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Non-Markovian data-driven modeling of single-cell motility
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Trajectories of human breast cancer cells moving on one-dimensional circular tracks are modeled by the
non-Markovian version of the Langevin equation that includes an arbitrary memory function. When averaged
over cells, the velocity distribution exhibits spurious non-Gaussian behavior, while single cells are characterized
by Gaussian velocity distributions. Accordingly, the data are described by a linear memory model which
includes different random walk models that were previously used to account for various aspects of cell motility
such as migratory persistence, non-Markovian effects, colored noise, and anomalous diffusion. The memory
function is extracted from the trajectory data without restrictions or assumptions, thus making our approach
truly data driven, and is used for unbiased single-cell comparison. The cell memory displays time-delayed
single-exponential negative friction, which clearly distinguishes cell motion from the simple persistent random
walk model and suggests a regulatory feedback mechanism that controls cell migration. Based on the extracted
memory function we formulate a generalized exactly solvable cell migration model which indicates that
negative friction generates cell persistence over long timescales. The nonequilibrium character of cell motion
is investigated by mapping the non-Markovian Langevin equation with memory onto a Markovian model that
involves a hidden degree of freedom and is equivalent to the underdamped active Ornstein-Uhlenbeck process.
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I. INTRODUCTION

The motion of single eukaryotic cells and bacteria is
important for their survival and functioning and constitutes
a characteristic phenotype. Also in multicellular organisms,
single-cell motion is relevant for immunogenic response,
embryonic development, and cancer metastasis [1–4]. The
quantitative modeling of cell motility has progressed hand in
hand with experimental techniques that allow for the auto-
mated tracking of single cells in different environments. The
persistent random walk (PRW) model is conceptually simple,
analytically solvable, and has been shown to account for many
characteristic features of the motion of cells, bacteria, and
entire organisms, in particular the crossover from ballistic
motion at short times to diffusive motion at long times [5–8].
With increasing data quality, deviations from the simple PRW
behavior have moved into the focus [9–13].

The PRW model is described by a linear Langevin equa-
tion with Gaussian white noise and thus implies Gaussian
distributed velocities. However, cell migration data typically
exhibit non-Gaussian velocity or step size distributions, which
suggests the presence of nonlinearities. Nonlinear terms in
the Langevin equation can reside in the deterministic or in
the stochastic part, the latter is referred to as multiplicative
noise, and have been shown to account for various motility
properties of living matter [14–16]. An alternative expla-
nation for non-Gaussian distributions was recently provided
by single-cell motility analysis: while individual cell data
were shown to be Gaussian, the significant deviations of the
velocity distributions from cell to cell were demonstrated
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to lead to non-Gaussian behavior of the average over cells
[17]. Since most motility analyses are based on averages over
many cells or organisms, it is therefore not clear whether the
often observed non-Gaussian behavior of averages is due to
cell-to-cell variations or due to intrinsic nonlinear single-cell
properties.

Aside from being linear, the PRW model predicts a velocity
autocorrelation function (VACF) that decays single exponen-
tially in time. In many experiments, multiexponential or even
power-law decay of the VACF has been seen [18,19], which
hints to memory and colored noise effects. On the other
hand, multiexponential time correlations can also be caused
by nonlinearities in the stochastic model. So, the situation is
quite complex since nonlinearities in the stochastic equations
and non-Markovian (i.e., colored-noise) effects can lead to
similar signatures in the resulting trajectories. The analysis
of a general model that would include all these effects is
analytically not possible and necessarily involves numerical
techniques and a large number of different parameters. The
main problem, however, is that experimental data typically
do not allow for a unique determination of model parameters
since the organism lifetime and the sampling rate are limited
and also since properties of individual cells vary in a given
population. An additional complication is produced by the fact
that living cells and organisms are nonequilibrium objects and
thus fundamental statistical mechanics theorems, such as the
fluctuation-dissipation relation, do not apply [20]. This means
that in the description of motility data in terms of stochastic
differential equations, even more parameters are present than
for an equilibrium system.

What is direly needed is a data-based, unbiased analysis of
experimental motility data which is able to deal with all the
above mentioned effects. Here, we introduce such a method,
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which is based on the generalized Langevin equation (GLE)
[21–23]. The GLE has found ample applications in the mod-
eling of molecular systems [24–26], microrheological data
[27,28], and of non-Markovian dynamics along generalized
reaction coordinates [26,29–33]. The GLE includes colored
noise and accounts for non-Markovian effects by a memory
kernel that describes for how long the system remembers its
past states. We extract the memory kernel from cell trajectory
data without prior assumptions on the functional form of the
memory function, and compare the memory functions on the
single-cell level. The Gaussian character of the single-cell
velocity distributions allows us to use the linear Langevin
equation, but we note that our memory-extraction method in
principle also works for nonlinear systems [26].

Our study employs one-dimensional cell migration on mi-
crocontact printed tracks [34,35]. Specifically, we analyze a
large data set of human breast cancer cells on homogeneous
circular tracks, which is a setup we previously introduced
and which has the advantage that long, one-dimensional time
traces of many cells can be monitored without mutual interfer-
ence [36]. The single-cell analysis reveals stationary statistics
as well as almost perfect Gaussian velocity distributions with
significant cell-to-cell variations. This means that inhomoge-
neous effects in time (i.e., time-dependent variations of cell
properties) as well as multiplicative noise effects are absent.
The VACF data exhibit significant nonexponential decay with
time, which in the absence of non-Gaussian statistics is unam-
biguously traced back to non-Markovian memory effects. We
extract the memory function from single-cell data as well as
from data that are averaged over all cells, the good qualitative
agreement of the resulting memory functions demonstrates
that the main non-Markovian features are robust even in the
presence of significant cell-to-cell variability. The memory
function consists of an instantaneous friction contribution and
a negative single-exponential part which decays over a few
minutes. The GLE for such a memory kernel can be solved
analytically, which allows us to investigate the migratory
behavior of a general class of non-Markovian cell models. We
find that negative exponentially decaying friction generates
cell persistence on long timescales. Our correlation analysis
of single-cell migratory parameters such as cell speed, cell
diffusivity, and cell persistence reveals large spreading and
only weak correlations, in particular, the cells do not partition
into separate clusters. In contrast, strong correlations between
memory function parameters are present, which gives rise to
enhanced migratory persistence. We also consider effects due
to finite-time discretization and due to localization noise, and
show that our memory extraction methods are robust with
respect to these two omnipresent experimental effects.

By an exact mapping, we demonstrate that the non-
Markovian memory function we extract from the cell data
can be obtained from different Markovian equilibrium and
nonequilibrium two-dimensional stochastic models in the
presence of white noise. As we explain in detail, this map-
ping is not unique, meaning that there are many different
Markovian models that give rise to the same non-Markovian
dynamics. Nevertheless, such a mapping allows to investigate
possible biochemical reaction networks that might underlie
the observed migratory dynamics and to characterize classes
of equivalent Markovian models. By this, our approach goes

considerably beyond the mere fitting of model predictions to
experimental data. We anticipate future applications of our
methods to time series data from a broad class of different
active systems.

II. RESULTS AND DISCUSSION

A. Experimental trajectories

MDA-MB-436 human breast cancer cells are confined to
circular microlanes of mean radius r0 = 50 μm and width
20 μm [see inset of Fig. 1(a)]. This mesenchymal cell line
serves as a model system for cells with robust motility. Cir-
cular microlanes have the advantage that cells do not move
out of the field of view, which enables us to generate long
trajectories of single cells with a duration that is limited only
by the division time of the cells. The effect of lane curvature
on cell migratory behavior was recently studied and found
to be moderate [37]. The width of the microlane is chosen
to be slightly smaller than the cell diameter, which produces
quasi-one-dimensional motion of the confined cells. The cell
position is determined as the center of fluorescence of the
labeled cell nuclei. As a tradeoff between good statistics and
limited photostress on the cell, fluorescence images of many
different cells are recorded in parallel every � = 2.5 min (see
Appendix A for further details). Figure 1(a) shows example
trajectories x(t ) = r0ϕ(t ), where ϕ(t ) is the angular position
of the cell nucleus. We record N = 125 trajectories up to a
maximal time of T = 2155 min, the inset in Fig. 1(b) shows
the trajectory length distribution. Some cells divide, die, or
occasionally leave the microlane during the recording period,
resulting in a broad distribution of trajectory lengths. The
experimental methods have been described before [36].

Single-cell velocities are estimated by position differ-
ences according to vi(t ) = [xi(t + �/2) − xi(t − �/2)]/�
where i = 1 . . . N denotes different cells. The time-dependent
squared cell velocity averaged over all cells is shown in
Fig. 1(b) and turns out to be rather constant for times larger
than 2 h. This indicates that cell motion is stationary for long
times (nonstationary cell dynamics has been considered in
previous works [38,39]). We therefore discard the data for
the first two hours (shown in red) for all further analysis (see
Appendix B for further details).

The velocity distributions for all cells are shown in
Fig. 1(c), where different colors denote different cells, to-
gether with a Gaussian determined by the mean and mean-
squared cell velocities.

The inset demonstrates that the mean velocities v̄i and in
particular the standard deviation of the velocity for individual
cells σi scatter significantly. In Fig. 1(d) the cell velocity
distributions are plotted versus the rescaled velocity coordi-
nate (vi − v̄i )/σi that takes into account the individual cell
statistics. The distributions are seen to follow a Gaussian
(solid line) much more accurately. This is corroborated in
Fig. 1(e) where we plot the cell-averaged velocity distribution
versus (vi − ¯̄v)/σ̄ (blue crosses) and versus (vi − v̄i )/σi (red
spheres), where ¯̄v and σ̄ are the mean velocity and the
velocity standard deviation averaged over all cells. The latter
way of plotting the data shows very little deviation from a
Gaussian. We conclude that single cells are described within
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FIG. 1. Human breast cancer cell motion on circular microlanes. (a) Five randomly selected cell trajectories, where x(t ) is the distance
coordinate along the lane. Horizontal dashed lines denote the microlane circumference of 320 μm. The inset depicts a phase-contrast image
of a migrating cell, the fluorescently labeled nucleus shows in blue [36]. (b) Time-dependent squared velocity averaged over all cells, the
horizontal black line indicates the time average. The first two hours that are colored in red are excluded from all further analysis. The inset
shows the length distribution of all 125 trajectories. (c) Instantaneous velocity distribution of all cell trajectories. The black line shows a
Gaussian determined by the mean and mean-squared cell velocities. The inset shows mean velocities v̄i and velocity standard deviations σi of
single cells (black dots) as well as the average over all cells (red circle). (d) Rescaled plot of the instantaneous velocity distributions of all cell
trajectories, where the velocity of each cell is shifted by its mean v̄i and rescaled by its standard deviation σi. The black line shows a Gaussian.
(e) Cell-averaged velocity distributions. Blue crosses show results plotted as a function of (vi − ¯̄v)/σ̄ , i.e., where the cell velocities are first
averaged and then rescaled, where ¯̄v and σ̄ denote the mean velocity and the velocity standard deviation averaged over all cells. When first
rescaling and then averaging the data (red circles), i.e., when plotting the data as a function of (vi − v̄i )/σi, the deviations from a Gaussian
(black line) are significantly reduced.

a good approximation by Gaussian velocity distributions, that
exhibit considerable variation between different cells, which,
when averaged over many cells, give rise to significant non-
Gaussian effects, in agreement with earlier observations [17].
This means that when a theory is constructed on the single-cell
level, non-Gaussian effects can for the present data set safely
be neglected. This follows from the fact that multiplicative
noise, i.e., when the noise term in the Langevin equation is
multiplied by a velocity-dependent function, can by a nonlin-
ear transformation be shown to produce an effective (and in
general nonlinear) free energy contribution [40].

B. Non-Markovian Langevin model

We describe cell dynamics by the nonequilibrium version
of the one-dimensional generalized Langevin equation (GLE)
[23,41]

v̇(t ) = −U [x(t )] −
∫ t

−∞
ds �v (t − s)v(s) + FR(t ), (1)

where v(t ) denotes the tangential velocity of the cell on the
microlane and �v (t ) is the memory kernel which accounts

for non-Markovian effects and describes how the change in
velocity depends on the velocity history. For Newtonian dy-
namics the particle mass m appears in front of the acceleration
term v̇(t ), for cell dynamics the actual cell mass is irrelevant,
and the prefactor of the acceleration term has been absorbed
into the terms on the right side. The microtracks are homo-
geneous and therefore the effective potential U [x] vanishes
(note that memory extraction methods for general nonlinear
potentials have recently been developed for the study of
conformational transition kinetics [26]). The stochastic con-
tribution FR(t ) has zero mean 〈FR(t )〉 = 0 and is characterized
by its second moment

〈FR(t )FR(0)〉 = �R(t ). (2)

Since the distribution analysis of the experimental data in
Fig. 1(e) suggests purely Gaussian behavior, higher-order
noise correlations, which have been considered in the past
[9,12,13,19,20,38], are neglected. We treat the general case
where the noise correlation �R(t ) has a finite range in time,
which corresponds to colored noise. For a moving cell that
certainly is far from equilibrium, the two functions �v (t ) and
�R(t ) are different in general.
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FIG. 2. (a) Cell-averaged velocity autocorrelation function Cvv (t ) (blue line) compared with the model prediction Eq. (16) (red line). Thin
gray lines denote data for the five individual cells shown in Fig. 1(a). The inset shows short-time results on the full experimental time resolution
of � = 2.5 min, the broken black line denotes the PRW model prediction which is a straight line in the log-linear plot. (b) Memory kernel �(t )
(blue circles) directly extracted from the experimental cell-averaged Cvv (t ) data in (a). Thin gray lines denote results for the five individual
cells shown in (a). The average of the kernels extracted from all single-cell trajectories is denoted by green crosses. The inset shows −�(t )
at short time on a log-linear scale together with single exponential fits to the first four (eight) data points of the negative tails of the kernels,
shown by solid (dashed) black lines. (c) Mean-squared cell displacements averaged over all cells (blue data points) together with the analytical
model result with and without localization noise according to Eqs. (15) and (14), respectively. The vertical lines mark the ballistic time τb, the
memory time τm, and the persistent time τp. Thin gray lines denote experimental data for the five individual cells shown in (a) and (b).

The linear Langevin equation is characterized by the VACF

Cvv (t ) = 〈v(0)v(t )〉, (3)

from which positional correlation functions, the mean-
squared displacement, as well as all higher moments can be
calculated. The Fourier-transformed VACF resulting from the
Langevin equation (1) reads as

C̃vv (ω) = �̃R(ω)

[iω + �̃v+(ω)][−iω + �̃v+(−ω)]
, (4)

where Fourier transforms are given by f̃ (ω) =∫ ∞
−∞ dt e−iωt f (t ) and f̃+(ω) = ∫ ∞

0 dt e−iωt f (t ) denotes
the single-sided Fourier transform (the derivation is given in
Appendix C).

Our general non-Markovian model reduces to the PRW
model in the Markovian (i.e., white noise) limit, i.e., when
the Fourier-transformed memory function �̃v+(ω) and the
noise correlator �̃R(ω) are constant; in this case the VACF
Cvv (t ) decays as a single exponential. The experimental cell-
averaged VACF in Fig. 2(a) (blue line) decays exponentially
over 500 min and is dominated by noise for longer times, the
inset demonstrates deviations from single-exponential decay
over the initial 20 min by comparison with the straight broken
black line in the log-linear plot. This shows that the cells do
not behave according to the PRW model but that either finite
memory or colored noise is present in the data [we will later
show that deviations from PRW behavior are also present on
the single-cell level and therefore the deviations seen in the
cell-averaged VACF in Fig. 2(a) are not caused by variations
among different cells]. As we will discuss in more detail later
on, the discontinuous behavior of the VACF for the first two
data points in the inset in Fig. 2(a) is explained by noise
stemming from the localization of the cell nucleus [17].

At this point, a fundamental problem is encountered: While
the Fourier-transformed VACF C̃vv (ω) in Eq. (4) is uniquely
determined by the memory function �̃v+(ω) and noise corre-
lation �̃R(ω), we cannot uniquely extract these two functions

from C̃vv (ω). For a general Gaussian process, the velocity
Green’s function, from which all correlation functions, con-
ditional as well as unconditional averages can be derived, is
uniquely defined by the VACF (see Appendix D). This in turn
implies that the Fourier-transformed VACF C̃vv (ω) contains
complete information on the cell migratory characteristics.
Thus, based on one-dimensional cell trajectories, the problem
is underdetermined. To proceed with our analysis, we for the
time being restrict the parameter space and collapse the two
functions �v (t ) and �R(t ) into one (we will discuss how to
undo this collapse later on). In analogy with the equilibrium
scenario, we define a substitute memory function by

�(t ) ≡ �v (t ) = �R(t )/B, (5)

where B will be later shown to correspond to the mean-
squared cell velocity. From Eq. (4) it follows that the VACF
predicted by the full model [i.e., when �v (t ) and �R(t ) are
independent of each other] and by the substitute model [when
Eq. (5) holds] are the same, if the condition

B�̃(ω)

|iω + �̃+(ω)|2 = �̃R(ω)

[iω + �̃v+(ω)][−iω + �̃v+(−ω)]
(6)

is satisfied, where the relation �̃(ω) = 2 Re�̃+(ω) holds.
�̃R(ω) follows from Eq. (6) as a unique function of �̃v+(ω)
and �̃+(ω), so we conclude that there are infinitely many
combinations of �̃v+(ω) and �̃R(ω) that for given �̃+(ω)
satisfy Eq. (6).

In fact, the substitute kernel �(t ) can be uniquely deter-
mined from the experimental VACF. To see this, we note that
the GLE equation (1) can be rewritten as

Cvv (t ) − Cvv (0) = −
∫ t

0
ds G(t − s)Cvv (s), (7)

where G(t ) ≡ ∫ t
0 �(t ′)dt ′ is the running integral over the sub-

stitute memory function. Given an experimental VACF Cvv (t )
as input, Eq. (7) can be inverted which thereby uniquely de-
termines G(t ) [41,42], from which the memory function �(t )
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follows by differentiation. Numerical details are explained in
Appendix E.

The memory kernel �(t ) extracted from the cell-averaged
VACF is shown in Fig. 2(b) (blue open circles), while the
green crosses denote the average over memory kernels ex-
tracted from VACFs of individual cells. The agreement be-
tween the two different kernel functions is rather good, the
inset demonstrates that the kernels decay with similar charac-
teristic timescales of 1.7 and 4.6 min, respectively, obtained
from fitting single-exponential functions to the tails. Thus,
we conclude that the functional form of the kernel is not
influenced significantly by cell-to-cell variations of the VACF
and thus constitutes a robust feature of the cell dynamics. The
thin gray lines denote memory kernels for the five individual
cell trajectories shown in Fig. 1(a). On the experimental time
resolution, the kernel consists of a positive contribution at
time zero and a negative tail, which, as shown in the inset,
is a single exponential. The data thus suggest a generic kernel

�(t ) = 2aδ(t ) + be−t/τm (8)

with b < 0. The standard PRW model is recovered in the limit
b = 0. The simple yet faithful model suggested by the data
thus contains a total of four parameters: a, b, and τm as defined
in Eq. (8), and B, as defined in Eq. (5). The VACF for this
model follows as

Cvv (t ) = Bτp(τm − τb)

τm(τp − τb)
e−t/τb + Bτb(τp − τm)

τm(τp − τb)
e−t/τp, (9)

where the two relaxation times are defined by

τp,b = 1 + τma ± √
(1 + τma)2 − 4bτ 2

m − 4aτm

2(a + τmb)
(10)

with τp the persistence time and τb < τp the ballistic time. The
mean-squared velocity is given by

Cvv (0) = B, (11)

which directly follows from Eqs. (4) and (5) (see Ap-
pendix C). The cell diffusion constant D is is given by an
integral over the VACF, which leads to

D = C̃vv (0)

2
= B

a + bτm
. (12)

The two relations (11) and (12) effectively reduce the number
of parameters from four to two, if experimental estimates for
Cvv (0) and D are used.

C. Discretization effects and localization noise

Since the extracted memory time τm is of the order of
the discretization time � = 2.5 min, discretization effects,
which invariably come in when positional data at finite-time
differences are used to calculate velocities and VACFs, are
expected to perturb the memory extraction. A second effect
we have not discussed so far comes from the localization noise
which is produced when the fluorescence intensity profile
from the labeled nucleus is projected onto a single positional
variable. In order to account for discretization and localization
noise effects, which are difficult to include in the memory
extraction, we complement our data-based memory extraction

method by forward modeling of the experimental VACF. For
this we first define the mean-squared displacement

CMSD(t ) = 〈[x(t ) − x(0)]2〉, (13)

which follows from the VACF by a double integration ac-
cording to CMSD(t ) = 2

∫ t
0 dt ′ ∫ t ′

0 dt ′′Cvv (t ′′). From Cvv (t ) in
Eq. (9) we obtain [28]

CMSD(t )/(2D) = t + τb(τm − τb)

τp − τb
(e−t/τb − 1)

+ τp(τp − τm)

τp − τb
(e−t/τp − 1). (14)

The localization noise of the cell nucleus position can be
modeled by adding a random variable xloc to the position so
that the model prediction for the experimentally measured
position reads as xexpt(i�) = x(i�) + xloc(i�). Assuming the
localization noise to be uncorrelated over time and character-
ized by the deviation σloc, we obtain for the MSD [17,43]

Cexpt
MSD(i�) = CMSD(i�) + 2(1 − δi0)σ 2

loc. (15)

The VACF follows by the discrete second derivate accord-
ing to

Cexpt
vv (i�) = Cexpt

MSD[(i + 1)�] − 2Cexpt
MSD(i�) +Cexpt

MSD[(i − 1)�]

2�2

(16)

and includes both discretization and localization noise effects
(see Appendix F). With the experimental values for the mean-
squared velocity Cexpt

vv (0) = 0.22 μm2/min2 and the diffusion
constant Dexpt = 12.3 μm2/min, calculated via integrating
the discrete experimental VACF in Fig. 2(a), there are, in-
cluding the localization noise strength σloc, three parameters.
These are determined via a fit of Eq. (16) to the experimental
VACF in Fig. 2(a). The fit is robust since the remaining fit
parameters are determined by distinct features of the VACF,
namely, the nonmonotonicity in the first three data points due
to the localization noise and the two decay times of the VACF
set by τb and τp (see Appendix G for details of the fit and
the evaluation of Dexpt). The best fit is shown in Fig. 2(a)
by a red line and in the inset by red crosses, it describes the
experimental VACF perfectly on all timescales. We note that
the fit values for the memory parameters a, b, and τm differ
from the values directly extracted from the experimental data
and shown in Fig. 2(b), which clearly indicates the importance
of discretization and localization noise effects.

In Fig. 2(c) the experimental MSD data (blue circles) are
compared with the prediction from the fit to the cell-averaged
VACF including localization effects according to Eq. (15)
(solid red line), exhibiting perfect agreement. We also show
theory results for the case where we leave all parameters
fixed but set σloc = 0 (red broken line). By comparison of the
two predictions we see that localization noise gives rise to a
saturation of the MSD for short times. Clearly, the deviation
between these two scenarios is only discernible in the first
experimental MSD data point. In contrast, for the VACF data
in Fig. 2(a), localization noise has a more drastic effect and
leads to a characteristic nonmonotonicity in the first three data

032408-5



BERNHARD G. MITTERWALLNER et al. PHYSICAL REVIEW E 101, 032408 (2020)

10-1 101 103
10-2

10-1

100

10-1 101 103
100

102

104

10-4 10-2 100

100

101

102

10-1 101 103

101

103

105

10-2 10-1 100

101

103

105

10-2 10-1 100

10-2

10-1

100

(a) (b) (c)

(d) (e) (f)

FIG. 3. Correlation analysis of single-cell parameters obtained from fits of Eq. (16) to single-cell VACFs. Cell data for which b is positive
are shown as green circles, blue circles denote cells for which D according to Eq. (12) is negative, black circles denote the majority of cells
for which b is negative and D positive. Red open circles denote the result from the analysis of the cell-averaged VACF. (a)–(c) Correlations
between the diffusivity D, squared cell velocity B, and persistence time τp. Comparison with the solid line in (b) indicates weak linear scaling.
(d) Scaling plot of Bτp versus D, the PRW prediction D = Bτp is denoted by a solid line and constitutes an upper bound to the single-cell
diffusivity. (e) The plot of the memory time τm versus the amplitude of the exponential memory contribution |b| reveals a roughly inverse
linear scaling (denoted by a solid line), which suggests that the integrated contribution of the exponential memory term to the friction, |b|τm,
is rather constant. (f) Scaling plot of |b|τm versus a, demonstrating that the two contributions to the memory function defined in Eq. (8) have
equal integrated weight.

points. Localization noise thus has a more significant effect on
VACF data compared to MSD data.

The timescales τb = 3 min, τm = 6 min, and τp = 160 min
are indicated by vertical colored lines.

D. Correlation analysis of single-cell parameters

One goal of single-cell motility analysis is the comparison
and classification of individual cells. In Figs. 3(a)–3(c) we
present the correlations between the single-cell results for the
diffusivity D, the squared cell velocity B, and the persistence
time τp, as they follow from our fits to the single-cell VACF
data using the GLE defined by Eqs. (1), (5), and (8). These
three observables can be straightforwardly extracted from
experimental VACF by direct fitting to the PRW model and
similar correlation plots have been presented in previous stud-
ies [17,44]. The advantage of our indirect extraction via fit to
the GLE is that memory, discretization and localization noise
effects, which strongly perturb B, are properly accounted for.

A very weak positive correlation between τp and B is seen
in Fig. 3(a), meaning that cells with a larger instantaneous
velocity also show a larger persistence time, in agreement

with previous results [44] (where, however, the persistence
time was defined differently). There is a pronounced linear
correlation between τp and D over three orders of magnitude
in Fig. 3(b), which was also noted in literature before [17],
while there is again only little correlation between B and D in
in Fig. 3(c). The main difference between these observables is
that B varies little from cell to cell, spanning only a decade,
while D and τp vary over more than three orders of magnitude.
The PRW model predicts the diffusivity D to be given by
D = Bτp [7], which in Fig. 3(d) is shown to be obeyed by our
data very nicely over the entire range of individual cell data.
We conclude that the quasilinear correlation between τp and D
in Fig. 3(b) is a consequence of the PRW scaling D = Bτp in
Fig. 3(d), produced by the fact that B shows little cell-to-cell
variation, and does not necessarily present a distinct property
of cell migratory behavior.

Deviations of our single-cell cell data from the PRW model
in the scaling plot Fig. 3(d) are rather mild. This means
that the PRW model is pretty accurate for the long-time cell
migration as described by diffusivity D, persistence time τp,
and squared cell speed B. It is only the short-time behavior
of the VACF, shown in the inset of Fig. 2(a), that reveals
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the deviations from the PRW model. In Fig. 3(d) we observe
that the single-cell diffusivity is systematically smaller than
predicted by the PRW model, which is due to the characteristic
form of the cell memory function, as will be explained below.

In Fig. 3(e) we show a correlation plot of the memory
time τm versus the amplitude |b| of the exponential term in
the memory function defined in Eq. (8). We observe a large
spread of the memory time over three orders of magnitude,
from fractions of a minute to few hours, and at the same
time a pronounced anticorrelation between τm and |b|: cells
that are characterized by long memory times τm show small
amplitudes |b|. This anticorrelation suggests the correlation
plot of the product |b|τm versus the amplitude a of the delta
function in the memory function defined in Eq. (8), shown in
Fig. 3(f). The almost perfect linear scaling a = |b|τm, denoted
by the straight line, mathematically implies that the memory
function of cells is tuned such that the two relaxation times
τb and τp, defined in Eq. (10), are maximally different from
each other. The other parameters of our non-Markovian cell
model, a, b, B, τm, exhibit rather weak correlations, as shown
in Appendix H.

In conclusion, single-cell memory parameters allow to
compare single cells in an unbiased fashion. The spread of
the parameters in Fig. 3 is rather large; it is at the present
stage not clear whether the pronounced scattering stems from
cell heterogeneity or from the shortness of the trajectories.
However, it is clearly seen that the data do not fall into distinct
clusters. The single-cell parameters are centered around the
parameters fitted to the cell-averaged VACF (red circles). This
corroborates that the memory function model we extract is not
modified by the cell-to-cell variation in a significant fashion,
in line with the good comparison of the memory function ex-
tracted from the cell-averaged VACF and the average over the
memory functions extracted from single-cell data in Fig. 2(b).

E. Timescale analysis of MSD

The model with a negative exponential kernel contribu-
tion, Eq. (8), can be analyzed in closed form and exhibits a
characteristic persistence enhancement. In fact, in the limit
τb < τm < τp the model exhibits four different regimes [45]:

CMSD(t ) ∼

⎧⎪⎨
⎪⎩

t2, t � τb

t, τb � t � τm

t2, τm � t � τp

t, τp � t

. (17)

So there is a short-time regime t � τb where motion is bal-
listic, an intermediate regime for τb � t � τm where motion
is diffusive, a second intermediate regime for τm � t � τp

where memory effects induce persistent motion, and finally
the asymptotic diffusive regime for τp � t . This multiscale
migration behavior is illustrated in Fig. 4, which shows the
transient MSD exponent

α(t ) = d ln CMSD(t )

d ln t
. (18)

For B, a, and b we use the values resulting from the fit to the
cell-averaged VACF in Fig. 2(a) and present α as a function
of time t and a variable memory time τm. The best-fit value
τm = 6 min is indicated by a horizontal black broken line.

FIG. 4. Phase diagram for the MSD exponent α (denoted by the
green-yellow color scale) as a function of time t and the memory
time τm. The memory time from the fit to the cell-averaged VACF
in Fig. 2(a) is shown as a horizontal dashed line. For long memory
times τm, an intermediate diffusive regime (α ≈ 1, shown in yellow)
appears between the short-time ballistic (left green region) and the
long-time persistent regimes (right green region) where α ≈ 2.

As τm increases, an intermediate diffusive regime (yellow
region) at intermediate times develops and a second persistent
regime (green strip to the right) at long times appears. This
persistent regime appears at times that are substantially longer
than the memory time, so we conclude that memory induces
persistent motion at longer times than the memory time itself.
For the actual memory time extracted from the averaged cell
data, τm = 6 min, the short-time ballistic and the long-time
persistent regimes merge, but from the scaling diagram it
transpires that a small increase of the memory time induces an
intermediate diffusive regime and extended persistent motion
over much longer timescales. The cancer cells we study are
therefore close to a transition to the full four-scale dynamic
behavior as described by Eq. (17). The presence of the inter-
mediate diffusive regime in the time range for τb � t � τm

also explains why for the cell data in Fig. 3(d) the PRW model
constitutes an upper bound for the cell diffusivity: this is so
because the intermediate diffusive behavior in Eq. (17) lowers
the MSD compared to a purely ballistic motion.

F. Reconstruction of equivalent Markovian models

Our cell motility analysis utilizes the GLE with a single
substitute memory function �(t ), defined in Eq. (5), which
by extraction from experimental data is shown to exhibit
an exponentially decaying negative contribution according to
Eq. (8). There are infinitely many different non-Markovian
nonequilibrium models, characterized by two different func-
tions �v (t ) and �R(t ), that according to Eq. (6) produce the
same VACF.

Non-Markovian effects arise from Markovian many-
body systems by integrating out degrees of freedom [23],
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conversely, for any non-Markovian GLE a Markovian higher-
dimensional substitute model can be constructed. In Ap-
pendix I we demonstrate that the GLE with a single substitute
memory function �(t ) given by Eq. (8) corresponds to an
equilibrium Markovian system of two degrees of freedom
with nondiagonal friction coupling. This of course does not
imply that cell migration is an equilibrium process, dissi-
pative effects would in such a model be expected to show
up on a hidden more microscopic level. As explained in
Appendix J, it is also possible to construct different equiva-
lent two-dimensional nonequilibrium Markovian models. One
particularly simple example of a nonequilibrium model that
reproduces the experimental VACF and at the same time
allows to be written in terms of a coupled, stable system of
Markovian rate equations, is given by

�v (t ) = 2avδ(t ), �R(t ) = 2a2
Rδ(t ) + b2

R

τR
e−t/τR , (19)

which corresponds to a Langevin equation with an instanta-
neous friction function �v (t ) and a colored-noise correlator
�R(t ). The coefficients av , aR, bR, τR follow from Eq. (6) as
τR = τp, av = 1/τb, a2

R = Ba, b2
R = B(τp/τb − τma)/τm (see

Appendix J for details). Interestingly, the persistence time
τp, which is the longest timescale in the system, equals
the correlation time τR of the active noise in Eq. (19). The
nonequilibrium non-Markovian Langevin defined by Eq. (19)
can be derived from the two coupled Markovian equations of
motion

η̇(t ) = −τ−1
R η(t ) + τ−1

R ξ1(t ), (20a)

v̇(t ) = −avv(t ) + aRξ0(t ) + bRη(t ), (20b)

where η(t ) is an additional fluctuating degree of freedom.
The two white Gaussian noise variables ξi(t ) with i = 0, 1
are defined by correlators 〈ξi(t )ξ j (t ′)〉 = 2δi jδ(t − t ′). The
effective random force entering the GLE equation (1) for the
single variable v(t ) is given by FR(t ) = aRξ0(t ) + bRη(t ) and
reproduces the random correlation �R(t ) given in Eq. (19), as
is shown in Appendix J. This model has been studied amply in
literature and corresponds to the underdamped version of the
active Ornstein-Uhlenbeck process [46]. In fact, a collection
of particles described by the correlators in Eq. (19) undergoes
a motility-induced phase separation for a suitable choice of
parameter values [47,48]. We have thus demonstrated that the
motion of the cancer cells studied by us can be mapped onto a
nonequilibrium particle model that is well known in literature.
We hasten to add that this mapping is not unique and that there
are other equilibrium and nonequilibrium Markovian models
on which we can map our extracted substitute kernel �(t ),
in Appendices I and J we show alternative equilibrium and
nonequilibrium Markovian models that have similar complex-
ity as the model defined in Eq. (19).

III. CONCLUSIONS

The goal of single-cell motility modeling is to extract
parameters from single-cell trajectories that allow to charac-
terize, compare, classify, and, to a certain degree, understand
cell migration. In traditional modeling approaches, this goal
is achieved by defining a migratory model and by extracting
parameters of that model by fitting to experimental data.

While such approaches have produced remarkable insights
into the dynamics of cells [17,44], the large number of dif-
ferent random walk models renders the extracted parameters
not unique. This is enhanced by the fact that single-cell data
show large cell-to-cell variation and pronounced single-cell
noise due to the typically short trajectory length.

We here introduce an alternative modeling approach, which
is based on the generalized Langevin equation that includes
an arbitrary memory friction function �v (t ) and an arbitrary
colored-noise correlator �R(t ). By construction, our cell mo-
tion model contains many previously introduced random walk
models; as the main advantage of our approach, we extract the
memory function in a data-driven approach from the trajectory
time series. We do not impose a certain model on the cell data,
but we rather let the cell migration data reveal to us the model
that best describes the trajectories.

In the first part we extract a substitute memory function
�(t ) directly from the cell VACF. The memory function con-
tains an exponentially decaying negative friction contribution,
which demonstrates that the cell dynamics shows small but
significant deviations from the standard PRW model, accord-
ing to which the memory function would simply be a delta
function. The presence of a negative exponentially decaying
friction contribution is interesting because the migratory dy-
namics produced by such a model is equivalent to the under-
damped version of the active Ornstein-Uhlenbeck process, as
we show in Appendix J. This is remarkable since the fact that
cancer cell motion is equivalent to this active particle model
is data driven and follows directly from the cell trajectories.

Based on the trajectories alone, it is not possible to
uniquely extract the memory friction function �v (t ) and the
noise correlator �R(t ); this is not a shortcoming of our model
or the methods we use, but rather follows from the limited
amount of information contained in unbiased one-dimensional
trajectories. In future studies, it would be interesting to subject
cells to external perturbations (such as chemical gradients or
confining forces), which would allow to determine response
functions and thereby to extract �v (t ) and �R(t ) separately.
This would help to characterize the nonequilibrium character
of biological systems in more detail. In such studies, presum-
ably non-Gaussian velocity distributions will be encountered,
which can be dealt with by the nonlinear kernel extraction
methods that we developed earlier [25,26]. Alternatively, mul-
tidimensional cell marker data directly signal detailed balance
violation and thereby allow to detect the nonequilibrium char-
acter of the system dynamics [49]. In fact, multidimensional
data can be analyzed by straightforward adaption of the meth-
ods presented in this paper.

Clearly, it would be desirable to relate the characteristics
of the memory function we extract from cell trajectories
to biochemical processes in the cell. Numerous experimen-
tal and theoretical studies considered cell protrusion and
cell polarization dynamics and in particular investigated the
connection to the underlying dynamics of the extracellular
matrix, the actin network, the cellular polarity machinery,
and integrin trafficking [50–52]. Interestingly, we find the
negative friction component of the memory kernel to de-
cay over a few minutes, which is similar to the timescale
observed for the cell protrusion kinetics [51], which could
indicate a possible connection. However, we note that the
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memory time distribution of individual cells in Fig. 3(e) is
extremely broad and shows memory times τm from less than
a minute to hours, which does not seem to be mirrored by
an equally broad distribution of cell protrusion timescales.
Indeed, the connection between timescales of the dynamics of
cell components (such as the actin network or cell protrusions)
and the memory timescale that characterizes the overall cell
motion is presumably rather complex: This is demonstrated by
the simple Markovian models derived in Appendix J, where
the memory timescale τm depends not only on the separate
timescales of the coupled coordinates, but also on the cou-
pling strength between the coordinates in a complex manner.
In fact, the connection of the memory function timescales
to underlying cell component dynamics could be addressed
experimentally by studying the effect of chemical agents that
interfere with, e.g., the cytoskeleton on the memory function
or, even more directly, by using multiple cell markers that
couple to different parts of the cell migratory machinery. In
this context, experimental data with finer time discretization,
for which alternative staining methods need to be employed,
would allow to better resolve the short-time behavior of the
extracted memory kernel functions.

Future experiments with different cell lines will
demonstrate the potential of our memory kernel extraction
technique for cell comparison and classification. Our methods
can be applied to all different kinds of living and synthetic
active objects, comparison of the extracted memory functions
will reveal whether the negative friction component of the
memory function found in this study is a general hallmark of
active systems.
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APPENDIX A: EXPERIMENTS

1. Microcontact printing

Polydimethylsiloxane (PDMS) stamps were treated with
UV light (PSD-UV, Novascan) for 5 min and incubated for
45 min in a 50-μg/ml fibronectin solution (Yo proteins). Next,
stamps were washed with deionized water, dried, and placed
on a plastic dish (μ-Dish, Ibidi), which had been treated
with UV light for 15 min. A droplet of a 1 mg/ml poly-L-
lysine-grafted polyethylene glycol (PLL-PEG) (SuSoS) solu-
tion (dissolved in 10 mM HEPES containing 150 mM NaCl)
was placed at the edge of the stamps and drawn into the spaces
between surface and stamp by capillary action. Stamps were
removed and a glass coverslip was placed on the dish surface
to ensure complete coverage of the surface with PEG solution.
After a 30-min incubation, the coverslip was removed and the
surface was washed three times with PBS and stored in PBS
until cells were seeded.

2. Cell cultures

MDA-MB-436 breast cancer cells were cultured in
DMEM-F12 medium (c.c.pro) containing 10% fetal bovine
serum (Invitrogen) and 2.5 mM L-glutamine (c.c.pro) at 37 ◦C
in a 5% CO2 atmosphere. For experiments about 10 000 cells
were seeded per dish and the medium was exchanged after
2 h to L15 medium without phenol red with 25 nM Hoechst
added.

3. Time-lapse microscopy

Cells were monitored using an inverted microscope
equipped with an 10× objective (Nikon TI), an automated
stage (Märzhäuser), a sCMOS camera (PCO), and a heating
chamber to keep cells at 37 ◦C (Okolab). Every 2.5 min,
phase-contrast and fluorescence images of the nuclei were
acquired.

4. Cell tracking

Single cells on the microlanes where manually identified.
A band pass filter was applied to the fluorescence images
of the nucleus. Then, a binary image was generated using a
threshold. The geometric center of the nucleus was used as
the cell position. Cell tracking was terminated in the case
of cell division, cell death, or when cells spanned over the
middle part of the ring or migrated out of the microlane. The
center of the ring-shaped microlane was determined by fitting
a circle to the cell positions to allow a transformation to polar
coordinates.

APPENDIX B: STATIONARITY

To check whether the data are consistent with the assump-
tion of stationarity, we estimate the second moment of the
velocities by averaging over all cells

v2(t ) = 1

n(t )

∑
i

�(Ti − t )v2
i (t ), (B1)

where n(t ) denotes the number of cell trajectories which are
at least of length t and Ti denotes the total length of trajectory
i. In the above expression, the individual trajectories all start
at time t = 0. Since not all trajectories are of the same length,
the average is taken only over a fraction of the total number
of cells for large t in the above estimate. To investigate the
behavior near the end of all trajectories, we also estimate the
second moment with the trajectories shifted such that they all
end at t = 0:

v2(t − T ) = 1

n(T − t )

∑
i

�(Ti − T + t )v2
i (T − t ). (B2)

The estimate v2(t ) shows a peak during the first two
hours and is rather constant after that (see Fig. 5). This
peak is smeared out in the shifted estimate v2(t − T ), which
otherwise is rather constant and does not show any anomaly
toward the trajectory end. Nonstationary behavior is thus only
discernible in the first two hours of the trajectories, which are
therefore discarded for all further analysis, as noted in the
main text.
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FIG. 5. Squared velocity averaged over all cells as a function of
time. The horizontal black line indicates the average over all cells
and over time.

APPENDIX C: VELOCITY AUTOCORRELATION

To derive the general formula (4) for the VACF in the
frequency domain, we first note that〈

F̃R(ω)F̃R(ω′)
〉 = 2πδ(ω + ω′)�R(ω), (C1)

which follows from Eq. (2). The VACF can thus be written as

Cvv (t ) = 〈v(t )v(0)〉

=
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
eiωt

× 〈F̃R(ω)F̃R(ω′)〉
[�̃v+(ω) + iω][�̃v+(ω′) + iω′]

=
∫ ∞

−∞

dω

2π
eiωt �̃R(ω)

[�̃v+(ω) + iω][�̃v+(−ω) − iω]
, (C2)

which is just the inverse Fourier transform of Eq. (4).
The VACF for a general substitute model reads in the

frequency domain

C̃vv (ω) = B�̃(ω)

(�̃+(ω) + iω)(�̃+(−ω) − iω)
= B�̃(ω)

|�̃+(ω) + iω|2
(C3)

[see Eq. (6) in the main text]. Introducing the veloc-
ity response χ̃ (ω) = (iω + �̃+(ω))

−1
, Eq. (C3) can be

written as

C̃vv (ω) = B�(ω)χ̃ (ω)χ̃ (−ω) = Bχ̃ (ω) + Bχ̃ (−ω), (C4)

where we used �̃(ω) = �̃+(ω) + �̃+(−ω). It follows that

Cvv (0) =
∫ ∞

−∞

dω

2π
C̃vv (ω) = B

∫ ∞

−∞

dω

2π
[χ̃ (ω) + χ̃ (−ω)]

= B
∫ ∞

−∞

dω

π
χ̃ (ω). (C5)

Since the response function χ̃ (ω) is causal, it has no poles in
the lower half complex plane. Closing the contour in the lower
half plane leads to

Cvv (0) = B

π

∫ ∞

−∞
dω χ̃ (ω) = − B

π

∫
arc

dω χ̃ (ω)

= − B

π
lim

R→∞

∫ −π

0
dϕ

iReiϕ

iReiϕ + �̃+(Reiϕ )

= − B

π

∫ −π

0
dϕ = B, (C6)

where we assumed that |�̃+(z)| < ∞ for all z ∈ C.

APPENDIX D: VELOCITY GREEN’S FUNCTION

Since we model the cell velocity v(t ) as a stationary
Gaussian process, the corresponding joint probability distri-
bution, i.e., the non-normalized Green’s function, is given by
a bivariate normal distribution

p(v2, t2; v1, t1) = exp(−
vT �−1
v/2)

2π
√|�| . (D1)

Here, 
vT = (v1, v2) and the covariance matrix is given by

� =
(

〈v(t1)v(t1)〉 〈v(t1)v(t2)〉
〈v(t1)v(t2)〉 〈v(t2)v(t2)〉

)
(D2)

=
(

Cvv (0) Cvv (t2 − t1)
Cvv (t2 − t1) Cvv (0)

)
. (D3)

Since the velocity is normally distributed, p(v) =
exp[−v2/2Cvv (0)]/

√
2πCvv (0), the normalized Green’s

function, which is the distribution of v(t2) = v2 conditional
on v(t1) = v1, is given by

p(v2, t2|v1, t1) = p(v2, t2; v1, t1)

p(v1, t1)
(D4)

=
exp

(− [v2−v1Cvv (t2−t1 )/Cvv (0)]2

2Cvv (0)[1−Cvv (t2−t1 )2/Cvv (0)2]

)
√

2πCvv (0)[1 − Cvv (t1 − t2)2/Cvv (0)2]
, (D5)

from which the conditional expectation value of the velocity
can be read off as

〈v(t2)〉|v(t1 )=v1 = Cvv (t2 − t1)

Cvv (0)
v1. (D6)

Note that the Green’s function can be entirely expressed in
terms of the VACF.
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APPENDIX E: ITERATIVE SOLUTION OF THE MEMORY EQUATION

To extract the memory kernel from a discrete VACF, an appropriate discretization scheme for Eq. (7) needs to be chosen
first. Note that since the memory kernel �(t ) is a symmetric function, its running integral G(t ) = ∫ t

0 dt ′�(t ′) is necessarily
antisymmetric. We approximate the integral in Eq. (7) via the trapezoidal rule:

Cexpt
vv (n�) − Cexpt

vv (0) = −�

2

n−1∑
i=0

G((n − i − 1/2)�)
[
Cexpt

vv ((i + 1)�) + Cexpt
vv (i�)

] ⇒ �G((n + 1/2)�)

= −2
Cexpt

vv ((n + 1)�) − Cexpt
vv (0)

Cexpt
vv (�) + Cexpt

vv (0)
−

n∑
i=1

�G((n − i + 1/2)�)
Cexpt

vv ((i + 1)�) + Cexpt
vv (i�)

Cexpt
vv (0) + Cexpt

vv (�)
, (E1)

where the sample points G((n + 1/2)�) are located in-between the sample points of the discrete VACF Cexpt
vv (n�). The discrete

memory kernel �(i�) is then obtained via the central difference according to

�(i�) = G((i + 1/2)�) − G((i − 1/2)�)
�

, ⇒ �(0) = 2G(�/2)

�
. (E2)

The expression for �(0) follows using the antisymmetry of
G((i + 1/2)�).

APPENDIX F: DISCRETE VELOCITY
AUTOCORRELATION FUNCTION

For a given finite-time resolution �, the autocorrelation
Cexpt

vv ( j�) of the discrete velocity v( j�) = [x( j� + �/2] −
x[ j� − �/2)]/� can be obtained from the continuous MSD
by taking the second central difference. To see this, we first
note that from the definition of the discrete velocity, it follows
that

x( j� + �/2) = x(�/2) + �

j∑
k=1

v( j�). (F1)

The MSD for lag time j� can thus be written as

Cexpt
MSD( j�) = 〈[x( j� + �/2) − x(�/2)]2〉 (F2)

=
〈(

x(�/2) + �

j∑
k=1

v(k�) − x(�/2)

)2〉

= �2
j∑

l,k=1

〈v(l�)v(k�)〉

= j�2〈v(0)2〉 + 2�2
j∑

l=1

l−1∑
k=1

〈v((l − k)�)v(0)〉.

In the continuous case, the MSD and the VACF are related
via 1

2
d2

dt2 CMSD(t ) = Cvv (t ), which carries over to the discrete
case if one replaces the second derivative by the second central
finite difference:

Cexpt
MSD(( j + 1)�) − 2Cexpt

MSD( j�) + Cexpt
MSD(( j − 1)�)

2�2

=
j−1∑
k=0

〈v(( j − k)�)v(0)〉 −
j−2∑
k=0

〈v((i − k − 1)�)v(0)〉

= 〈v( j�)v(0)〉 = Cexpt
vv ( j�). (F3)

An important special case is 〈v(0)2〉 = Cexpt
vv (0). Since the

MSD is a symmetric function and zero at the origin, we have

Cexpt
vv (0) = Cexpt

MSD(�)

�2
. (F4)

As mentioned in the main text, the VACF of the experimental
data was estimated by computing the autocorrelation function
of the position increments v( j�) rather than by computing
the finite difference of the MSD since the former method
produces a less noisy VACF. Averages of the experimental
VACF and MSD data over different cells are weighted with
the individual trajectory lengths. Using Eq. (F3), the effect of
localization noise with a deviation σloc on the discrete VACF
can be derived as

Cexpt
vv (0) = Cexpt

MSD(�)

�2
= CMSD(�) + 2σ 2

loc

�2

= Ĉexpt
vv (0) + 2

σ 2
loc

�2
, (F5)

Cexpt
vv (�) = Cexpt

MSD(2�) − 2Cexpt
MSD(�)

2�2

= CMSD(2�) + 2σ 2
loc − 2CMSD(�) − 4σ 2

loc

2�2

= Ĉexpt
vv (�) − σ 2

loc

�2
, (F6)

Cexpt
vv ( j�) = Ĉexpt

vv ( j�), j > 1 (F7)

where Ĉexpt
vv ( j�) denotes the discrete VACF in the absence

of localization noise. As can be seen, the localization noise
only affects the first two data points of the discrete VACF
regardless of the sampling time � [17,43].

APPENDIX G: DETAILS OF THE FITTING PROCEDURE

Starting from a continuous model for the MSD (or equiv-
alently the VACF) without localization noise, discretization
effects as well as localization noise effects are accounted for
in Eq. (16). The fits of Eq. (16) to experimental data are
performed using MATLAB 2016b (Mathworks). We employ a
built in implementation of the trust region method to perform
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the nonlinear least-square fit of Eq. (16) to the first 500 min
of the cell-averaged VACF. The root-mean-square deviation
(RMSD) defined by

r2 = 1

jmax

jmax−1∑
j=0

[
Cexpt

vv ( j�) − Cfit
vv ( j�)

]2
(G1)

between the model prediction Cexpt
vv and the experimental data

Cdata
vv is r ≈ 0.0015. We obtain the following values for the fit

parameters:

a = 0.15 min−1,

b = −0.023 min−2,

τm = 6.02 min,

B = 0.14 μm2 min−2,

σloc = 0.53 μm. (G2)

These values give the timescales τb = 3.23 min and τp =
164 min. The corresponding estimate for the diffusion con-
stant (12) is given by D = 12.7 μm2 min−1 and only slightly
deviates from Dexpt = 12.3 μm2 min−1 obtained via integrat-
ing the first 500 mins of the experimental VACF.

For the single-cell VACFs, Eq. (16) is fitted to the exper-
imental data from t = 0 to half the temporal length of the
trajectory. The fits are performed for four different starting
values

No. 1 No. 2 No. 3 No. 4
a ∗ ∗ ∗ ∗
b ∗ ∗ 0 0
τm ∗ ∗ ∗ ∗
B ∗ ∗ ∗ ∗

σloc ∗ 0 ∗ 0

,

where the asterisk denotes the corresponding parameter values
obtained from the fit to the cell-averaged VACF. For the fitting
procedure, we restrict the parameter values to lie within the
bounds

0 < a < 10 min−1,

−10 < b < 10 min−2,

0.01 < τm < 105 min,

0.01 < B < 103 μm2 min−2,

0 < σloc < 10 μm.

The average RMSD of the best single-cell fits is r ≈ 0.022.
For the diffusion constant we obtain Dexpt =

12.3 μm2 min−1 via integrating the first 500 min of the
experimental cell-averaged VACF with the trapezoidal rule
according to

Dexpt = �

2
Cexpt

vv (0) + �

jmax−1∑
j=1

Cexpt
vv ( j�) + �

2
Cexpt

vv ( jmax�).

(G3)
Note that Dexpt is independent of the localization uncertainty
σloc (cf. Appendix F). To estimate the uncertainty of Dexpt,
we first need an estimate of the uncertainty of the VACF.
Estimating the uncertainty of an autocorrelation function via

0 500 1000 1500 2000
0

5

10

15

20

25

0 500 1000 1500 2000
-0.05

0

0.05

0.1

0.15

0.2

0.25(a)

(b)

FIG. 6. (a) Cell-averaged VACF (solid red line). The error bars
denote the root-mean-square deviation as obtained by comparing the
cell-averaged VACF with the single-cell VACFs (see text). (b) Run-
ning integral (solid red line) over the cell-averaged VACF, used to
estimate the diffusion constant Dexpt . Error bars (in blue) are obtained
by taking the running integral of the RMSD of the VACF.

the standard error underestimates the true uncertainty since
the data are correlated. Instead, we exploit the fact that we
are averaging over many different cells and estimate the error
from the scattering of the single-cell VACFs around the cell-
averaged VACF by calculating the root-mean-square deviation
(RMSD) acording to

RMSD( j�) =
√

1

n( j�)

∑
i

[
Cexpt

vv ( j�)−CSC,i
vv ( j�)

]2
. (G4)

Here, CSC,i
vv denotes the experimental VACF of the ith single

cell, n( j�) denotes the number of trajectories of at least
length j�, and the sum is taken over all trajectories which
are at least of length n( j�). Figure 6(a) shows the cell-
averaged VACF together with error bars denoting the RMSD.
The resulting running integral (i.e., the estimate of Dexpt) is
shown in Fig. 6(b), where the error bars denote the estimate
of the maximal uncertainty that follows from integrating the
RMSD, Eq. (G4), of the VACF. The vertical black dashed line
indicates the upper integration limit tend = 500 min, which
is the value we used in our analysis. This choice for the
upper integration limit is rationalized by the observation that
beyond 500 min the noise of the the cell-averaged VACF by
far exceeds the value of the VACF itself, as shown in Fig. 6(a).
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FIG. 7. Correlation analysis of single-cell kernel parameters a, b, τm, B obtained from fits of Eq. (16) to single-cell VACFs. Cell data for
which b is positive are shown as green circles, blue circles denote cells for which D according to Eq. (12) is negative, black circles denote the
majority of cells for which b is negative and D positive. Red open circles denote the result from the analysis of the cell-averaged VACF (cf.
Fig. 3 in the main text). The straight, solid black lines in (e) and (h) denote (inverse) linear scaling.

APPENDIX H: CORRELATION ANALYSIS OF
SINGLE-CELL PARAMETERS

Here, we provide the full correlation analysis between the
kernel parameters a, b, τm, B and the integrated exponential
tail bτm, extracted from single-cell trajectories (see Fig. 7).
Aside from the (inverse) correlations between b and τm and
between a and bτm discussed in the main text, no further
correlations are discernible. Notably, the kernel amplitudes a
and b are rather uncorrelated [see Fig. 7(c)].

Figure 8 shows the correlation analysis for the equivalent
set of parameters D, B, τb, τp which correspond to distinct
features in the MSD and the VACF. Aside from the correla-
tion between τp and D discussed in the main text, no other
correlations are discernible.

In all cases, the data do not fall into distinct clusters and
the single-cell parameters scatter around the values extracted

from the cell-averaged VACF, which are denoted by red
circles.

APPENDIX I: EQUILIBRIUM MARKOVIAN MODEL

We discuss how a memory kernel with a negative exponen-
tial tail arises from a Markovian system of coupled particles,
which satisfies the fluctuation-dissipation theorem and thus is
in equilibrium. We consider a system of two particles, whose
velocities are coupled by a generalized friction matrix,

v̇1(t ) = −γ1v1(t ) − γ12v2(t ) + φ1ξ1(t ) + φ12ξ2(t ), (I1a)

v̇2(t ) = −γ2v2(t ) − γ12v1(t ) + φ2ξ2(t ) + φ12ξ1(t ). (I1b)

Here, ξi(t ) are two independent realizations of white, Gaus-
sian noise, i.e., 〈ξi(t )ξ j (t ′)〉 = 2δi jδ(t − t ′). The goal is to
construct an effective, non-Markovian dynamics for the first
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FIG. 8. Correlation analysis of the parameter set D, B, τb, τp. The color code for the data points is the same as in Fig. 7. The solid black
line in (b) illustrates the linear scaling between the diffusion constant D and the persistence time τp. Aside from that, no other correlations are
discernible.

particle by integrating out the contribution of the second
particle. We obtain

v2(t ) =
∫ t

−∞
dt ′e−(t−t ′ )γ2 [−γ12v1(t ′) + φ2ξ2(t ′) + φ12ξ1(t ′)].

(I2)

Inserting this solution into the equation of motion of the first
particle, we obtain

v̇1(t ) = −
∫ t

−∞
dt ′�(t − t ′)v1(t ′) + FR(t ), (I3)

with a memory kernel

�(t ) = 2γ1δ(t ) − γ 2
12e−|t |γ2 . (I4)

It can be seen that the coupling between velocities, mediated
by the friction coupling coefficient γ12, leads to a negative
exponential tail in the memory kernel. The effective random
force acting on the first particle is given by

FR(t ) = φ1ξ1(t ) + φ12ξ2(t )

−
∫ t

−∞
dt ′e−(t−t ′ )γ2 [γ12φ2ξ2(t ′) + γ12φ12ξ1(t ′)]. (I5)

Thus, we obtain the following expression for the autocorrela-
tion function of the random force:

〈FR(t )FR(0)〉 = �R(t ) = 2
(
φ2

1 + φ2
12

)
δ(t )

− [2γ12(φ2φ12 + φ1φ12)

− γ 2
12(φ2

2 + φ2
12)/γ2]e−|t |γ2 . (I6)

The fluctuation-dissipation theorem, i.e., the relation �R(t ) =
B�(t ), holds if the following conditions are satisfied:

Bγ1 = φ2
1 + φ2

12,

Bγ2 = φ2
2 + φ2

12,

Bγ12 = φ12(φ1 + φ2). (I7)

The connection to the kernel of the substitute model (8) in
the main text is established by comparison with Eq. (I4). This
leads to the following mapping:

a = γ1,

b = −γ 2
12,

τm = γ −1
2 . (I8)

APPENDIX J: NONEQUILIBRIUM MARKOVIAN MODELS

The closed form expression for the VACF of the substitute
model (8) reads as

C̃vv (ω) = 2B
aτ 2

mω2 + a + bτm

ω4τ 2
m + ω2

(
1 − 2τ 2

mb + a2τ 2
m

) + (a + bτm)2
.

(J1)

This expression has poles at ω = ±i/τp and ±i/τb, which are
given explicitly in Eq. (10) in the main text. Our goal is to
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find a nonequilibrium model that reproduces the above VACF.
First, we note that

D = C̃vv (0)

2
= B

a + τmb
, (J2a)

1

2
lim

ω→∞ ω2C̃vv (ω) = Ba. (J2b)

As a starting point, we consider the following nonequilib-
rium model:

�v (t ) = 2avδ(t ) + bv

τv

e−t/τv , �R(t ) = 2a2
Rδ(t ) + b2

R

τR
e−t/τR ,

(J3)

whose associated VACF is given by

C̃vv (ω) = 2
(
1 + ω2τ 2

v

)(
a2

R + b2
R + a2

Rτ 2
Rω2

)
(
1 + ω2τ 2

R

)
[ω2τv − iω(1 + avτv ) − av − bv][ω2τv + iω(1 + avτv ) − av − bv]

. (J4)

By comparing Eqs. (J1) and (J4), we note that the powers of ω

in the numerators and denominators do not match in general.
There are two special cases of the model (J3) which reproduce
the correct functional form of Eq. (J1), these are obtained by
setting either bv or bR to zero. We in the following consider
these two cases separately.

Model I with bv = 0. In this case the expression (J4)
reduces to

C̃vv (ω) = 2
(
a2

R + b2
R + a2

Rτ 2
Rω2

)
(
1 + ω2τ 2

R

)
(−iω − av )(iω − av )

. (J5)

Comparing with Eq. (J2), we obtain the following relations:

a2
R + b2

R

a2
v

= B

a + τmb
, (J6a)

a2
R = Ba. (J6b)

The VACF (J5) has poles ω = ±iav and ±i/τR, which must
coincide with the poles at ω = ±i/τp and ±i/τb. With the
choice av = 1/τb and τR = τp we obtain the mapping

av = 1

τb
,

τR = τp,

a2
R = Ba,

b2
R =

(
τp

τbτm
− a

)
B, (J7)

as described in the main text, where we have used the relation
τpτb/τm = 1/(a + bτm).

The dynamics of this model can be described by two
coupled Markovian equations of motion

η̇(t ) = −τ−1
R η(t ) + τ−1

R ξ1(t ), (J8a)

v̇(t ) = −avv(t ) + aRξ0(t ) + bRη(t ), (J8b)

where η(t ) is a hidden fluctuating degree of freedom. In the
equations, two white Gaussian noise variables ξi(t ) appear
with correlators 〈ξi(t )ξ j (t ′)〉 = 2δi jδ(t − t ′). With the alterna-
tive choice av = 1/τp and τR = τb instead, we obtain b2

R < 0
and thus an imaginary coupling constant in Eq. (J8), which is
unphysical and therefore discarded.

The effective random force FR(t ) = aRξ0(t ) + bRη(t ) re-
produces the desired correlation

〈FR(t )FR(0)〉 = 2a2
Rδ(t ) + b2

Re−t/τR/τR. (J9)

To see this, we first note that the solution for η(t ) is given by

η(t ) = 1

τR

∫ t

−∞
dt ′e−(t−t ′ )/τRξ1(t ). (J10)

The autocorrelation for η(t ) is thus given by

〈η(t )η(0)〉 = 2

τ 2
R

e−t/τR

∫ 0

−∞
dt ′et ′/τR

∫ t

−∞
dt ′′et ′′/τRδ(t ′′ − t ′)

= 2

τ 2
R

e−t/τR

∫ 0

−∞
dt ′ e2t ′τR = 1

τR
e−t/τR . (J11)

Since ξ0(t ) and ξ1(t ) are uncorrelated, we have 〈η(t )ξ0(t ′)〉 =
0 and Eq. (J9) follows.

Model II with bR = 0. In this case the expression (J4)
reduces to

C̃vv (ω) = 2a2
R

(
1 + τ 2

v ω2
)

τ 2
v

∣∣ω2 − iω
(
τ−1
v + av

) − τ−1
v (av + bv )

∣∣2 . (J12)

We proceed in a similar fashion as for the bv = 0 case, the
comparison with Eq. (J2) gives

a2
R

(av + bv )2
= B

a + τmb
, (J13a)

a2
R = Ba. (J13b)

Equation (J12) has poles located at

ω± = i
τ−1
v + av

2
±

√
−

(
τ−1
v + av

)2

4
+ av + bv

τv

. (J14)

We consider the expressions for ω+ + ω− and ω+ω−, which
must coincide with i/τb + i/τp and −1/τbτb, respectively.
This gives the conditions

τ−1
v + av = τ−1

m + a, (J15a)

(av + bv )/τv = aτ−1
m + b. (J15b)

Solving explicitly for the parameters of the nonequilibrium
model gives the following mapping:

av = τ−1
m + a −

√
aτ−1

m + b

aτm
,

bv =
√

aτ−1
m + b

(√
aτm + 1√

aτm

)
− a − τ−1

m ,
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τv =
√

aτ 2
m

a + bτm
,

a2
R = Ba, (J16)

where the timescale τv was chosen to be positive. The friction
kernel �v (t ) is composed of a positive delta peak at the origin
proportional to av = 0.27 min−1, followed by a negative tail
proportional to bv = −0.229 min−1. The dynamics can be
described by the following system of two coupled degrees of
freedom:

u̇(t ) = τ−1
v v(t ) − τ−1

v u(t ), (J17a)

v̇(t ) = −avv(t ) − bvu(t ) + aRξ0(t ). (J17b)

These equations of motion can in fact be derived from the
Hamiltonian

H = 1

2
(u − v)2 − 1

2

(
av

bv

+ 1

)
v2. (J18)

Note that since av/bv < −1, the Hamiltonian is non-negative
for all u and v and thus describes a system with a sta-
ble stationary state. For the conjugated variables τv u̇(t ) and
−b−1

v v̇(t ), we obtain the equations of motion

τv u̇(t ) = v(t ) − u(t ) = −∂H

∂u
, (J19a)

−b−1
v v̇(t ) = av

bv

v(t ) + u(t ) − aR

bv

ξ0(t )

= −∂H

∂v
− aR

bv

ξ0(t ), (J19b)

which are identical to Eqs. (J17).
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