exceeds
the distance to the front, L(x, t ) � �x. Indeed, the diffusivity
there may be approximated by D(x, t ) 
 2D(0, t )(�x/x0),
and the ratio of the diffusion length to the spatial scale is
L(x, t )/�x 
 m1/2. It exceeds the right-hand side of Eq. (16)
by a factor of

√
2.

This has consequences for the stability of the similarity
solution, Eq. (9). Such stability has been studied in Ref. [22]
and later in Ref. [37]. Corrections to the leading order, n ∼
N0/x0(t ) ∝ t−1/(m+2) were found to decay slowly, bounded by
estimates O[t−(3m+4)/(m+2)] and O[t (m+3)/(m+2)], respectively,
depending on the support of the initial condition [38]. In our
case, with large m and compact support, the stability of the
similarity solution significantly improves. Inside the main part
of the concentration hull, where n(0, t ) − n(x, t ) 	 n(0, t )
and D(0, t ) − D(x, t ) 	 D(0, t ), the stability is bounded by
the first eigenmode of the linear diffusion problem with dif-
fusivity minx {D(x, t )}. This eigenmode has an exponential
decay, exp(−cL2/x2

0 ) = e−cm, where c is some number, and
we used Eq. (16). Close to the boundary, the same could
be said about relaxation at small intervals, �x. These esti-
mates support the stability of the similarity solution and lead
to a parametrically driven similarity approximation where
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the parameters are slowly affected by the inhomogeneous
source/sink terms added to the nonlinear diffusion equation.

Consider the implications of a large diffusion length
(hence, short diffusion times), when the number of particles
is slightly perturbed externally. When time makes a step
dt , N(t + dt ) cells are mobile, and they occupy the domain
−x0 � x � x0 which was prepared for them prior to this
time step. For large nonlinearity m, these cells diffuse around
to become almost uniformly distributed with concentration
N(t + dt )/bx0. Note that

lim
m→∞b = lim

m→∞B

(
1

2
,

1

m
+ 1

)
= 2. (18)

From the similarity solution viewpoint, the cells constituting
N(t + dt ) are effectively plugged into a certain evolution time
frame, where the elapsed time is adjusted to match a slightly
modified similarity scenario. In this scenario, the same size
x0(t ) is achieved with the number of mobile cells N(t + dt ).
As a result, the elapsed time t is adjusted by the value of a time
offset, t − tof . The width x0 of the adjusted similarity solution
can no longer be given by Eq. (12) [with A 
 N(t )/b from
Eq. (13)], since x0(t ) is dependent on the entire history of the
time-dependent concentration N(t ) and offset tof . One has to
return to Eq. (11), which now reads

dxm+2
0 (t )

dt
= 2(m + 2)D0N

m(t )

m(bn0)m
. (19)

Note that this equation does not explicitly contain the time
t , nor the time offset tof . Therefore, the region of validity
of Eq. (19) should be larger: it should remain valid for a
time-dependent total number of cells, as long as this number
changes relatively slowly, in terms of diffusion times inside
the hull.

To see this, let’s compare the exact solution obtained in
Sec. IV A with this approximation. Here cells are added
not locally, with a growth rate γ , but globally, through the
time-dependent total number of cells. This number, N(t ),
changes more slowly than the relaxation time of the similarity
solution tx, Eq. (17). If we start from a pure nonlinear diffusion
problem which has 2N0 cells and no growth term, its domain
size x0 is given by

x0(t ) =
[

2(m + 2)D0N(0)mt

m(bn0)m

]1/(m+2)

. (20)

Plugging here the total number of cells of the problem with
the growth term included, i.e., substituting N = 2N0h(t ) for
N0, does not recover Eq. (12). Instead of τ (t ), one incorrectly
obtains thm(t ). However, if the differential equation (19) is
used, one finds

xm+2
0 (t ) = 2m+1(m + 2)D0Nm

0

m(bn0)m

∫ t

t0

hm(t1) dt1

= 2m+1(m + 2)D0Nm
0 τ (t )

m(bn0)m
, (21)

which matches Eq. (12), after using Eq. (13). Here it is again
assumed [cf. Eq. (16)] that the lower limit of integration is
such that the localized initial condition is forgotten.

To summarize, fast diffusion and slow hull expansion at
m � 1 form the basis of what we call parametrically driven

similarity approximation. It greatly simplifies the analysis, by
reducing the study of a nonlinear PDE for the concentration
profile to solving an ODE for the location of the moving
fronts. The essence of this approximation is to evolve the
population through a set of similarity solutions, by properly
adjusting the solution parameters in time. It is similar to
other “adiabatic” invariants, such as adiabatic invariants in
Hamiltonian systems [39].

C. Differential equations for both fronts

Still under the assumption of age-independent dynamics,
we now add back the spatial diffusivity cutoff, Eq. (6). This
vanishing spatial diffusivity precludes cells at n � n0 from
participating in the front movement, and their subsequent
evolution is irrelevant for the front region.

For a population wave advancing to the right on x axis,
the leading front moves with the speed dx0/dt defined as the
speed of the rightmost point, where n(x0, t ) = 0, while the
trailing front moves with speed dx1/dt , defined as the speed
of the rightmost point where n(x1, t ) = n0. Integrating Eq. (8)
from x1 to x0, and using the formula

dN

dt
= d

dt

∫ x0(t )

x1(t )
n(x, t ) dx

=
∫ x0(t )

x1(t )

∂n

∂t
dx + n(x0, t )

dx0

dt
− n(x1, t )

dx1

dt

=
∫ x0(t )

x1(t )

∂n

∂t
dx − n0

dx1

dt
, (22)

we get

N′ = γ (t )N − n0x′
1(t ), (23)

where the prime denotes the time derivative d/dt . This equa-
tion is exact. Now, if changes in x1(t ) are slow enough to
preserve the applicability of the parametrically driven simi-
larity solution, the propagation of the leading front is given
by the approximation (19) with the following change: the
point x1(t ), where the diffusion flux vanishes, now plays the
role of the point x = 0 of the previous section. Writing the
left-hand side of Eq. (19) as (m + 2)xm+1

0 x′
0 we should replace

x0(t ) → x0(t ) − x1(t ) in the term xm+1
0 , but not in the term x′

0.
Then

(x0 − x1)m+1x′
0 = 2D0(2N)m

m(n0b)m
. (24)

The normalization condition Eq. (13) is also applicable, in the
form x0 − x1 = 2N/n0b. Equation (24) then becomes

x′
0 = D0n0b

mN
, (25)

and, therefore,

x′
1 = D0n0b

mN
− 2N′

n0b
. (26)

Now, using Eq. (23), we get a closed equation for the total
number of cells,

2 − b

b
N′ = −γ (t )N + D0n2

0b

mN
, (27)
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and multiplying by N,

2 − b

2b
(N2)′ + γ (t )N2 = D0n2

0b

m
, (28)

one finds a closed linear mean-reverting ODE for N2(t ), with
solution

N2(t ) = N2
0 e−φ(t ) + 2D0n2

0b2

m(2 − b)

∫ t

t0

eφ(t1 )−φ(t )dt1, (29)

φ(t ) = 2b

2 − b

∫ t

t0

γ (ξ )dξ . (30)

For nonsteady motion of the fronts, Eq. (28) for N(t ) may
be substituted back into Eqs. (25), (26), with the wave width,
x0 − x1 = 2N/n0b. As one can see, Eq. (27) inverts source
and sink signs. The origin of this property may be traced to
the number of cells needed to maintain sustainable growth
given the growth rate; see also Eq. (35) below. Note that
(i) additional sources decrease the number of cells in the
wave, and vice versa, while (ii) an increase in the growth
rate γ speeds up mean reversion. These properties, if they are
observed in population waves or swarms, could aid to model
applications.

Derivation of Eq. (28) was based on the assumption that
both fronts either move in the direction of the overall wave
propagation, x′

0(t ) > 0, or at least remain static, x′
1(t ) � 0.

The right-hand side of Eq. (25) is positive, and the leading
front, x0(t ), moves as assumed. However the right-hand side
of Eq. (26) for the trailing front x1(t ), may change sign.
When this happens, the trailing front stops. The diffusivity
is zero behind it, and therefore the trailing front cannot go
backward. Under these conditions Eq. (26) is no longer valid,
and one has to revert to the exact equation Eq. (23) with
x′

1 = 0. To analyze this situation, one has to go back to the
nonsaturated case, n < n0, and revisit the front motion along
with the maximal concentration dynamics, nm(t ) = n(0, t ).
Within our parametrically driven similarity approximation,
the normalization condition reads in this case

2N = bnm(x0 − x1). (31)

This relation can be substituted into Eq. (24) for the leading
front, which becomes

x′
0 = D0n0b

mN

(
nm

n0

)m+1

. (32)

We again find a closed system of ODEs for x0(t ), nm(t ) and
N(t ), i.e., Eqs. (32), (31), and (23), where x1 is constant. The
latter is reduced to N′ = γN, since the trailing front is at rest.

It is straightforward to check our parametrically driven
similarity approximation against exact similarity solutions in
cases when the latter are available. This is discussed for the
case of a steady-moving solution for a constant rate γ (t ) = γ0,
and a “square-root-in-time” solution for a slowing wave with
γ1 = β/t ; both cases are stable asymptotics, recovered by
setting N′ = 0, in Eq. (27).

1. Wave traveling with constant speed

For a constant growth rate γ = γ0 > 0, supplied with a
diffusivity cutoff, Eq. (8) has a steady traveling wave solution.

One can make use of the substitution

n(x, t ) = n0η(z), z = v(x − vt )

D0
, (33)

where length is measured in units of D0/v and time in units of
D0/v

2. Equation (8) then reads

η′ + ( f η′)′ + κη = 0, (34)

with the rescaled growth parameter κ ≡ γ0D0/v
2 and f (η)

given in Eq. (6). Unlike Eq. (A7), Eq. (34) possesses transla-
tional invariance, as it should be for a steady-moving wave.
The analytical solution of Eq. (34) is unavailable. We give
details on the numerical solution in Appendix B. These nu-
merical results can be compared with those obtained using
the parametrically driven similarity approximation developed
above. To establish steady motion of the fronts with speed v,
we set N′ = 0 in (28), and find

x0 − x1 = 2N0

bn0
, v = v0 ≡ γ0N0

n0
, N2

0 = D0b

mγ0
n2

0. (35)

The front moves with the speed given by the diffusion length
over the timescale associated with the inverse growth rate. As
the growth rate γ0 increases, the speed of the population wave
also increases as γ

1/2
0 , while its width and the number of cells

both decrease as γ
−1/2
0 , thus keeping the concentration inside

close to n0 and independent o γ0.
Let us compare the concentration profile of the similarity

solution and Eq. (34). One can see that sufficiently close to
the fronts the exact solution is well described by the similarity
approximation (35), for any m. Indeed, with the dimensionless
units of this subsection, the length of the half-hull is (to
leading order, m−1) vx0/D0 = 2/m, and Eq. (9) reads

η(x′) =
(

1 − m2x′2

4

)1/m

, x � 2

m
, κ0 = m

b
. (36)

In the vicinity of the leading front ε = 2/m − x′ 	 1 we have

η = (mε)1/m. (37)

This asymptotic form satisfies Eq. (34) near the leading front,
η′ = (ηmη′)′ with η(0) = 0, where the slopes are high, and the
source term is irrelevant. On the trailing front, the concentra-
tion profile is almost flat, and (36) reduces to η = 1 − mx′2/4,
x′ 	 1. This asymptotic form satisfies 0 = κη + (ηmη′)′, i.e.,
Eq. (34) without the velocity term. If m � 1, an additional
study shows that the approximate profile Eq. (36) is close
to the solution of Eq. (34) everywhere between the fronts,
including the region where all three terms are of the same
order. Figures 2 and 3 compare numerical values for the speed,
front width, and concentration profile with analytical formulas
obtained by means of the parametrically driven similarity
approximation.

2. Slowing wave

In this example, we consider time-dependent growth rates
of the type, γ (t ) = β/t , β > 0. With unrestricted diffusion,
the population follows a power law, N(t ) = 2N0(t/t0)β , and
so does the population size, x0 ∝ t/t0)(mβ+1)/(m+2) (for details
see Appendix C). It can be shown that the diffusivity cutoff
matters for β > 1/2, and leads to a slowing-down population
wave, generating a cutoff concentration n0 behind the trailing
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FIG. 2. Comparison of the dimensionless velocity selection
κ0(m) (a) and the dimensionless front width x0(m) (b) for a steady-
moving front, obtained by numerical integration of Eq. (34) (red solid
curve), and the similarity approximations (blue dashed curve) given,
respectively, by κ0 = m[B( 1

2 , 1
m + 1)]−1 and x0 = 2/m. Asymptotic

analysis and numerical analysis both show that the leading asymp-
totic behavior of the entire solution of (34) is the same as (9) at large
m, and represents a good approximation even at m ∼ 1.

front. This motivates the use of n(x, t ) = n0g(z). Lengths are
measured in units of L, and times in units of c2L2/D0, where
c is an adjustable dimensionless coefficient. For Eq. (8) we
introduce a similarity variable,

z = 1

x0(t )

[
x +

∫
v(t ) dt

]
, (38)

(the constant of integration is disregarded here, as the simi-
larity solution is valid when the initial condition is forgotten)
and obtain

g′
(

−z
x′

0

x0
+ v

x0

)
= c2

x2
0

( f g′)′ + β

t
g. (39)

For consistency, one should set x0 = ct1/2, v = ux0/2t , and
we obtain

( f g′)′ + z − u

2
g′ + βg = 0. (40)

The analytical solution of this ODE is unavailable.

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

numerical solution
approximate solution

FIG. 3. Comparison of the solution η(x) of (34) (solid red curve)
and the approximate solution (36) (blue dashed curve) for a steady-
moving front. The difference between solutions vanishes with m →
∞. In this figure, m = 4. The rightmost points are x0 = 0.482573
for the numerical solution, and x0 = 2/m = 0.5 for the approximate
solution; cf. Fig. 2(b).

Using the parametrically driven similarity approxima-
tion, one substitutes γ (t ) = β/t into Eq. (29), and ob-
tains after integration (by retaining only the leading time
dependence),

N(t ) = n0b

[
2D0t

m
(2bβ − b + 2)

]1/2

. (41)

The leading front moves according to Eq. (25), which may be
combined with Eq. (41) to give

x0(t ) =
[

2D0t

m
(2bβ − b + 2)

]1/2

. (42)

Within the same approximation, Fig. 4 shows that the numer-
ically selected value of the reduced speed u is well approxi-
mated by u ≈ (2/m)1/2(2bβ − b + 2)1/2.

D. Age-structured waves

We now apply the parameter-driven similarity solution
method to the full model, with constant growth rate, γ0 > 0.
Integrating Eq. (5) over the x axis between the trailing and
leading fronts, and introducing the age density, N (θ, t ) =∫

n(x, θ, t ) dx, we get an age-resolved analog of Eq. (23),

∂N

∂t
+ ∂N

∂θ
= a

∂2N

∂θ2
+ γ0N − n(x1, θ, t )

dx1

dt
. (43)

This equation is exact and valid for both mobile and immobile
cells; cf. Eq. (23). Due to the last term, this equation is not
closed. In this subsection we further restrict ourselves to the
case when both leading and trailing fronts are in motion,

In the similarity solution for mobile cells, the den-
sity n(x, θ, t ) reaches its maximum at the trailing front,
n(x1, θ, t ) = nm(θ, t ). The maximal age density satisfies the
same relationship as we have seen in Eq. (31),

2N (θ, t ) = bnm(θ, t )(x0 − x1), (44)
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FIG. 4. Comparison of the selected parameter u based on the
numerical solution of Eq. (40) (red solid curve) and the approximate
solution Eq. (42) (blue dashed curve), for a slowing wave with
β = 0.7. One can barely see the gap between the two curves in the
upper-left corner, where m < 1.

with b given by Eq. (14). Therefore,

∂N

∂t
+ ∂N

∂θ
= a

∂2N

∂θ2
+ γ0N − 2N

b(x0 − x1)

dx1

dt
. (45)

If diffusivity is at its maximum, D = D0, and both fronts
advance, the total number of mobile cells is simply

2N(t ) = 2
∫ θe

θ0

N (θ, t )dθ = b(x0 − x1)
∫ θe

θ0

nm(θ, t ) dθ

= n0b(x0 − x1), (46)

and, similar to Eq. (25),

x′
0 = D0n0b

mN(t )
= γ0N

2
0

n0N(t )
. (47)

Using Eq. (46) and its time derivative, along with Eq. (47) in
Eq. (45), the following closure results,

∂N

∂t
+ ∂N

∂θ
= a

∂2N

∂θ2
+ γ̃ N,

γ̃ = γ0 + 2

bN

dN

dt
− γ0N

2
0

N
2 , (48)

where we used (35). The steady-moving wave of Sec. IV C 1
is recovered by setting both γ̃ and dN/dt to zero.

Integrating Eq. (48) over mobile ages and simplifying, one
finds

∂N

∂t
= b

2 − b

(
F + γ0N − γ0N

2
0

N

)
, (49)

with nonlocal sources/sinks,

F = −N (θe) + N (θ0) + a

(
∂N

∂θ

)∣∣∣∣
θe

θ0

. (50)

Since b < 2, see Eq. (14), this equation is mean-reverting.
Equation (49) was derived for large m � 1 where 2 − b 	 1

[see Eq. (18)], and, to the leading order, one can set its right-
hand side to zero, to find the “equilibrium” total number of
mobile cells in the wave,

N =
√
N2

0 + F 2

4γ 2
0

− F

2γ0
. (51)

If the mobile population only has ages within the interval
θ0 < θ < θe, or has an age-independent density, then F = 0,
and (51) reduces to (35). The slope of the steepest part of the
supercycles trajectories, in Figs. 9 and 10 below, was indeed
found to be the speed of the age-uniform wave, v0 [Eq. (35)].

Consider now a steady-moving age-structured wave, where
the mobile population is not small only in the vicinity of the
terminal age, θ = θe, so that F = −N (θe) + aNθ (θe) in (50).
We expect the most populous age group to be there, given
the life cycle in presence of Malthusian growth. For a steady-
moving wave, Eq. (48) reads

aN ′′ − N ′ + γ̃ N = 0. (52)

We are after a solution, N = C exp[λ(θ − θe)], with integra-
tion constant C, and positive eigenvalue λ. Then N (θe) = C,
Nθ (θe) = λC, and the total number of mobile cells is N =
C/λ. Equations (51) and (52) give

aλ2 − λ + γ0

(
1 − N2

0λ
2

C2

)
= 0, (53)

with two unknowns, C and λ. It means that there is a family
of such mobile solutions, and the velocity selection occurs via
interaction with the immobile cells.

The immobile cells also obey Eq. (43). Between the fronts
of the steady-moving wave, x1 � x � x0, the density of immo-
bile cells, n(x, θ ), is independent of x in our approximation,
and therefore N (θ ) = n(θ )(x0 − x1 − θx′

0). The density N (θ )
then has a minimum at θ = θ0. Once a small amount of
cells becomes mobile at θ = θ0 their concentration grows
exponentially as per the solution of Eq. (52). To the leading
order we should set x0 − x1 = x′

0θ0. Together with Eqs. (46)
and (47) this determines the number of cells in the wave and
the velocity of the age-structured wave,

N = b n0

(
D0θ0

2m

)1/2

, vs =
(

2D0

m θ0

)1/2

. (54)

The speed vs does not depend on the Malthusian growth
parameter, unlike the speed of the age-uniform wave, v0 ∝
γ

1/2
0 in (35). The eigenvalues,

λ1,2 = 1

2a

[
1 ±

√
1 − 4a

(
γ0 − 2

bθ0

)]
, (55)

are both real and positive, provided that

γ0 � γ1(a) = 8a + b θ0

4a b θ0
. (56)

For small a 	 b θ0/8 this gives a condition 4aγ0 < 1, which
can be traced to the Green function of noninteracting cells.
Indeed, expanding the exponent in Eq. (58) below, one finds a
term, (γ0 − 1/4a)t , controlling population buildup at a fixed
age, and also pointing to the parameter combination aγ0.
While the condition of no population buildup at a given age
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is natural for cells of a single organism, there is no reason
why it should hold true for less organized communities, such
as swarms.

The derivation above also relies on sufficiently large γ0,
namely, exp[λ(θe − θ0)] � 1, which for small a reduces to
exp[(γ0 − 2/bθ0)(θe − θ0)] � 1. When this condition does
not hold at γ � 2/bθ0, neighboring generations mix in the
wave, and although the age distribution N (θ, t ) still has a
minimum near θ = θ0, this minimum is shallow, and linear
growth dominates.

At γ0 � γ1 the model also exhibits linear growth, achieved
by a balance between aging and strong Malthusian growth, ac-
companied by diffusion down the age axis. These conditions
bound a region where the supercycles dominate; see Sec. V B
and Fig. 11 below.

E. The mobility threshold

Next we will examine in more detail the evolution of the
moving fronts in the parametrically driven similarity approxi-
mation, as compared with the full solution of the model PDE
Eq. (5). We will also consider how the age distribution re-
shapes when spatial diffusion sets in at the mobility threshold,
θ0, and when cells reach the age θe, and lose mobility.

In presence of small age diffusion with the source
N0δ(θ )δ(t ), where δ is the Dirac δ function, the evolution
along the age axis is initially independent of spatial trans-
port. An age-localized initial condition in a spatially uniform
case evolves as described by the spatially integrated equation
Eq. (5), resulting in

∂N

∂t
+ ∂N

∂θ
= a

∂2N

∂θ2
+ γ0N + N0δ(t )δ(θ ), (57)

with solution given by the Green function,

N (θ, t ) = N0G(θ, t ) = N0

(4πat )1/2
exp

[
γ0t − (θ − t )2

4at

]
.

(58)

When mobile cells first appear, their total number is given by

N(t ) = N0

(4πat )1/2

∫ ∞

θ0

exp

[
γ0t − (θ − t )2

4at

]
dθ

= N0eγ0t c

(
θ0 − t√

4at

)
, c(ξ ) = 1

2
erfc(ξ ), (59)

and the leading front begins to move according to Eq. (47)
with x1 = 0. The leading front position is

xm+2
0 (t ) = 2m+1(m + 2)D0Nm

0 T1(t )

m(bn0)m
,

T1(t ) =
∫ t

0
emγ0ξ c m

(
θ0 − ξ√

4aξ

)
dξ . (60)

If a = 0 we recover T1(t ) = τ (t ) = {exp[mγ0(t − θ0)] −
1}/mγ0, at t > θ0.

Let us again denote as t1 the moment when the maximal
concentration inside the front reaches n = n0. It satisfies the
equation 2N(t1) = bx0(t1). The time t1 depends on the initial
concentration N0, and could be larger or smaller than θ0.
Suppose a traveling wave solution is eventually established.

0 1 2 3 40
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2

3

4
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1 

   

x0, ODE
x1, ODE
x0, PDE
x1, PDE

FIG. 5. Behavior of the leading and trailing fronts when the
distribution becomes mobile at θ = θ0. For nonzero age diffusivity
a, cells do not acquire mobility synchronously, even though they
were initially synchronized at age θ = 0 through the initial condition.
As a consequence, the fronts set into motion at times t < θ0. One
can observe that the trailing front, once it starts moving, quickly
reaches an intermediate steady state and awaits for accumulation
of cells due to growth to continue advancing. At larger times a
steady-moving wave is formed. Parameters: m = 4, θ0 = 1, D0 = 1,
g0 = 1, a = 0.05, w0 = 1, n0 = 1, N0 = 10. Blue lines are solutions
of the system of ODEs for x0, x1, N, nm from Sec. IV D, green lines
are numerical solutions of the full model PDE (5).

From the moment t1 onward, the trailing front x1 moves over
the interval where cells were initially located. While this
happens, Eq. (59) is no longer valid and instead the total
number of cells is governed by

N′ = γ0N − n0x′
1 + w0 − x1

w0
N0G(θ0, t ), (61)

where w0 is the span of the initial condition along the x axis.
Using Eq. (25) and x0 − x1 = 2N/n0b, we get a closed system
of two first-order ODEs and a linear equation. This system can
be solved numerically; see Figs. 5 and 6. These figures also
contain a comparison with the full PDE numerical solution.

We now describe what happens with the age distribution
at the mobility threshold. Once the trailing front is in motion
the age distribution begins to change. An age group of width
dθ which crosses the mobility threshold at time t makes
a contribution to the total number of cells which is equal
to dθN0G(θ0, t ) max[0, 1 − x1(t )/w0]. The part of the age
distribution where ages do not exceed θ0 by the time t2, where
x1(t2) = w0, does not participate in subsequent motion and it
is left behind the trailing front. Adjacent parts of the distribu-
tion, where ages do not exceed θ0 by the time when the trailing
front starts moving, are diminished in proportion to [1 −
x1(t )/w0]. The maximum of the age distribution advances in
age, by a certain positive amount �θ0 ∼ (aθ0)1/2 log(θ0/a),
and its standard deviation is diminished, see Fig. 7. The reason
the standard deviation is more resilient to the threshold is that,
when the trailing front x1(t ) approaches the right end of the
initial condition w0, the wave is not sufficiently populated
by the cells coming from the initial condition, and the wave
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FIG. 6. Time dependence of the total number of mobile cells,
N(t ) (solid line) and maximal concentration nm = n(x1(t ), t ) (dot-
dashed line). Parameters are the same as in Fig. 5. When the trailing
front starts moving the maximal concentration remains equal to the
cutoff value n0 = 1. The front first shrinks, and the total number of
cells takes a dip. Then there is recovery and the trailing front finally
clears the initial condition support w0. By then the steady-moving
wave is fully formed. Blue lines are the solutions of the ODEs for x0,
x1, N, nm from Sec. IV D, green lines are numerical solutions of the
full model PDE (5).

has to wait until the growth term makes its contribution.
At small a and large total number of initial cells N0, upon
passing the mobility threshold, only a fraction of the initial
age distribution remains in the moving front.

As can be seen in Fig. 7, the age-advanced cells are
selected by the mobility threshold. At the mobility threshold,
an initially age-synchronized population has an age width
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FIG. 7. Reshaping of the age distribution at the mobility thresh-
old, θ = θ0. Parameters are the same as in Fig. 5. At times t 

0.6 when the trailing front x1 begins to move (see Fig. 5), the
population at the threshold, G0 = n(t, θ0, x1) is reshaped. The blue
line is the distribution G given by Eq. (58) at θ = θ0 and represents
the “incoming” distribution, observed at θ = θ0 with D0 = 0, when
the spatial wave does not move, and does not cut off the tail of this
age distribution. The green line is obtained by numerically solving
Eq. (5).
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FIG. 8. Simulation at a = 0, θe = 2, θ0 = 1, γ0 = 4, m = 4 and
initial population N0δ(θ ). See text for the description of population
stages (a)–(f).

of σ0 = (2aθ0)1/2, and this timescale could be smaller or
larger than γ −1

0 notwithstanding the restriction 4aγ0 � 1. If
aθ0γ

2
0 	 1, then age diffusivity plays a small role, and all

ages are retained in the wave. Therefore the width of the age
distribution is almost unchanged while crossing the threshold,
at least during the first cycle. In the opposite case, aθ0γ

2
0 � 1,

the age distribution after the threshold narrows down to γ −1
0 .

As cells age and reach the terminal age, θe, the wave also
loses particles, this time due to rebirth. During this process
the cells which experienced rebirth earlier, and cease moving,
are passed over by age-delayed cells. The age distribution of
the residual population narrows. Both thresholds act as distri-
bution sharpeners, with the mobility threshold θ0 decreasing
and terminal age θe increasing the supercycle period. In turn,
the dispersion of age distribution allows the mobile phase
to occupy a time window exceeding θe − θ0, thus aiding to
spatial growth.

V. PROPERTIES OF SUPERCYCLES

This section discusses developed supercycles. Consider
first the case without age diffusion, a = 0, where any nonuni-
form age structure will display age periodicity with period
θe. Suppose the initial population, N0δ(θ )δ(t ), is created in
the interval 0 � x � w0 (c.f. previous section). In Fig. 8 the
arrow (a) points at an initial state with w0 = 1. For times
t < θ0 cells only grow, and their number reaches N0eγ0θ0 when
they acquire mobility at θ0 = 1 in (b). As we only have one
age group, we can simplify concentration-related transient
behavior, and choose the initial population parameters N0 to
satisfy condition Eq. (46), 2N0eγ0θ0 = n0bx0(0). Then all the
criteria of a steady-moving wave considered in IV C 1 are met,
and a traveling wave forms.

If the width of the steady-moving front, w0, is larger than
the initial size, x0(0), the leading front will initially move ei-
ther by itself, or with the trailing front advancing more slowly
than the leading front, until the growing front width reaches its
steady-state value. In the opposite case, the trailing front will
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FIG. 9. Leading fronts for different values of the age diffusivity
a, with the parameters θe = 2, θ0 = 1, γ0 = 4, m = 4 and peaked
initial population N0δ(θ ).

advance with a jump (c), to reach the steady state. Upon reach-
ing the maximal age at t = θe = 2 in (d) [also in (f)], the entire
wave stops, and the next cycle begins. For sufficiently large
m, when the concentration profile is almost uniform inside the
front, only the immediate vicinity of the leading front will be
mobile in the next expansion phase, at t = θe + θ0 (e). This
expansion will take place in a region of smaller width, w1,
where the concentration (9) satisfies n(x, θe + θ0) � n0. The
mobile concentration profile is steeper than the steady-moving
shape, and there will be a transient period when cells reshape
the profile via diffusion. The concentration at the trailing front
nm falls below the diffusivity cutoff, n0, so that the trailing
front will be initially at rest. When the mobility edge is passed,
the similarity profile, associated with the remaining cells is
quickly achieved, and the front will continue expansion with
a time-dependent width until the terminal age 2θe. If, in
addition, the parameter eγ0(θe−θ0 ) is large enough, the steady-
moving wave is established.

Small nonzero age diffusivity introduces lifecycle variabil-
ity with the effect that the period of the population cycles
shortens with respect to the life cycle of individual cells
(Fig. 9). The population expansion phases fade out as a
increases, until age mixing is sufficiently strong so that cycles
disappear. The effect of the Malthusian growth parameter is
different. For a given age diffusivity a, which in any case is
restricted to values a 	 θ0, there exists an interval of γ0 for
which supercycles may exist. This is shown in Fig. 10. Steady
cycles develop for this set of parameters between γ0 ≈ 3, and
γ0 ≈ 15.

The (a, γ0) parameter region which supports supercycles is
further discussed in Sec. V B.

A. Relaxation of bimodal age distributions

When cell ages do not coincide, there is a mechanism
which offers competitive advantage to cell groups of close
ages. Consider two coexisting age groups, A and B, created by
the initial condition. Suppose also, that the group B, reaches
the mobility edge, θ0, first, triggering spatial expansion of B
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FIG. 10. Leading fronts for different values of the Malthusian
growth parameter γ0, with θe = 2, θ0 = 1, a = 0.02, m = 4 and
peaked initial population N0δ(θ ).

alone. If conditions are right, i.e., the growth rate and age
difference are large enough, the wave may leave A entirely
behind the trailing front. The mobility edge contributes to
age segregation, benefiting age-advanced groups and shortens
supercycle period, if applicable.

At the terminal age, θe, this behavior could be inverted. If
A and B are both found inside a traveling wave, age-advanced
B stops first upon reaching θe, and A spreads alone, possibly
leaving group B behind. Selective mobility termination favors
age-delayed groups and age segregation. It lengthens the
supercycle period.

We further note that in this system, an exponential growth
is followed by shrinkage of the future mobile population
down to the immediate vicinity of the leading front. Repetitive
application of two such competing procedures could lead
to complex intermediate behavior. Both mobility changes
contribute to narrowing the age structure, counteracting age
diffusion, eliminating outliers, and promoting cells from the
tails of age distribution.

B. The period, T , and average front speed, v̄, of supercycles

We now discuss selected properties of supercycles and
linear growth, and the dependence of these properties on two
model parameters, a, γ0. The supercycle domain introduced in
Sec. IV D is shown in Fig. 11 using axes (a, γ −1

0 ).
In the domain labeled “IC-dependent,” supercycles form

only for sufficiently peaked initial conditions, and then tend
to spend relatively long times in the consolidation phases. For
a peaked initial condition, the leading front and trailing front
both stop during the immobile (consolidation) phase.

In the domain “supercycles,” even for age-uniform initial
conditions, cycles become the long-term asymptotic. Close to
the dashed boundary their amplitude vanishes for age-uniform
initial conditions.

Inside a subdomain with aγ0 � 0.1 both fronts stop com-
pletely during consolidation phases, and consecutive gener-
ations do not mix much during the expansion phase. As γ0

grows for a fixed a, first the effect of the mobility edge
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FIG. 11. Numerically obtained “phase diagram” of the types of
long-term asymptotic solutions. ’IC-dependent’ labels the domain
where both linear growth and cyclic attractors coexist, see text.
Parameters: θ0 = 1, θe = 2, m = 4, D0 = 1. The dotted line passing
through the origin is given by Eq. (56).

dominates, and the period T becomes shorter than θe (see
Fig. 10). While the cycle-averaged front speed v̄ is, of course,
less than v0 given by Eq. (35), v̄ may exceed the fraction
1 − θ0/θe of v0, which is the fraction of life cycle any given
cell can be mobile in the model. This is a beneficial property of
supercycles: due to incomplete synchronization along the age
axis, the collective wave is able to move for a larger fraction
of elapsed time than any participating cell.

In the remaining part of the “supercycles” domain in
Fig. 11, the leading front and then the trailing front no longer
stop for consolidation as γ0 grows. At small a, the period
T (a, γ0) reaches a minimum and then increases; see top of
Fig. 12. For larger a, the period does not have a minimum:
it increases with γ0 once supercycles appear, as shown by
the blue colored lines in the same figure. In this region of
the parameter domain, the distribution near the terminal age
acquires more and more significance with γ0, and the cycle
period can significantly exceed θe. Notably, the front speed, v̄

reaches a local maximum with γ0 in the supercycling regime as
a function of γ0. The growth rate, γ0, of the speed maximum is
larger than the growth rate corresponding to the minimum of
the cycle period, if the latter exists. Past the speed maximum,
as the growth rate γ0 further increases, the wave speed reaches
a local minimum, in units of v0. Past that point, the front speed
resumes its increase with γ0; see × markers.

At low a, at the border of “supercycles” and further inside
the “IC-dependent” domain in Fig. 11, we observed prolonged
transients and more complex supercycles.

VI. OBSERVATIONS OF SUPERCYCLIC BEHAVIOR

While discussing possible applications, there is a risk of
nominating any adaptable internal oscillator as the driver of
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FIG. 12. Top: Dependence of the scaled supercycle period, T/θe,
on the parameter product aγ0. Here 0.015 � a � 0.045 (values and
color coding shown in the legend), 1 � γ0 � 21. Bottom figure:
dependence of the cycle-averaged speed, v̄/v0, on the growth rate,
γ0, with v0 given by Eq. (35). ◦ markers show front speeds while
supercycling, and × markers show front speeds with linear growth.
The color coding is the same, and the other parameters are given in
the caption of Fig. 11. See text for more details.

cyclic behavior, or delegating the driving to a relevant external
(and very complex, such as climatic) variable. Given that the
number of possible explanatory combinations is large, the
search might simply terminate at the first statistical success.
Below we discuss three selected examples where cyclical
behavior is observed, the timescales can not be related to
any known driver with certainty, and even if we find a driver
operating at the observed timescales, it is unclear why it
should lead to cycles. We hope that the present model will
encourage quantitative studies in these systems.

A. Intra-annual thallus growth of lychen Parmelia conspersa

Cyclic growth is sometimes observed in the growth of
thallus lobes of lichens on intra-annual timescales, see Fig. 2
in Ref. [3]. We replot these data here as a cumulative curve,
displaying steps, to facilitate comparison with the model.
The shape of the steps in Fig. 13 is similar to the leading
front profiles among the curves of Fig. 1, and we borrow
the parameter value m = 4 for the estimate below. By re-
gressing the logarithm of the entire colony area (not only
terminal lobes) on time, one finds 1/γ0 ∼ 20 ± 2 months.
The typical top front speeds observed in the experiment were
v = 0.8 mm/mon, so that

D0 = mv2

2γ0
∼ 25

mm2

mon
. (62)

Not much is known about the age diffusion in lichen lobes,
but it cannot exceed a 
 1 mon (see below). The product
aγ0 � 0.05 is then likely to be small, and the cycle period
should be close to θe, see Fig. 12. In the experiment, it
was observed that the period, T 
 3.8 mon, and dormant or
consolidation phases (widths of steps in Fig. 13) are close to
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FIG. 13. Data from Ref. [3] plotted as a cumulative growth
curve. The development of a single lobe of the foliose lichen
Parmelia conspersa shows a cyclic pattern of radial growth over 22
months.

θ0 
 1 months. Armstrong and coauthors, who have studied
Parmelia conspersa, identified the “internal driver” as follows:
“The data suggest the hypothesis that lobes of P. conspersa
exhibit a pattern of cyclic radial growth determined, in part,
by lobe division” [3].

While the overall shapes of many foliose thalli are some-
what reminiscent of gradient-controlled Hele-Shaw flows,
such flows, per se do not require or prescribe any periodicity.
We note that lichens are symbiotic communities, and one
should consider mechanisms where one of the bionts has to
accumulate enough resources before continuing its growth. In
the case of P. conspersa the timescale of T above is unlikely to
be associated with the photobiont, as its reproduction is fully
controlled or arrested by the mycobiont depending on location
within the lichen [40]. It all then points to the mycobiont life
cycle. While we are unaware of the dedicated life cycle studies
of P. conspersa mycobiont(s), these life cycles in other lichen
do last months, [41,42]. The arrested development inside the
lichen colony (similar to suppressed mobility inside bacterial
colony of P. mirabilis, [20]) motivated us to disregard the
region behind the trailing front in the model.

In agreement with the tight mycobiont control, the model
has a well-controlled growth if aγ0 	 1. This delegates the
observed variability of the supercycle period T in Fig. 13 to
that of θe. It has been indeed discussed that the mycobionts
within the same P. conspersa lichen vary genetically by loca-
tion. This would account for a nonuniform θe (see, e.g., p. 185
in Refs. [43,44]).

Within the mycobiont, the results suggest to focus on radial
hyphal growth. A recent stereo-microscopic study of growth
of a similar foliose lichen, Xanthoparmelia farinosa, showed
that 3 months after inoculation the so-called “exploration hy-
phae” appear in large numbers, while at 6 months the hyphae
are fully interlinked (anastomosed) [42]. Exploration hyphae
participate in secreting an adhesive substance, which allows
the lichen to anchor to the substrate. A limited amount of the
photobiont participates in this exploration, creating a spatial
separation between the region where symbiotic metabolism is
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FIG. 14. Cumulative long-term records of annual crop yield, yt

of year t , summed up with a shift, Yt = ∑k=t
k=0[yk − min(y)]: (a) wheat

in Yemen, (b) barley in Ecuador. Data from Ref. [5].

operating and the region where the adhesive substance is em-
ployed. Which part of this process represents the bottleneck
that determines θe − θ0 is difficult to say, as lichenologists
question the life cycles of P. conspersa. Citing Honegger,
“Can we assume that the mycobiont and photobiont cells
making up the oldest, central parts of such thalli are decades
or even centuries old, or is there a cell turnover in the entire
thallus?” [56].

The duration of the spatial growth phase, θe − θ0 = 2.8
mon, may just be the time it takes to reach the maximal
sustainable spatial mismatch ∼2 mm between the bionts,
given the adhesion-limited speed v = 0.8 mm/mon. In the
case of X. farinosa mentioned above the times were similar,
while the spatial scales were smaller by a factor of 30. If
the mechanism suggested here is confirmed, an extension of
the model could also be applied to the 2D experiments on
lobe division by Armstrong and coworkers (see Ref. [3] and
references therein).

B. Crop yield cycles

In addition to alternate bearing of fruit trees [4], agricul-
tural crops display multiyear yield cycles. For example, wheat
in Yemen [Fig. 14(a)] had several cycles with θe = 6 yr, while
barley in Ecuador (b) had cycles with θe = 7 yr. In terms of
modeling, these historical data are available not for the spatial
expansion x(t ), but for integrals of the type

yk =
∫ tk

tk−1

dt
∫ x0(t )

x1(t )
dx n(x, t ), (63)

taken over time windows of one year, tk = tk−1 + 1. Such
integrals may also exhibit cyclic behavior. During the years of
low yields, the yields were not zero. In view of this, minimal
annual yields were subtracted from the time series before
additional summation in Fig. 14 (see caption).

Multiyear crop cycles are known since antiquity, and can in
many cases be prevented by annual reseeding. Being perennial
grasses, wheat and barley are always grown as annual crops.
Yet, a multiyear memory can be seen in Fig. 14 in several
countries. In these countries a small proportion of cultivated
plants grows in the wild as perennials and so do their wild
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or previously used varieties. In wheat and barley, allogamous
pollinators coexist with self-pollinators, and therefore mature
perennial plants of the same or close species growing in
the wild might influence the agricultural yields. It is, in
fact, known that Emmer wheat with its exceptional genetic
diversity grows in Yemen [45], while Ecuadorean highlands
have supported barley since the 1800s [46]. A value of T =
6 to 7 yr is similar to the perennial life span of grasses.
A multiyear wild pollen analysis is required to support or
refute this mechanism. In grasses as in many plants, the age
diffusivity, a ∼ 0.1 day (see Sec. II A) and γ0 is of the order
of hundreds per year, judging by the number of seeds a single
annual plant may produce. Therefore γ0 ∼ 0.01 day−1, so that
the control is tight, aγ0 	 1.

Since yield is connected to “spatial growth in the model
by means of Eq. (63), the cycles are a sign of fast growth.
Indeed, starting from small γ0, and increasing it (as it happens
with agricultural drive for higher yields), for a fixed small a,
the system crosses the dashed line in Fig. 11 and develops
cycles. The front speed v̄ will eventually reach a maximum,
as per bottom chart in Fig. 12. While the model supports
observations that the appearance of cycles is a response to
rapid reproduction, a multiyear rapid reproduction (forced
by annual reseeding) requires ample resources. If fact, the
relation between cycles and strain is known in botany [4].
Prolonged strain makes the plants vulnerable to diseases. The
cycles of barley yield were promptly followed by leaf rust, and
yield deterioration in the late 1990s, as seen in Fig. 14(b) [47].
In the case of wheat, after emergence of multiyear cycles, the
decline seen in Fig. 14(a) in mid-2000s was caused by the
wheat stem rust pathogen, first identified in Uganda ([48],
Fig. 1). The subsequent yield rebounding was due to rapid
introduction of engineered wheat varieties.

C. Swarming of locusts Chortoicetes terminifera
in eastern Australia

Swarming is associated with collective mobility and
density-dependent phenotypes [49]. From the viewpoint of
the present model, it is the considerable desynchronization
of individual life cycles combined with high individual insect
mobility that underlies our interest here, as it might shed light
on why most insect swarms are recurrent but not periodic.
Although insect swarms resemble organisms in some ways,
we will argue that namely the limitations of swarm collective
control gives them an edge over tightly self-controlled species
in the affected ecosystems.

The Australian Department of Agriculture and Water Re-
sources has been collecting data on locust swarming (see
Ref. [6] and references therein) since 1934, with evaluations
complied every 4 months. The scales of outbreaks are defined
semi-quantitatively, with scale 4 referring to a “plague, several
hundred thousand hectares infested by bands/swarms in the
agricultural zone” and scale 5, a “major plague, over 500,000
hectares infested by bands/swarms in the agricultural zone.”
If we quantify the word “several” here as at least 2, then the
transition from scale 4 to scale 5, corresponds to an increase in
∼e times with spatial migration of several dozen kilometers.
The data do show that if the current time step has scale 5,
the previous step, on average had scale 4 and the step before
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FIG. 15. Autocorrelation of locust outbreak scales (a). The hor-
izontal lines display the confidence interval. Estimated cumulative
area occupied by locusts outbreaks (b) using data from Ref. [6] and
a conversion convention based on factor e: scale 5 is 5000 km2, scale
4 is 5000/e km2, scale 3 is 5000/e2 km2, etc.

that, had scale 3. Assuming that an increase of infested area
in e times in 4 months, implies e times more locusts, we get
γ0 = 1/4 mon, and probably bigger. If, instead, the data for
the South American locust Shistocerca cancellata are used
[26], with “mean reproductive rate and mean generation time”
of 130 and 18 days, respectively, we find γ0 = log(130)/18
day−1 = 8 mo−1. This was measured in laboratory conditions,
in the absence of predators.

With the “field” value of γ0, and using Eq. (62), one can
estimate saturated spatial diffusivity, D0 ∼ (50 km)2/(2 ×
4 mon) ∼ 300 km2/mon, provided there is no dominant wind
direction. The scales of outbreaks are usually logarithmic in
nature, and we believe that a factor of e in area coverage
could quantify the growth of infected areas. Then it is possible
to compute cumulative affected areas over time (arbitrarily
arranged over the affected territory); see Fig. 15.

The age diffusion of locusts is considerable; we know that
several generations can emerge during a favorable summer,
so we estimate conservatively, a � 1 mon. (Recall that in
controlled laboratory conditions without predators the age
diffusivities for Schistocerca cancellata are 7 days for females
and 4 days for males.) The product aγ0 is larger than with
lichen and crops above, and according to the model, for such
values of aγ0, the supercycles may have periodicities larger
than the life cycles of participating insects (Fig. 12), and the
dependence of period T on aγ0 is steep. The period is then
sensitive to noise. For even larger values of aγ0, linear growth
dominates in the long term, but swarms still exhibit transient
oscillations; see Sec.V B. This is similar to Fig. 15(a), where
subsequent peaks of the autocorrelation function barely sur-
pass their statistical errors, with the peak-peak lag of T 

3.8 yr. Such lag exceeds the insect longevity [26] by an order
of magnitude.

Further analysis using data in Fig. 15 shows that outbreak
durations are close to adult insect longevities, ∼4 months. The
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interplague time windows are much larger. Combining these
conditions with the above-mentioned period T sensitivity to
noise, we conclude that the swarms may appear unpredictable,
thus providing an edge over ecosystem control and agricul-
tural control.

According to the Australian Department of Agriculture,
“Heavy summer rainfalls in western Queensland often lead to
large population increases and subsequent southward migra-
tions in late summer and autumn. This pattern has character-
ized several of the recorded major pest outbreaks, or plagues.”
Large increase in foliage following rainfalls is suggested
here as an external trigger or driver, despite the fact that
this driver by itself does not possess the observed multiyear
autocorrelation structure with T = 3.8 yr.

Since the seventies, the intervals between the largest scale-
5 plagues are clustered around values from 5 to 10 yr,
while before that they were typically twice as large. (Such a
long-term trend is also consistent with the history of North
American locust plagues in the 19th and 20th centuries, due
to the growth of agricultural land use [50].) It could be that
with the growth of the agricultural use of land promoting
annual crops, the locust community does not have to wait as
long as it used to for vegetation to rebound, and outbreaks
can reemerge sooner. One can see in Fig. 15, the average
slope of the cumulative curve is somewhat higher since the
seventies. It could be that the observed lag of 3.8 yr is the
time required for sufficient restoration of combined biomass
of foliage available to locusts, an evolving combination of
both wild and cultivated plants.

VII. CONCLUSION

A model has been introduced which may improve under-
standing of the cyclic growth of multicellular organisms, to
facilitate quantitative studies and indicate connection with
previous models of nonlinear spatial transport, such as mod-
els used in insect dispersal and the KPPF equation. The
present model, making use of known processes for physio-
logical aging along the variable θ and spatial transport along
x, allowed us to see in more detail how collective cycles
emerge.

It has been shown that a cellular birth and death pro-
cess, characterized by stochastic physiological aging with
age diffusivity a, in presence of Malthusian growth γ0 and
nonlinear spatial diffusion with an age-limited motility, may
produce stable cyclical expansions for a range of parameters.
We have found that the product aγ0 is one of the key quan-
tities for observing cyclical waves with windows of boost
and consolidation. When aγ0 � 0.1 is small enough, while
Malthusian growth is rapid enough, collective cycles become
the asymptotic behavior with periods shorter than cell life-
times. For intermediate aγ0, we find that the supercycle period
could well exceed cell lifetimes, while spatial expansion rates
reach a maximum. For large aγ0 linear spatial growth pre-
vails. The fastest spatial expansion occurs in the supercycling
regime.

A key development on the theoretical side has been de-
riving the equations for the mobile fronts using the para-
metrically driven similarity approximation. It is based on
the assumption of fast diffusion and slow hull expansion of

the density profiles, at parameters m � 1 of the nonlinear
spatial diffusivity. It simplifies the analysis, by reducing the
study of a nonlinear PDE for the population density n(t, θ, x)
to solving an ODE system for the location of the moving
fronts. The essence of this approximation is to evolve the
population through a set of similarity solutions, by properly
adjusting the solution parameters in time. The approximation
has been tested in several exact cases, for which the solution
is available. We have supplemented the theoretical analysis
of the model PDE with direct numerical simulations to illus-
trate the population dynamics and the emergence of cycles
as compared with the analytical solution derived under the
assumption of the parametrically driven similarity approxi-
mation. By means of both tools, we have analyzed the first
cycle which is found to be special. This matches the behavior
of Proteus mirabilis which colonies on hard agar have a dis-
tinct first terrace, the emergence of cotyledons in plants, and
others.

Three potential applications were selected. In all cases, the
observed cycles are of rather intriguing origin, and point to
collective long-term development of communities of multicel-
lular organisms. For tightly held “communities” such as lichen
and crops, the cycle phases match the mycobiont timescales
(lichens) or perennial species growing nearby in the wild
(crops). For loosely held communities with variable density,
such as locust swarms, we argue that the expansion phase
is clearly limited by insects. The consolidation phases may
be determined by both insects (as per the model in the given
parameter range) and by plants, and only tuned by weather.

A version of this model was previously applied to Pro-
teus mirabilis bacteria colonies [20,21], which tend to form
recurrent terraces on hard agar with surprisingly robust peri-
odicity [33]. It might also be applicable to tightly controlled
phenomena in marine plankton, e.g., to diurnal rhythm of lu-
minescence of the dinoflagellate Gonyaulax polyedra, which
persists under conditions of constant low light and constant
temperature for many days [51], eventually losing correlation
with the time of the day. An opposite extreme example of
very elastic cycles, is the reappearance of mosquitoes, which
could reproduce in just a few weeks or in more than a year,
depending on conditions [52]. Multi-annual oscillations have
been observed in large-scale populations of many seabirds
[53–55] in absence of any apparent prey-predator mechanisms
and belong to the cases of intermediate control.

Two properties of supercycles stand out in terms of bi-
ological significance: (i) these cycles are responsible for a
faster spatial expansion rate for a given biomass growth rate
as compared to linear growth, and (ii) these cycles can entrain
and organize a spectrum of (asynchronous) life cycles of
participating cells or organisms.

Finally, here Malthusian dynamics has been assumed as
representative of early growth mechanisms, which also facili-
tated the analytical treatment. Other growth models might be
implemented, like the logistic model. We can anticipate that
in such case, if the logistic saturated concentration exceeds
n0 where the spatial diffusivity peaks, the presented behavior
will survive. If the saturation occurs earlier, it will prevent
consolidation, and a linear regime will emerge. Jointly, this
offers a different route to switch supercycles on and off, and
could be studied in more detail.
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APPENDIX A: SOLUTION OF THE AGE-INDEPENDENT
PROBLEM FOR TIME-DEPENDENT GROWTH RATES γ (t )

With unrestricted nonlinear diffusivity, Eq. (8) may be
integrated for an arbitrary growth rate γ (t ). Indeed, a trans-
formation n(x, t ) = h(t )y(x, τ (t )), results in

h′y + hτ ′ ∂y

∂τ
= D0n−m

0 hm+1 ∂

∂x

(
ym ∂y

∂x

)
+ γ hy. (A1)

Such transformation is motivated by the fact that the exact
solution of Eq. (8) without the growth term γ n is known
[17]. If one chooses the scaling function h(t ) to be h′ = γ h,
τ ′ = hm, the nonlinear diffusion problem is recovered, but
now without the growth term:

τ =
∫ t

t0

hm(t1) dt1, log h =
∫ t

t0

γ (t1) dt1, (A2)

∂y

∂τ
= D0n−m

0

∂

∂x

(
ym ∂y

∂x

)
. (A3)

Here t0 is an arbitrary initial time, when the initial concentra-
tion profile has been forgotten. Integrating Eq. (A3) over the
x axis, one can see that the integral

∫
y(x, τ ) dx is conserved,

this is the normalization condition. We are interested in local-
ized solutions of Eq. (A3). One can easily check that Eq. (A3)
is invariant with respect to a transformation, where τ is scaled
in k times, the space axis x is magnified in k1/(m+2) times
and the solution y is rescaled in k1/(m+2) times [Eq. (A3)] has
four different types of transformations which leave it invariant
[38]). A self-similar solution of the form

y(x, τ ) = Ag(z)

x0(τ )
, z = x

x0(τ )
(A4)

is appropriate, where A is the normalization constant. The
integral

∫
y(x, τ ) dx = A

∫
g(z) dz does not depend on the

transformed time τ . Substituting Eq. (A4) into Eq. (A3) and
dividing the resulting equation by A/x0(τ ), one finds

−x′
0

x0
(g + zg′) = D0Am

nm
0 xm+2

0

(gmg′)′. (A5)

For this equality to hold at any τ and z one must require

x′
0

x0
= 1

c

D0Am

nm
0 xm+2

0

, (A6)

g + zg′ + c(gmg′)′ = 0, (A7)

where c is a constant. The solution of Eq. (A7) defines the
similarity function. This equation explicitly contains z, and
does not possess translational invariance. For a diffusion prob-
lem, translational invariance is broken by a localized initial
condition. The evolution of such condition is described by this
similarity solution. Integrating this ODE once, we obtain zg +
cgmg′ = 0. The constant of integration has been set to zero
since a localized solution is being sought, and the left-hand
side must vanish at both infinities in space. Integrating again,

we have gm = m(C − z2)/2c. For convenience, one can fix
scale and amplitude, g(0) = 1, g(1) = 0. Scale and amplitude
are governed by x0 and A, respectively, and any different
choice here will be compensated back by A and x0. Then the
solution is g(z) = (1 − z2)1/m, and c = m/2. Equation (A6) is
consistent if

x0(τ ) =
[

2(m + 2)D0Amτ

mnm
0

]1/(m+2)

, (A8)

where the constant of integration was chosen so that x0(0) = 0
for the localized initial condition. Integrating Eq. (8) over x,
and introducing the total number of cells N(t ),

N(t ) =
∫

n(x, t ) dx, (A9)

we obtain N′ = γN, or N(t ) = 2N0h(t ), with h(t ) given by
Eq. (A2). Here the initial total number of particles is 2N0, or
N0 for each half-axis. This choice of normalization is needed
for what follows in subsequent sections.

APPENDIX B: WAVE TRAVELING
WITH A CONSTANT SPEED

The details on the numerical integration of Eq. (34) are as
follows. Positioning the leading front of the wave at z = 0,
and integrating Eq. (34) over the domain, from z = 0 on the
leading front where η = 0, to some z = z0 at the trailing front
defined by n = n0 or η(z0) = 1, we get a solvability condition,
reflecting conservation of cells,

κ =
[∫ z0

0
η(z) dz

]−1

, (B1)

where use has been made of the condition that the diffusion
flux f η′ vanishes on both fronts. Equation (B1) ensures that
the total growth per unit time (κ

∫
dxη in dimensionless units)

is equal to the cell deposition rate at the trailing front, which
is moving with the speed 1 at concentration 1 in these units.
In dimensional units, the selected speed is v = (γ0D0/κ )1/2.

Equation (34) can be converted into a first-order ODE, by
introducing a new function w(η) = f η′, and assuming η to be
the new independent variable. The function w is the diffusive
flux in dimensionless units, which satisfies

ww′ + w = −κη f . (B2)

This is an Abel equation of the second kind, and its analytical
solution for our right-hand side term is unknown. However
it can be solved numerically, and defines a function κ (m),
and front width x0 − x1, given an overdetermined set of four
boundary conditions. At small z, in the vicinity of the leading
front, the solution could be approximated by η(z) = (mz)1/m,
which satisfies, η′ = ( f η′)′, i.e., (34) without the source term.
For a second-order ODE this implies two boundary conditions
at small z. In the course of the numerical integration, one stops
at a point z = z0 where η′(z0) = 0, and requires η(z0) = 1.
This point is the trailing front.
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APPENDIX C: SLOWING WAVE

Here γ (t ) = β/t , β > 0. We start with unrestricted diffu-
sion, in which case Eq. (A2) gives

h(t ) =
(

t

t0

)β

, τ (t ) = t0
mβ + 1

(
t

t0

)mβ+1

, (C1)

while x0(t1) ∝ t1/(m+2)
1 . The formulas for the population size

and the concentration read,

x0(t ) =
[

2m+1(m + 2)D0Nm
0 t0

m(mβ + 1)(n0b)m

] 1
m+2

(
t

t0

) mβ+1
m+2

(C2)

and

n(0, t ) = n0

[
2m(mβ + 1)N2

0

(m + 2)D0t0(n0b)2

] 1
m+2

(
t

t0

) 2β−1
m+2

. (C3)

Again, this is a two-parameter (N0, t0) family of similarity
solutions of subexponential expansion. The evolution of the
maximal concentration now depends on the growth rate am-
plitude, β. At β < 1/2 the concentration diminishes, while
the population size grows faster than pure nonlinear diffusion
without growth. Its exponent is lesser than the value 1/2 of
linear diffusion. At β = 1/2 one finds a special boundary
case, when the maximal concentration is time-independent,

while the population size grows as a square root of time,
x0(t ) ∝ (t/t0)1/2. At β > 1/2, the maximal concentration
grows, while the population size exponent, (mβ + 1)/(m + 2)
spans the interval [1/2, β] as 0 � m � ∞. Only in the latter
case, immobilization may occur if a diffusivity cutoff at n =
n0 is introduced.

When the diffusivity cutoff is introduced, the transforma-
tions applied to Eq. (8) mentioned in Sec. IV C 2 lead to
Eq. (40), which again does not have an analytical solution.
This time it is not reducible to an Abel equation anymore, but
two interesting facts should be mentioned. First, all lengths
in the problem scale like t1/2, including the positions of the
leading and trailing fronts, and the width of the wave. The
superdiffusional exponent (mβ + 1)/(m + 2) in Eq. (C2) does
not survive when the diffusivity cutoff is introduced: the prob-
lem effectively migrated to a β = 1/2 expansion scenario,
despite the fact that a source growth rate with multiplier
β > 1/2 is maintained. This is clearly the action of the trailing
front and cross-influence of the two fronts. Second, there
is no translational invariance, as we cannot eliminate u by
a z shift, and still keep the leading front position at z = 0.
Thus u remains, and gets adjusted, to solve for the boundary
value problem, g(z) = (muz/2)1/m for small z, with g(z0) = 1,
g′(z0) = 0 for some z0 > 0, providing selection for the front
width and its velocity.
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