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The process of range expansion (colonization) is one of the basic types of biological dynamics, whereby a
species grows and spreads outwards, occupying new territories. Spatial modeling of this process is naturally
implemented as a stochastic cellular automaton, with individuals occupying nodes on a rectangular grid, births
and deaths occurring probabilistically, and individuals only reproducing onto unoccupied neighboring spots. In
this paper we derive several approximations that allow prediction of the expected range expansion dynamics,
based on the reproduction and death rates. We derive several approximations, where the cellular automaton is
described by a system of ordinary differential equations that preserves correlations among neighboring spots
(up to a distance). This methodology allows us to develop accurate approximations of the population size and
the expected spatial shape, at a fraction of the computational time required to simulate the original stochastic
system. In addition, we provide simple formulas for the steady-state population densities for von Neumann and
Moore neighborhoods. Finally, we derive concise approximations for the speed of range expansion in terms of
the reproduction and death rates, for both types of neighborhoods. The methodology is generalizable to more
complex scenarios, such as different interaction ranges and multiple-species systems.
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I. INTRODUCTION

Range expansion, or colonization, is the process in biology
by which a species spreads to new areas. Examples include
the growth of microorganisms to form two-dimensional (2D)
formations called biofilms [1]; the spread of solid tumors
in two and three dimensions [2] (including the formation
of spheroids in vitro [3] and the growth of cell cultures in
two and three dimensions [4]); the growth of bacterial and
viral/bacteriophage plaques [5–7]; and even the growth of
human settlements [8,9]. It is well known that spatial popu-
lation expansion is very different from the exponential growth
experienced by well mixed systems, and yet mathematical
tools appropriate for the description of range expansion are
not fully developed.

Mathematical models of colonization processes vary in
methodology and sophistication. One popular approach is to
use stochastic cellular automata. See [10], for example, for a
review of their use in tumor modeling, [11] for a review of ap-
plications to urban development, and also [2,12–14]. In these
models, individuals are located on a fixed grid, and stochastic
rules govern births and deaths. This versatile approach has
proven to be a valuable tool for computational studies of
range expansion and various related phenomena. It is concep-
tually simple, but also a significant improvement compared
to ordinary differential equations (ODEs), because it is both
stochastic and spatial. This approach, however, can be compu-
tationally very costly, making it difficult to extract from simu-
lations statistics on the time-evolution of a system, especially
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when population sizes are large. Furthermore, exact analytical
descriptions of these models, such as those obtain via the
Kolmogorov or master equations [15] are usually intractable.

Some of the most common simplified descriptions of
cellular automata (also known as agent-based models) are
derived from mean-field behavior. These include deterministic
reaction-diffusion equations, such as Fisher’s equation [16].
Mean-field approximations, however, neglect the important
effects of spatial correlations. As a consequence most of
these models provide inaccurate descriptions of the average
trajectories of stochastic agent-based models. The next level
of complexity is the so called pair approximation; see, e.g.,
[17–24]. This methodology has been used in an attempt to
capture certain aspects of spatial dynamics by more tractable
means. It can be successful at predicting equilibrium prop-
erties of a system, but in general does not provide good
time-series agreement with the corresponding stochastic pro-
cess [25].

In this paper we develop deterministic spatially ex-
plicit approximations for the expected trajectories of a two-
dimensional stochastic birth-death process implemented as an
agent-based model. The approximations provide an accurate
description of the expected time evolution of the system. In
particular, we focus on modeling population growth expand-
ing radially from an origin o, and compare our results with the
traditional pair approximation and mean-field models.

We also derive simple approximate formulas for the steady-
state population densities based on the death rate, D, and
reproduction rate, L, of individuals. While in a well-mixed
nonspatial setting (mass action), the equilibrium density, ρma,
is given by

ρma = 1 − D

L
, (1)
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FIG. 1. (a) Spatial configuration of the expected population density at t = 19.5, for the stochastic (top) and first-order SEDA (bottom)
models. The color bar indicates density. (b) Expected total number of individuals as a function of time. Results from stochastic simulations
(thick solid line) compared with the output of the mean-field model, first- and second-order SEDA, and pair approximation (PA, thin solid
line). In panels (a) and (b), death rate D = 1; reproduction rate L = 4; grid size 129 × 129. Initial conditions: 5 individuals at grid’s center.
(c) Steady-state density of occupied sites as a function of the death-to-birth ratio D/L. Stochastic results based on 104 or more independent
simulations per point/curve. Initial conditions: 13 individuals at grid’s center. Confidence interval error bars are smaller than thickness of
symbols/curves (not shown).

in spatially restricted populations this quantity is lower. We
find that in the case of the von Neumann neighborhood (four
neighbors), the density can be approximated by

ρvN =
(

3 − 4
D

L

)(
3 − D

L

)−1

(2)

(where the subscript vN stands for “von Neumann”), in the
case of the hexagonal (honeycomb) lattice, where each node
has six nearest neighbors, we have

ρH =
(

5 − 6
D

L

)(
5 − D

L

)−1

(3)

(where H stands for “hexagonal”), and in the case of the
Moore neighborhood (eight neighbors), it is approximately
given by

ρM =
(

7 − 8
D

L

)(
7 − D

L

)−1

(4)

(where the subscript M stands for “Moore”). The general
formula that describes these spatial approximations is

ρ(n) =
(

n − 1 − n
D

L

)(
n − 1 − D

L

)−1

, (5)

where n is the number of neighbors in the grid’s geometry.
This formula holds also for a 3D square lattice, for both the
Moore and von Neumann neighborhoods. Note that in (5) the
limit as n → ∞ recovers the equilibrium density for mass
action (1), where the number of neighbors is infinite.

Finally, we develop concise approximations for the ex-
pected speed of range expansion in an infinite grid. We
end by discussing extensions of the theory—including three-
dimensional growth, different grid geometries, and multiple
species—and several important evolutionary and biological
applications.

II. SPATIALLY EXPLICIT DECOUPLING
APPROXIMATIONS

A. Preliminaries

We begin by considering a birth-death process on a 2D
rectangular lattice. Let the value of the site with coordinates
(i, j) at time t be xi j (t ) = 0 if the site is empty and xi j (t ) = 1
if it is occupied. We consider the �1 distance in the lattice,
i.e., dist(xi j, xlk ) = |i − l| + | j − k|. Defining nearest neigh-
bors as sites that lie one unit of distance apart from each
other, we introduce a notation for the four nearest neigh-
bors of a site xi j : We write x(1)

i j = xi−1, j, x (2)
i j = xi+1, j, x (3)

i j =
xi, j−1, x (4)

i j = xi, j+1. Note that a site and its four nearest
neighbors make up a von Neumann neighborhood of radius
1. Finally, we assume that individuals reproduce stochastically
onto each unoccupied nearest neighboring site with a rate L/4,
and die at a rate D.

Figure 1(b) plots the expected number of individuals as
function of time. We implement the process as a stochastic
agent-based model on a finite grid with periodic boundary
conditions using the next reaction method [26] (thick solid
line). Here, starting from an initial small cluster of cells at
the grid’s center, the expected number of individuals first
increases and then plateaus as the population colonizes the
entire grid. Figure 1(a) depicts, as a heatmap, the spatial
configuration of the expected number of individuals at a time
before the entire grid is colonized.

If we use angular brackets to denote the expected value,
we find that the stochastic process results in the following
equation:

d〈xi j〉
dt

=
〈

L

4
(1 − xi j )

4∑
s=1

x(s)
i j − Dxi j

〉
. (6)

If we neglect correlations in (6) and assume that, for any
pair of sites a and b, 〈ab〉 = 〈a〉〈b〉, we arrive at the spatial
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mean-field model

d〈xi j〉
dt

= L

4
(1 − 〈xi j〉)

4∑
s=1

〈
x(s)

i j

〉 − D〈xi j〉. (7)

Figure 1(b) demonstrates that the mean-field model is not a
very accurate representation of the average behavior of the
stochastic process (compare dotted and thick solid lines).

To improve upon the mean-field approximation we note
that (6) introduces terms of the form 〈xi j xi+1, j〉 and
〈xi j xi, j+1〉, which require new equations to describe their rate
of change. These are

d〈xi j xi+1, j〉
dt

=
〈

L

4
(1 − xi j )

4∑
s=1

x(s)
i j xi+1, j + L

4
(1 − xi+1, j )

×
4∑

s=1

x(s)
i+1, j xi j − 2Dxi j xi+1, j

〉
, (8)

d〈xi j xi, j+1〉
dt

=
〈

L

4
(1 − xi j )

4∑
s=1

x(s)
i j xi, j+1 + L

4
(1 − xi, j+1)

×
4∑

s=1

x(s)
i, j+1 xi j − 2Dxi j xi, j+1

〉
. (9)

Equations (8) and (9) introduce terms of the form 〈bc〉 and
〈abc〉, where a, b, and c are sites in the grid that satisfy

dist(a, b) = dist(a, c) = 1 and dist(b, c) = 2. In principle,
these new terms require additional equations that involve
higher order moments. At some point, however, we need
to cut off the process of adding equations and instead use
approximations to obtain a closed system.

B. Spatially explicit decoupling approximations
and the pair approximation

Before proceeding, we need to establish notation and some
fundamental relations. First, note that for any triad of sites
{a, b, c} the following relation always holds: 〈bc〉 − 〈abc〉 =
P(b = 1, a = 0, c = 1). Let Pi jk be defined by

Pi j1 = P(xi−1, j = 1, xi j = 0, xi+1, j = 1),

Pi j2 = P(xi, j−1 = 1, xi j = 0, xi, j+1 = 1),

Pi j3 = P(xi−1, j = 1, xi j = 0, xi, j−1 = 1),

Pi j4 = P(xi, j−1 = 1, xi j = 0, xi+1, j = 1),

Pi j5 = P(xi+1, j = 1, xi j = 0, xi, j+1 = 1),

Pi j6 = P(xi−1, j = 1, xi j = 0, xi, j+1 = 1). (10)

If we call Ui j = 〈xi j〉, Yi j1 = 〈xi j xi+1, j〉, and Yi j2 =
〈xi j xi, j+1〉, then the system (6)–(9) can be rewritten succinctly
as

U̇i j = L

4
(Ui−1, j − Yi−1, j,1 + Ui+1, j − Yi j1 + Ui, j−1 − Yi, j−1,2 + Ui, j+1 − Yi j2) − DUi j,

Ẏi j1 = L

4
(Ui j + Ui+1, j − 2Yi j1 + Pi j1 + Pi j4 + Pi j5 + Pi+1, j,1 + Pi+1, j,3 + Pi+1, j,6) − 2DYi j1,

Ẏi j2 = L

4
(Ui j + Ui, j+1 − 2Yi j2 + Pi j2 + Pi j5 + Pi j6 + Pi, j+1,2 + Pi, j+1,3 + Pi, j+1,4) − 2DYi j2. (11)

The presence of the Pi jk in (11) means that this system is not closed. To close it, let us consider the following relations, where,
as before dist(a, b) = dist(a, c) = 1, and dist(b, c) = 2:

P(b = 1, a = 0, c = 1) = P(b = 1|a = 0, c = 1)P(a = 0, c = 1)

≈ P(b = 1|a = 0)P(a = 0, c = 1)

= (〈b〉 − 〈ab〉)/(1 − 〈a〉)(〈c〉 − 〈ac〉). (12)

Intuitively, the approximation P(b|a = 0, c = 1) ≈ P(b = 1|a = 0) assumes that the probability that a site is equal to one is only
weakly dependent on the probability that another site two units of distance apart is also equal to 1. Now, let δi j = 1/(1 − Ui j ) if
Ui j < 1 and δi j = 0 otherwise. If we define the Bi jk by

Bi j1 = (Ui+1, j − Yi j1)(Ui−1, j − Yi−1, j,1), Bi j2 = (Ui, j−1 − Yi, j−1,2)(Ui, j+1 − Yi j2),

Bi j3 = (Ui, j−1 − Yi, j−1,2)(Ui−1, j − Yi−1, j,1), Bi j4 = (Ui, j−1 − Yi, j−1,2)(Ui+1, j − Yi j1),

Bi j5 = (Ui+1, j − Yi j1)(Ui, j+1 − Yi j2), Bi j6 = (Ui−1, j − Yi−1, j,1)(Ui, j+1 − Yi j2), (13)

then, using (12), we arrive at the approximations Pi jk ≈ δi jBi jk . We call these approximations spatially explicit decoupling
approximation, or SEDA. Finally, substituting the Pi jk in (11) yields the following closed-form approximation for the system:

U̇i j = L

4
[Ui−1, j − Yi−1, j,1 + Ui+1, j − Yi j1 + Ui, j−1 − Yi, j−1,2 + Ui, j+1 − Yi j2] − DUi j,

Ẏi j1 = L

4
[Ui j + Ui+1, j − 2Yi j1 + δi j (Bi j1 + Bi j4 + Bi j5) + δi+1, j (Bi+1, j,1 + Bi+1, j,3 + Bi+1, j,6)] − 2DYi j1,

Ẏi j2 = L

4
[Ui j + Ui, j+1 − 2Yi j2 + δi j (Bi j2 + Bi j5 + Bi j6) + δi, j+1(Bi, j+1,2 + Bi, j+1,3 + Bi, j+1,4)] − 2DYi j2. (14)
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System (14) preserves information of neighbors up to one
unit of distance apart in the �1 metric, for this reason we
refer to this model as first-order SEDA. Similarly, using the
same type of approximation, we can construct a model that
preserves correlations of neighbors that lie up n units of
distance apart from each other; we refer to this model as
nth-order SEDA. Note that throughout this paper, when we
make reference to a SEDA approximation without specifying
the order, we are referring to a first-order approximation. In
the Supplemental Material (SM) [27] we give general rules for
higher order SEDA and present the formulas for second order,
which requires 24 differential equations per point [instead of
the just three required in (14)].

We can recover the traditional so called pair approxima-
tions (PA) from the first-order SEDA equations (14). To do so,
let us first define U as the total number of individuals, N as the
number of sites in the grid, and Y as the average correlation
between any two nearest neighbors times N . To derive the
PA equations from (14) we need to (i) set the δi j = 1, which
in SEDA prevent singularities at individual sites; (ii) assume
spatial homogeneity, that is, U = NUi j and Y = NYi j1 for
any (i, j); and (iii) set Yi j2 = Yi j1. The PA equations for the
birth-death process are

U̇ = L(U − Y ) − DU,

Ẏ = L

2
(U − Y ) + 3L

2
(U − Y )2/(N − U ) − 2D. (15)

We remark on two key differences between PA and SEDA:
(1) PA models are nonspatial. They track only the total number
of individuals, but not the spatial location of each individual.
(2) PA models only consider correlations of pairs, while,
depending on the order, SEDA models can preserve correla-
tions for larger groups of neighbors (e.g., up to quintuplets in
second-order equations).

Figure 1(b) plots the expected number of individuals as
a function of time, calculated from stochastic simulations,
the mean-field model, first- and second-order SEDA, and PA.
It is clear from this figure that first-order SEDA is closer
to the results from the stochastic process than the PA or
mean-field models. We also see that second order improves
on the first-order approximation, but the agreement with the
stochastic results is still far from optimal. In Sec. III, we will
build on first-order SEDA to find more accurate deterministic
representations of the expected behavior of the stochastic
process.

III. RADIAL DECOUPLING, TRIGONOMETRIC
APPROXIMATIONS, AND TIME-SCALING SEDA

In this section we provide methods to improve the SEDA
description of range expansion, to reach nearly perfect ap-
proximations in a wide range of parameters. We first develop
a new approximation, which we call radial decoupling ap-
proximation. We then combine this radial approximation with
SEDA, to find a method that produces much better agreement
with the stochastic process than pure SEDA alone. We call this
combined method trigonometric decoupling approximation.
Finally, we introduce an alternative, time-scaling approach
that also improves SEDA results.

A. Radial decoupling approximations

In Sec. II B, we used approximation (12) for quan-
tity Pabc = P(b = 1, a = 0, c = 1), where a, b, and c are
sites in the grid, that satisfy dist(a, b) = dist(a, c) = 1 and
dist(b, c) = 2 (note that subindexes in Pabc are sites and not
coordinates). Here, we develop a different approximation for
this quantity. We focus on modeling 2D growth expanding
radially from an origin o, with coordinates (io, jo).

We begin by noting the following relations:

Pabc = P(b = 1|a = 0, c = 1)P(a = 0, c = 1) (16)

= P(c = 1|a = 0, b = 1)P(a = 0, b = 1). (17)

Numerical simulations show that, as time proceeds, soon after
Pabc increases from its initial zero value, P(b = 1|a = 0, c =
1) or P(c = 1|a = 0, b = 1) remains relatively stable. Then,
given that P(a = 0, b = 1) = 〈b〉 − 〈ab〉 and P(a = 0, c =
1) = 〈c〉 − 〈ac〉, the previous observation and Eqs. (16) and
(17) suggest the approximations Pabc ≈ η(〈c〉 − 〈ac〉) or
Pabc ≈ η(〈b〉 − 〈ab〉), where η is the stationary value for
P(c = 1|a = 0, b = 1) and P(b = 1|a = 0, c = 1) (i.e., for
time t large). We call these approximations radial decoupling
approximations, or RDA.

We now describe a procedure to decide which of the
two approximations [Pabc ≈ η(〈c〉 − 〈ac〉) or Pabc ≈ η(〈b〉 −
〈ab〉)] to use, based on the geometry of the triad {a, b, c} and
the location of a relative to the origin o. First, we can think of
a [with coordinates (ia, ja)] as the center of the triad. There
is a unique line � that goes through a and is perpendicular
to the vector �bc; see Fig. 2. This line divides the plane into
two half-planes: Hb, which contains the site b, and Hc, which
contains the site c. Let va be the vector that goes from a to
the site with coordinates (ia, ja + 1). We can then define θabc

as the angle between va and � measured in a counterclockwise
direction. Given the geometry of the grid, θabc will take on one
the values π/4, π/2, 3π/4, or π (Fig. 2). If we measure angles
based on the interval [0, 2π ), one of the half-planes discussed
will be made up of those sites e where the angle from va to �ae
(measured counterclockwise) lies between θabc and θabc + π .
To simplify the notation let us assume that this half-plane is
Hb. Now, let vo be the vector from o to the site with coordinates
(io, jo + 1). If the angle θoa from vo to �oa is such that θabc �
θoa < θabc + π , use the approximation Pabc ≈ η(〈b〉 − 〈ab〉);
otherwise, use Pabc ≈ η(〈c〉 − 〈ac〉). To further simplify the
notation, in the future we will also refer to θoa as θi j .

The procedure/algorithm described in the previous para-
graph is informed by simulation results. The critical time
to model Pabc is during the transitional time period where
this quantity changes from a near zero state to its long term
stationary value. During this transitional period, the triad
{a, b, c} is located near the edge of the radially expanding
population. Simulation results indicate that the best RDA is
the one that explicitly tracks information from the site (either
b or c) that is most likely to lie outside the radially expanding
population during this transitional time. Intuitively this makes
sense. This is because the expected value of a site that lies
outside the expanding population is more likely to change
during this time than the expected value of a site that lies
inside the population mass, where it is more likely to be

032404-4



BEYOND THE PAIR APPROXIMATION: MODELING … PHYSICAL REVIEW E 101, 032404 (2020)

FIG. 2. Panels show all geometric configurations for sites a, b, and c that satisfy dist(a, b) = dist(a, c) = 1 and dist(b, c) = 2. Clockwise
from top right, the configurations describe the sites in the probabilities Pi jk from k = 1, . . . , 6 [Eq. (10)]. The angles and semiplanes (θabc, Hb,
and Hc) are used to determined which RDA approximation to use, η(〈b〉 − 〈ab〉) or η(〈c〉 − 〈ac〉), based on the location of a relative to the
population origin o. See text for discussion and Table I.

near its long term steady-state. The algorithm described in
the previous paragraph selects the best RDA according to this
criterion.

Table I specifies how to choose the RDA for the Pi jk in
(10). Following the definitions of the Ai jk in this table, the
approximations can be written succinctly as Pi jk ≈ ηAi jk . A
closed-form approximation for system (11) then follows by
substituting the Pi jk by ηAi jk in (11). We can determine η by
considering the equations of the new system at equilibrium.
We do so by setting the equations equal to zero, dropping
the subscripts, and solving for η. We find η = 1 − 4D

3L , which
suggests a valid approximation for D/L < 0.75. This equilib-
rium analysis, however, also reveals that, unlike the stochastic
process, a system based only on RDA does not have a unique
nontrivial steady state. Instead, we discover that combining
RDA with SEDA restores a unique equilibrium to the system
and provides very accurate results. We discuss this combined
approach next.

B. Trigonometric approximation

Before we proceed we can introduce a small correction by
modifying the SEDA model so that its steady-state density
more closely matches that of the corresponding stochastic pro-
cess. The procedure consists of substituting the approximation
Pi jk ≈ δi jBi jk by Pi jk ≈ min (εδi jBi jk, 1), where ε � 1. Using
the notation of Sec III A, this implies that on average P(b =
1|a = 0, c = 1) � P(b = 1|a = 0). This intuitively makes
sense because, being at most two units of distance apart from
each other, the values of b and c are correlated. To determine
ε, we can substitute the steady-state densities of the stochastic
process, Us and Ys, with the modified approximations for Pi jk

into (14), set these equations equal to zero, and solve for ε;
this yields

ε =
(

L

D
− 4

3

)
(1 − Us)U −1

s . (18)

TABLE I. Columns 1 to 4: Radial decoupling approximation, Ai jk , of Pi jk , based on the angle θoa from vo to �oa (see text). Columns 1 and
5: Trigonometric coefficients αi jk for each Pi jk . Note that θoa = θi j (same angle, different notation).

Pabc θabc θoa ∈ [θabc, θabc + π ) θoa /∈ [θabc, θabc + π ) αi jk

Pi j1 π Ai j1 = Ui+1, j − Yi j1 Ai j1 = Ui−1, j − Yi−1, j,1 ccos cos(2θi j ) + mcos

Pi j2 π/2 Ai j2 = Ui, j−1 − Yi, j−1,2 Ai j2 = Ui, j+1 − Yi j2 −ccos cos(2θi j ) + mcos

Pi j3 3π/4 Ai j3 = Ui, j−1 − Yi, j−1,2 Ai j3 = Ui−1, j − Yi−1, j,1 −csin sin(2θi j ) + msin

Pi j4 π/4 Ai j4 = Ui, j−1 − Yi, j−1,2 Ai j4 = Ui+1, j − Yi j1 csin sin(2θi j ) + msin

Pi j5 3π/4 Ai j5 = Ui+1, j − Yi j1 Ai j5 = Ui, j+1 − Yi j2 −csin sin(2θi j ) + msin

Pi j6 π/4 Ai j6 = Ui−1, j − Yi−1, j,1 Ai j6 = Ui, j+1 − Yi j2 csin sin(2θi j ) + msin
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(a) (b) (c)

FIG. 3. Weight coefficients for the trigonometric approximation. (a) Best fit coefficients α̂i j1 vs the angles θi j for each site in the grid
(scattered plot); trigonometric approximation (solid line). (b) α1(θ ) is the average of all α̂i j1, for which θi j = θ (dotted line). (c) α4(θ ) and
α6(θ ) (dotted and thin lines); trigonometric approximation (thick line). D = 0.1; L = 4; grid size 45 × 45. For the behavior of the other weight
coefficients (αi j2, αi j3, αi j5) see Table I.

Note that Us and Ys are independent of grid size. Hence,
using (18), for any ratio D/L we can compute the value of
ε from simulations in a small grid. After calculating several
of these values, we can find a formula for ε using polynomial
regression (see Fig. A2 in the SM [27]):

ε = 1.85(D/L)3 − 0.46(D/L)2 + 0.045(D/L) + 1 (19)

We now introduce a method to combine SEDA and RDA
for the probabilities Pi jk . One approach is to weight the two
types of approximations and add them up. More precisely,
letting αi jk ∈ [0, 1], we consider approximations of the form

Pi jk ≈Ci jk =αi jk min(ε δi jBi jk, 1)︸ ︷︷ ︸
SEDA

+ (1 − αi jk ) (1 − 4D
3L ) Ai jk︸ ︷︷ ︸

RDA

.

(20)

Next, we need to determine appropriate values for the
weights αi jk . We begin by exploring the problem numeri-
cally, with a focus on modeling 2D growth expanding ra-
dially from an origin o. For a given grid size and set of
parameters D and L, we can run multiple simulations past
the point where the system reaches its stationary distribu-
tion. From these simulations we can compute the statis-
tics (known as sample statistics) Pi jk (t ), δi jBi jk (t ), and

Ai jk (t ). We can then define α̂i jk as the parameter αi jk ∈
[0, 1] that minimizes ||Pi jk (t ) − {αi jk min[εδi jBi jk (t ), 1] +
(1 − αi jk )(1 − 4D

3L )Ai jk (t )}||�1 . Intuitively, α̂i jk provides the
best approximation possible for Pi jk that uses Eq. (20). Figure
A4 in the SM [27] shows that these “best fit” combined
approximations (i.e., using the α̂i jk) provide a significant im-
provement over the pure SEDA approximations. Figure 3(a)
plots the coefficients α̂i j1 vs the angles θi j (dots). The plot
shows that the coefficients are approximately periodic with
the angles, which suggests that we could use a trigonometric
formula for the αi j1. Indeed, the black curve in this figure
is the function ccos cos(2θ ) + mcos. To determine the param-
eters ccos and mcos, we average the α̂i j1 that have the same
θi j ; for a given angle θ let this average be α1(θ ). We then
use a basic optimization procedure to find the parameters
ccos and mcos that minimize ||α1(θ ) − [ccos cos(2θ ) + mcos]||�1

[Fig. 3(b)]. Similarly, Fig. 3(c) plots the averages α4(θ ) and
α6(θ ) computed from the coefficients α̂i j4 and α̂i j6. In this
case, the trigonometric formula for the αi j4 and αi j6 has
the form csin sin(2θi j ) + msin (thick line). Note here that the
fitting of α4 and α6 would not benefit from a phase shift,
because the error data do not exhibit the same symmetry
as the sine function does. Instead, the sine approximation
mostly lies between α4 and α6. However, since α4 and α6

appear in tandem in the ODEs, the net effect will produce
an overall very good fit. We find then that the formulas for
the six coefficients αi jk (k = 1, . . . , 6), can be expressed in
terms of four parameters, ccos, mcos, csin, and msin, as described
by Table I. We call the approximations that use the αi jk in
this table trigonometric decoupling approximation, or TDA.
Compared to SEDA, TDA produce significantly smaller errors
approximating the probabilities Pi jk (Fig. A5 in the SM [27]).

Finally, Fig. 4 plots the expected number of individuals as
a function of time. In each panel stochastic simulations are
compared to results from the mean-field model, SEDA, and
TDA, for different death rates and grid sizes. In this figure
the trigonometric approximation improves with grid size. This
behavior is caused by the periodic boundary conditions used
in the simulations, which are not specifically accounted for in
the formulas for the αi jk . Hence, as the grid size increases and
the contribution of the boundary effects to the overall popu-
lation diminishes, the trigonometric approximation improves.
We see this in Fig. 4: once grid size is sufficiently large, the
agreement between the TDA model and simulation results is
excellent.

We calculated the coefficients ccos, mcos, csin, msin for dif-
ferent values of D/L and then fitted the data with polynomial
functions (Fig. A3 in the SM [27]) using least-squares in
grids of size 45 × 45; these polynomial regressions yield the
equations

ccos = 0.39(D/L)2 − 0.46(D/L) + 0.24,

csin = −2.4(D/L)3 + 2.1(D/L)2 − 0.72(D/L) + 0.22,

mcos = −9.7(D/L)3 + 7.5(D/L)2 − 2(D/L) + 0.59,

msin = −8.6(D/L)3 + 5.3(D/L)2 − 1.4(D/L) + 0.46, (21)
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FIG. 4. Expected total number of individuals as a function of time. Stochastic simulation results (blue) compared with the output of three
deterministic models: mean field (red), SEDA (yellow), and TDA (purple). For all plots the reproduction rate L = 4. The death rates are
(a) D = 0.1, (c), (b) D = 1, and (c) D = 1.5. Grid sizes indicated in bottom-right corner of each panel (N = 452 or N = 1292). Stochastic
results based on at least 104 independent simulations per curve (error bars smaller than thickness of curves, not shown).

U̇i j = L

4
(Ui−1, j − Yi−1, j,1 + Ui+1, j − Yi j1 + Ui, j−1 − Yi, j−1,2

+Ui, j+1 − Yi j2) − DUi j,

Ẏi j1 = L

4
(Ui j + Ui+1, j − 2Yi j1 + Ci j1 + Ci j4 + Ci j5 + Ci+1, j,1

+Ci+1, j,3 + Ci+1, j,6) − 2DYi j1,

Ẏi j2 = L

4
(Ui j + Ui, j+1 − 2Yi j2 + Ci j2 + Ci j5 + Ci j6

+Ci, j+1,2 + Ci, j+1,3 + Ci, j+1,4) − 2DYi j2, (22)

and their validity was verified for grids roughly 8, 500, and
5000 times larger (Figs. 4 and 6). Together Eqs. (13) and
(20)–(22) and Table I provide a full and explicit formula
for the TDA model. This approximation is very successful
for D/L � 0.4, which roughly corresponds to steady-state
densities �50%.

C. Time-scaling SEDA

For each grid site (i, j) there is a transient time period
where the values of the approximations δi jkBi jk < Pi jk (com-
pare blue and yellow lines in Fig. A4 in the SM [27]). During
this time period, the derivative of Ui j calculated using SEDA
is larger than the same derivative according to the stochastic
process. As a consequence, before reaching the steady state,
system (14) overestimates the total number of individuals as a
function of time (Figs. 1 and 4). Heuristically, these observa-
tions suggest that, by scaling time by a parameter αD/L � 1
in (14), we can improve the quality of the approximation.

More precisely if S is the total number of individuals and (14)
yields the functional relation S = F (t ), then we can improve
the approximation by setting S = F (αD/Lt ), where the value
of αD/L is determined through least-squares fitting in a small
grid (Fig. 5). We can then find through polynomial regression
a formula for αD/L valid for D/L � 0.4:

αD/L = (1.72(D/L)2 + 0.0795(D/L) + 1.3)−1 (23)

We tested Eqs. (21) for the trigonometric parameters and
(23) for the αD/L in much larger grids (Fig. 6). As initial
conditions we used random plaques grown stochastically from
an initial set of 13 occupied sites at the center of the grid (left
image of each panel). Here the sizes of the initial plaques are
large enough so that with them as initial conditions the tra-
jectories of the total number of individuals as a function time
behave almost deterministically; hence, a single stochastic run
is sufficient to track the time evolution of the expected number
of individuals. We find that (21) and (23) produce very good
approximations, in much larger grids with random plaques as
initial conditions.

Next, we discuss the numerical solution of the approximate
systems. These systems of course can be solved using higher
order implicit methods, such as Runge-Kutta, which is the
standard method, and unless stated otherwise is behind the fig-
ures in the paper. However, we are interested in evaluating the
performance and accuracy of forward Euler, as this method is
the simplest to implement and fastest to compute. We found
that in forward Euler a step size of dt = 0.025L provides good
results for 0.25 � D/L � 0.4 and a step size of dt = 0.0125L
is sufficient for all D/L � 0.4. The approximate systems yield
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(a) (b)

FIG. 5. Time-scaled SEDA. (a) Solid lines show the trajectories of the expected number of individuals as a function of time calculated
from 5000 independent simulations per curve (error bars too small to plot). Dashed lines show time-scaled SEDA. (b) Inverse of time-scaling
parameter, α−1

D/L , as a function of D/L. Curve plots the polynomial regression in Eq. (23) (adjusted coefficient of determination R̄2 > 0.99). In
all simulations L = 4 and grid size is 45 × 45.

very large improvements in computational performance com-
pared to stochastic simulations for large grids. For example,
for the simulations in Fig. 6(b), with a grid size of ≈107

sites, and a death-to-birth ratio D/L = 0.25, before reaching
saturation the trigonometric approximation was more than 100
times faster than a single stochastic run.

Finally, we note that applying the rescaling procedures
described in this section to PA or the spatial mean-field model
does not produce satisfactorily results (Sec. F in the SM
[27]). Indeed, besides PA being nonspatial, the curve shapes
of a rescaled PA and the stochastic results are substantially
different (Fig. A8 in the SM [27]). Also, rescaling the spatial
mean-field model easily results in high relative errors and very
inaccurate approximations to the stochastic process at early
times t (Fig. A9 in the SM [27]).

IV. STEADY-STATE DENSITY

Here we focus on the steady-state behavior of the spatial
birth death process, and derive several approximations for the
steady-state density. We note that up to this point we have only
dealt with von Neumann neighborhoods. In this and the next

section we also consider Moore neighborhoods in relation to
both steady-state and range expansion results. For a derivation
of the steady-state formulas in 3D see SM Sec. G [27].

A. Steady-state density for the von Neumann neighborhood

As seen from the long term dynamics in Fig. 1(b), in a finite
grid, the expected population size eventually reaches a steady
state. We can calculate the steady-state density predicted by
the mean-field approximation by dropping the subscripts in
(7) and setting the right-hand side of the equation to zero.
Solving this equation, we find that the steady-state density in
the mean-field model is equal to that of mass action [formula
(1)]. Here mass action refers to the well-mixed nonspatial
version of the birth-death process, described by equation
Ẋ = LX (1 − X/K ) − DX , where X is the total number of
individuals, K the system’s carrying capacity, and ρma = X/K
in steady state.

For the stochastic process, what we call here the steady-
state (or equilibrium) density refers to the expected density
of the quasistationary distribution calculated from simulations
[28]. During simulations, if early extinction is avoided, the

(a) (b)

FIG. 6. Expected number of individuals as a function of time in large grids. The initial conditions (random plaques) are shown on the left
side of each panel (occupied sites are depicted in white, empty sites in black). (a) Death rate D = 0.1, grid size 1000 × 1000, 18 000 occupied
sites at t = 0 (1.8% of grid size). (b) Death rate D = 1, grid size 3163 × 3163, 25 000 occupied sites at t = 0 (0.25% of grid size). In both
panels the reproduction rate L = 4.
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expected number of individuals eventually plateaus and then
remains stable during the remainder of the simulated time.
The steady-state density is taken from this plateau value.
The first thing we note is that the mean-field approximation
provides a poor representation of the stochastic equilibrium
density [Fig. 1(c), dotted line]. Applying the same procedure
to (14), and noting that when the system is at equilibrium
Yi j1 = Yi j2 [or solving system (15) in steady state], we find
the equilibrium density for the PA and first-order SEDA
models to be given by formula (2). In Fig. 1(c) we see
that (2) provides very good agreement with the steady-state
densities from the stochastic process (for densities larger than
50%). Also, we again notice that the second order improves
slightly over the first-order approximation (especially at lower
densities).

Finally, we note that when the initial number of individuals,
n0, is small, extinction events can be caused by random
fluctuations around small numbers. Indeed, the probability of
early extinction is at least [D/(D + L)]n0 . However, unless
n0 is quite small, there are parameter regions where early
extinction is very unlikely. In particular, during simulations
for Fig. 1(c), extinction never occurred for all points that were
tested with D/L < 0.62 (n0 = 13). For D/L � 0.62 on the
other hand, population extinction always occurred, even when
simulations started with a completely full grid. (For more on
extinction from low numbers see [29,30].)

B. Steady-state density for the Moore neighborhood

Moore neighborhoods can be defined in terms of the �∞
distance, which states that dist(xi j, xlk ) = max(|i − l|, | j −
k|). The Moore neighborhood of radius 1 of a site a can then
be described as a and all sites that lie one unit of distance apart
from a (eight neighbors in total). When dealing with Moore
neighborhoods, in addition to the variables Yi j1 = 〈xi jxi, j+1〉
and Yi j2 = 〈xi jxi, j+1〉, it useful to introduce the quantities
Yi j3 = 〈xi jxi−1, j+1〉 and Yi j4 = 〈xi jxi+1, j+1〉. We can then use
these variables to approximate the steady-state density of the
system. Following the general methodology employed in the
paper, we begin by writing ODEs for the rate of change of
the variables Ui j = 〈xi j〉, Yi j1, Yi j2, Yi j3, and Yi j4. The resulting
equations include objects of type P(b = 1, a = 0, c = 1),
where b and c are two distinct sites in the Moore neighborhood
of radius 1 of a third site a. To proceed in the same way as
for the von Neumann model, we apply the approximation in
Eq. (12) to all triplets with dist(b, c) = 2. As a result, new
variables must be added to the system. After symmetrizing for
the steady-state analysis, we obtain a system of five equations
[instead of the two for the von Neumann case (15)]. We
present and solve these equations numerically in SM Sec. E
[27].

There is, however, a way to simplify the equations that
allows for an analytical solution. Given a triplet, {a, b, c}, that
satisfies the conditions previously described, we can apply
approximation (12) regardless of the distance separating b
and c. This approach leads directly to a closed system of
ODEs. As before, to perform the steady-state analysis, we
drop the coordinate subscripts for all variables in the system,
and find that the steady-state values for Y1, Y2, Y3, and Y4 are
all the same. Simply calling this steady state Y leads to the

FIG. 7. The equilibrium density in mass-action (mean-field), von
Neumann, and Moore models, as functions of the death-to-divisions
ration. The lines correspond to formulas (1), (2), and (4).

equilibrium equations1

0 = L(U − Y ) − DU,

0 = 7
4 L(U − Y )2/(1 − U ) + 1

4 L(U − Y ) − 2DY. (24)

Solving this last system for U , we find the closed-form ap-
proximation for the Moore neighborhood equilibrium density
(4). This formula fits the numerically obtained data remark-
ably well (see SM Fig. A7 [27]), and is only slightly less
accurate than the more cumbersome method of decoupling
used in SM Sec. E [27]. This same simplifying approach can
be used to find an approximation, ρH , for the steady-state
density in a hexagonal (honeycomb) lattice, where each node
has six nearest neighbors; see formula (3). The order relation
between the approximate densities, ρvN � ρH � ρM , reflects
what occurs in stochastic simulations, where the steady-state
density increases with the number of neighbors.

Figure 7 plots the equilibrium density formulas for the
mass-action, von Neumann, and Moore models. As we noted,
spatial restrictions reduce the equilibrium density. In this
sense, the von Neumann model imposes stronger spatial
restrictions than the Moore model (four vs eight nearest
neighbors per site). The corresponding equilibrium density is
therefore lower in the von Neumann model. It is important
to note that formulas (2) and (4) capture this behavior, while
the mean-field representations do not. Indeed, although the
mass-action model and the spatial mean-field models for
von Neumann [Eq. (7)] and Moore (not shown) have differ-
ent propagation speeds, they all have the same steady-state
density.

V. POPULATION EXPANSION RATE

In this section we are interested in approximating the ex-
pected growth rate of a 2D population expanding radially from
an origin o in an infinite grid. Under these conditions, when
the population is large enough, the region of the grid colonized
by the population up to a time t will roughly resemble a disk

1Note that if we use this simplification for the von Neumann
neighborhood, we recover first-order SEDA.
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FIG. 8. (a) Surface points of a circular domain on a square grid. Calculations are demonstrated for the von Neumann model. For point A,
two of its neighbors belong to the surface and one neighbor lies outside the circle. For point B, two neighbors are in the interim, and two lie
outside the circle. For point C, one of the neighbors is part of the surface set and two lie outside the circle. For point D, one neighbor is part of
the surface set and one lies outside the surface. (b) Growth rate parameter a as a function of D/L [Eq. (27)] for L = 4, for von Neumann and
Moore neighborhood models. Calculated from stochastic simulations (dots) and formulas (solid lines).

(see, for example, initial conditions in Fig. 6). It is possible to
derive approximate expressions for the expansion rate of these
disks, as colonization proceeds.

Let A(t ) be the area of the expanding region and M(t )
the total number of occupied sites. In the region’s interior
the density of occupied sites will be near equilibrium and
thus we will have the relation M(t ) ≈ A(t )ρ, where ρ is the
steady-state density of occupied sites. We can then define the
radius R and circumference C of the disk-like region in terms
of M:

A = πR2, C = 2πR = 2
√

πA ≈ 2

√
πM

ρ
. (25)

In the colonized region’s interior, divisions exactly balance
deaths; the number of individuals only increases through the
dynamics on its boundary or surface, where there is no such
balance. For this reason, we want to estimate the number
of surface sites of a disk-like region. Let us begin by con-
sidering a circle of radius r and center o with coordinates
(io, jo) in a rectangular grid. We define the surface points
of the circle as those with coordinates (i, j) such that (i)
(i − io)2 + ( j − jo)2 � r2 and (ii) the point has at least one
nearest neighbor, (i1, j1), that lies outside of the circle, i.e.,
(i1 − io)2 + ( j1 − jo)2 > r2. Such points are denoted as blue
dots in Fig. 8(a), which illustrates this for the von Neumann
neighborhood. We find numerically that for large r the number
of sites in the circle’s surface ≈β × 2πr, where β is constant
that depends on the type of neighborhood used. Hence by
analogy, we estimate that the number of surface sites, S(t ),
of a stochastic disk-like region is

S ≈ β × 2πR ≈ β × 2

√
πM

ρ
. (26)

We are only interested in the dynamics at the surface,
where the approximate number of individuals is Sρ. The net
growth rate of the system is L − D; however, at the surface
only the fraction of the growth rate directed towards the
outside of the disk, ν, counts towards expansion. The other

fraction of the surface growth, 1 − ν, is directed towards
the interior of the disk-like region, where we assume that
births and deaths are balanced. This fraction, ν, is equal to
the average number of exterior and surface neighbors that an
individual at the surface has, divided by 4. The approximate
total growth rate is then equal to ν(L − D)ρS, where the
inclusion of

√
ρ introduces a nonlinear term. The equation for

the total population can be written as

dM

dt
= νρS(L − D) = νβ × 2

√
πρM(L − D) = a

√
M,

(27)

where the expansion rate a is given by

a = 2νβ
√

πρ (L − D), (28)

and quantities ν, ρ, and β depend on the type of neighborhood
used. The expansion rate in (28) was derived from first prin-
ciples, where all components have a physical meaning. It is
worth mentioning, however, that a simple linear regression of
the data in Fig. 8 would result in a tighter fit for a.

A. Expansion rate for the von Neumann neighborhood

Using the von Neumann model, we can numerically esti-
mate the number of surface points in a circle of a given radius,
which leads to the value βvN ≈ 0.9; see Fig. 8(a). The density
formula is given by Eq. (2).

The next step in our derivation is to find an estimate for νvN .
Let us begin again by considering a circle. For each point in
a circle’s surface, we want to determine how many of its four
nearest neighbors lie outside the circle, belong to its surface,
or belong to the circle’s interior. In Fig. 8(a) a circle’s surface
points are marked as blue dots; for illustrations purposes, the
neighbors of four of these points (A, B, C, and D) are enclosed
in red diamonds. For point A, two of its neighbors belong to
the surface and one neighbor lies outside the circle. For point
B, two neighbors are in the interior and two lie outside the
circle. For point C, one neighbor is in the surface and two lie
outside the circle. For point D, one neighbor is in the surface
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and one lies outside. Hence, for points A and C, three out of
their four neighbors are not in the interior. For points B and
D, two of their neighbors are not in the interior. Increasing
the circle’s radius and calculating the average fraction of
neighbors that lie either outside the circle or in its surface,
we find numerically that this quantity, νvN ≈ 0.65. Figure 8(b)
plots the values of the growth rate parameter a obtained from
stochastic simulations (blue dots) compared with formula (28)
(blue solid line).

B. Expansion rate for the Moore neighborhood

Using the method of Fig. 8(a) adapted to the Moore neigh-
borhood, we find numerically that βM ≈ 1.27. The density
formula is given by the solution of system (A8)–(A12) in the
SM [27], or, more concisely (with slightly larger error), by
Eq. (4). Similarly, the average fraction of neighbors that are
not in the circle’s interior is given by νM ≈ 0.70. Figure 8(b)
compares the results from stochastic simulations with formula
(28), using βM and νM for β and ν.

In Fig. 8(b) we also see that expansion happens faster under
the Moore neighborhood. This can be intuitively understood
by noting that, with a larger number of points that count
as neighbors, an individual has more choices for placing its
offspring. In the case of a mass action (not shown), expansion
is fastest and exponential in time.

VI. DISCUSSION

In this paper we developed deterministic approximations
for the expected trajectories of a two-dimensional stochastic
birth-death process. In particular, we focused on modeling 2D
growth expanding radially from an origin o, a problem known
in the literature as range expansion. We began by considering
approximations based on the decoupling ideas of the pair
approximation (PA); we referred to these approximations as
spatially explicit decoupling approximations, or SEDA. For
each SEDA we defined an order: A SEDA of nth order pre-
serves correlations between neighbors that are n or less units
of distance apart from each other. We found that first-order
SEDA approximates the results from the stochastic process
better than the mean-field or PA models; and second order
improves on the first-order approximation. However, none of
these models exhibit good time series agreement with the
stochastic process.

There are two important differences between PA and
SEDA. (1) PA models are nonspatial. They track only the
total number of individuals, not the spatial location of each
individual. SEDA is fully spatial. (2) PA models only consider
correlations of pairs, while depending on the order; SEDA
models can preserve correlations for larger groups of neigh-
bors (e.g., up to quintuplets in second-order equations).

Next, we developed what we called radial decoupling
approximations, or RDA. Here, an approximation involving
a triad of sites depends on the location of the triad’s center
relative to the population origin. A system based only on RDA
does not have a unique steady state; RDA, however, will be
very useful when combined with SEDA. This approach lead
us to the trigonometric decoupling approximations, or TDA.
The name comes from the use of trigonometric functions

in the approximations. We find that the TDA provides very
good agreement with the stochastic process. We then revisited
first-order SEDA, and found that scaling time by a suitable
parameter also produces very good agreement with stochastic
results.

The methods described above allow us to approximate
the steady-state density of populations (or the density in the
core of expanding colonies). In particular, we provide three
simple formulas that approximate the equilibrium density:
for the von Neumann and Moore neighborhoods on a square
lattice, and for a honeycomb neighborhood on a hexagonal
lattice; see Eqs. (2), (3), and (4). For the same death-to-birth
ratio, the grid is more packed under the Moore neighborhood,
because of the availability of more neighbors per site. As
a consequence, the equilibrium density corresponding to the
Moore neighborhood is higher and closer to that of mass
action. A general formula that provides an approximation
for the steady-state density as a function of the number of
neighbors is given by Eq. (5). It describes the three cases in
2D that were mentioned above, and can also be derived in 3D
for the von Neumann and Moore neighborhoods. The validity
of this formula for other cases remains to be checked.

Finally, we turned our attention to the expected growth rate
of an expanding population in an infinite grid. By focusing
on the dynamics at the population’s surface (or boundary),
we found a simple explicit formula, Eq. (27), that estimates
the evolution of the total number of individuals as a function
of time. The growth law in (27) is the so called “surface
growth” law [31], previously described in modeling literature
[32–36]. Equation (28) provides a method to approximate
the rate of surface growth from the “microscopic” rules and
rates that govern the spatial birth-death process. This method
involves knowledge of a population steady-state density and
the geometric properties of disk-like objects on a square
lattice, both of which depend on neighborhood type.

The methodology developed in the article can be adapted
to include three-dimensional growth and other grid metrics. In
3D there are four equations per site for all first-order approxi-
mations using the �1 metric. SEDA and TDA approximations
can also be developed for Moore neighborhoods (based on the
�∞ norm). Using Moore neighborhoods in 2D, for example,
leads to ten equations per grid point for first-order SEDA. An-
other important extension of the methodology is the inclusion
of populations with more than one species. For example, in 2D
with the �1 metric, for a two-species birth-death process there
are ten equations per point for first-order approximations: two
for the expected value of singletons (one per species), four
for correlations of pairs of the same species, and four more
for correlations of mixed pairs. For more complex models,
such as those involving two or more species, the process of
generating equations can be automated using MATHEMATICA,
by first working out a pattern and then implementing equation
generation in a program, a methodology similar to that used
in [37].

Applying the methodology to more than one species can
lead to important biological applications. For example, in the
context of tumor growth, a two-species birth-death model
can be easily adapted to account for feedback interactions
between tumor stem cells and differentiated cells [38]. Similar
adaptations can be used to model viral infection and the
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interplay between infected and uninfected cells [39]. Another
fundamental application is studying mutant dynamics in a
spatial setting, which is relevant to a host of phenomena
ranging from 2D bacterial evolution in biofilms to 3D evo-
lutionary dynamics of cancer. In particular, the ideas used
to estimate the population’s expected growth rate (for one
specie), could be applied to approximate the expected number
of mutants as a function of time. The extensions to the theory
and approximations discussed here can form the basis of

these and other applications, and will be the focus of future
work.
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