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The bulk of stochastic gene expression models in the literature do not have an explicit description of the age
of a cell within a generation and hence they cannot capture events such as cell division and DNA replication.
Instead, many models incorporate the cell cycle implicitly by assuming that dilution due to cell division can
be described by an effective decay reaction with first-order kinetics. If it is further assumed that protein
production occurs in bursts, then the stationary protein distribution is a negative binomial. Here we seek to
understand how accurate these implicit models are when compared with more detailed models of stochastic
gene expression. We derive the exact stationary solution of the chemical master equation describing bursty
protein dynamics, binomial partitioning at mitosis, age-dependent transcription dynamics including replication,
and random interdivision times sampled from Erlang or more general distributions; the solution is different for
single lineage and population snapshot settings. We show that protein distributions are well approximated by
the solution of implicit models (a negative binomial) when the mean number of mRNAs produced per cycle is
low and the cell cycle length variability is large. When these conditions are not met, the distributions are either
almost bimodal or else display very flat regions near the mode and cannot be described by implicit models. We
also show that for genes with low transcription rates, the size of protein noise has a strong dependence on the
replication time, it is almost independent of cell cycle variability for lineage measurements, and increases with
cell cycle variability for population snapshot measurements. In contrast for large transcription rates, the size of
protein noise is independent of replication time and increases with cell cycle variability for both lineage and
population measurements.
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I. INTRODUCTION

It is well known that gene expression is stochastic [1]. The
randomness in the time at which each reaction occurs leads
to fluctuations in the molecule number of gene products such
as mRNA and proteins. Hence, over the past two decades
there has been considerable effort devoted to constructing and
solving stochastic models of gene expression [2,3]. The exact
solution of the chemical master equation (CME) describing
the standard models of stochastic gene expression is currently
unknown except in certain limiting cases such as when mRNA
degrades much faster than protein [4].

The majority of gene expression models in the literature
do not have a description of cellular age and hence do not
explicitly describe the cell cycle [4–12]. Rather, it is assumed,
following [13,14], that protein dilution effects due to cell
division can be implicitly included via an effective first-order
decay reaction. The rate of this reaction is chosen such that the
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half-life of protein numbers corresponds to the mean cell cycle
length. This approximation is thought to be reasonable since
active protein degradation timescales are considerably longer
than the cell cycle time [15,16] and hence dilution occurring
during cell division is the dominant means of protein removal.

Since these effective models do not have a description of
the cell age within a cell cycle, they also cannot take into
account events which happen at specific points during the
cycle, e.g., the replication of the genome which leads to an
increase of the transcription rate. The main advantage of these
models is the relative ease with which they can be analyti-
cally solved, approximated, and simulated. In particular, the
chemical master equation of the most commonly used model
of this type, which describes proteins produced in bursts
whose size is sampled from the geometric distribution and
protein decay via an effective first-order reaction (modeling
dilution as described above), can be solved exactly, leading to
a negative binomial distribution (or a gamma distribution, its
continuous analog) of protein numbers [4,14].

In contrast to this implicit model, more sophisticated mod-
els have been developed during the past few years that include
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an explicit description of the cell cycle. Curiously, results
for the case of periodic cell division were first obtained by
Berg [17], about 20 years before the explosion of interest in
stochastic gene expression [1]. More recently, Johnston and
Jones obtained the distribution of protein numbers assuming
nonbursty production, binomial partitioning at cell division,
and regularly spaced (periodic) cell division events [18].
Since experimental data clearly show that the time between
two successive cell division effects is a random variable
[19,20], models were also devised to study how dynamics
are influenced by this extra source of randomness. Antunes
and Singh [21] obtained the moments of mRNA and protein
numbers in a simplified model of gene expression which
ignores intrinsic noise (due to the stochastic birth-death of
individual molecules) and that due to binomial partitioning but
takes into account noise stemming from the random timing
of cell division events. Soltani et al. [22,23] obtained the
mean and variance of protein numbers in a considerably more
detailed model for stable protein (one that is degraded only by
dilution) that includes intrinsic noise, stochastic partitioning
of molecules at cell division, a cell cycle that is divided in a
number of phases whose duration is exponentially distributed
and also can include replication. In these studies, the for-
mulas are obtained assuming single lineage measurements,
i.e., upon cell division, one of the daughter cells is followed
(the other discarded) such that one obtains information about
the stochastic dynamics of a cell’s protein contents along an
arbitrarily chosen lineage (measurements done using a mother
machine such as in Ref. [24]). The two major disadvantages
of the latter two papers are that they do not derive results
for the protein number distributions and also they do not
calculate statistics in a growing population of cells, the most
common experimental scenario (measurements done using
flow cytometry such as [25]). Jędrak et al. [26] derived an
explicit expression for the protein distribution solution of a
stochastic model where protein fluctuations are treated con-
tinuously, there are no gene duplication effects, and where the
cell cycle is assumed to be exponentially distributed. These
results analyze the behavior of a single lineage (as previous
papers), and also for a whole proliferating population, i.e.,
both daughter cells are followed upon cell division such that
one obtains information about the stochastic dynamics of a
cell’s protein contents across a growing population. Note that
lineage and population statistics are not generally equivalent,
unlike what one may assume based on the ergodic hypothesis
[27]. The major limitations of the model in Ref. [26] are the
large protein approximation implicit in the continuous ap-
proximation, the lack of DNA replication, and the assumption
that cell cycle duration is exponentially distributed, which is
contrary to experimental evidence that reveals distributions
comparable to Erlang, gamma, or lognormal distributions or
variations thereof [20,28].

Given these two different approaches including implicit
and explicit description of the cell cycle, a question arises:
How well can the negative binomial distribution of implicit
models describe the protein distribution of more detailed mod-
els of gene expression? This question remains unanswered
because, as discussed above, none of the current literature
derives the protein distribution in a model that explicitly
includes dilution due to stochastic partitioning of molecules at

cell division, random interdivision times, and age-dependent
transcription. In this paper, we answer this question by deriv-
ing expressions for the distributions of proteins in models that
incorporate explicit descriptions of the cell cycle. For the sake
of clarity, instead of starting from the most general model, our
presentation considers a set of simpler models which gradu-
ally build up to it. The three models that we study, in order of
complexity, have the following properties: (i) no replication
and a cell cycle of fixed duration; (ii) no replication and
an Erlang distributed cell cycle duration; (iii) age-dependent
transcriptional dynamics including replication and a cell cycle
described by a number of phases, each of which has an expo-
nentially distributed duration (hypoexponential distribution).
All the models consider proteins that are produced in bursts
[29], degraded only via dilution (stable proteins [14]) and
assume binomial partitioning of proteins at cell division [17].
We study the relationships between the solutions of all models
for both single lineage and population snapshot statistics, and
identify conditions under which the protein distributions can
be well approximated by the negative binomial solution of the
conventional model of gene expression with an implicit cell
cycle description.

II. MODEL I: STOCHASTIC GENE EXPRESSION WITH
AN IMPLICIT DESCRIPTION OF THE CELL CYCLE

It is well known that under the assumptions that mRNA
degrades much faster than protein and that promoter switching
is also much faster than protein decay, the stochastic dynamics
of protein P can be effectively described by the reaction
scheme [4]

G
r−→ G + mP, P

d−→ ∅, (1)

where G denotes a single gene copy, r is the effective burst
production rate, and d is the protein degradation rate. Note
that protein is produced in bursts of size m, which follows a
geometric distribution (in accordance with experiments [29]),
i.e., m ∼ Geom(p) with a mean burst size α = (1 − p)/p =
h/dm where h is the protein translation rate and dm is the
mRNA degradation rate. This burstiness implicitly describes
the mRNA dynamics since a burst in protein expression occurs
due to rapid translation of proteins by a single short-lived
mRNA. Hence, within this context, the parameter r is also the
same as the effective mRNA transcription rate which is given
by r = ρuσu/(σb + σu) where ρu is the mRNA transcription
rate, σb is the rate of switching from the active state to the
inactive state, and σu is the rate of switching from the inactive
state to the active state.

Note that this model has been rigorously derived from a
three-stage model of gene expression that does not take the
cell cycle explicitly into account [4]. However, it is commonly
assumed that the protein degradation reaction effectively mod-
els the dilution which occurs due to binomial partitioning at
cell division. The question then is how we should choose
the effective protein degradation rate. A simple argument is
as follows. Since the protein decays exponentially via an
effective first-order reaction, its half-life is td = log(2)/d;
we also know that the protein concentration is on average
halved at cell division due to binomial partitioning and hence
td = T , where T is the cell cycle length. Hence, it follows
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that the effective protein degradation rate should be chosen as
d = log(2)/T . The effective model given by reaction scheme
(1) and d chosen as aforementioned is one of the standard
models of gene expression in the literature [14].

In Appendix A 1, we show that the effective model de-
scribed above provides an accurate description of the mean
number of proteins in a three-stage model of gene expression
with explicit mRNA and protein dynamics, binomial partition-
ing, and fixed cell cycle length T , provided (i) the mRNA
degrades much faster than protein; (ii) promoter switching
is much faster than protein decay; (iii) mRNA degrades on
a much shorter timescale than the cell cycle length T ; (iv)
the mean number of proteins is calculated from population
measurements. Note that if instead the mean number of pro-
teins is calculated from single lineage measurements then
we arrive at model (1) but with effective protein degrada-
tion rate given by d = ( 2

3 )/T (see Appendix A). Note that
effective degradation rates derived for lineage data are slightly
smaller than their population snapshot equivalent because
2
3 < log 2. This discrepancy stems from the fact that the mean
number of proteins calculated from population measurements
is smaller than the mean number of proteins calculated in
single lineage measurements. This is because in population
snapshots, all cells are tracked and hence due to a doubling
of the number of cells at cell division, there is a bias toward
observing young cells with small protein counts. In contrast,
in lineage measurements since only one cell is tracked, the
probability of observing a cell of any age is the same and
hence the protein counts on average are higher than in pop-
ulation measurements. A detailed discussion of the differ-
ence between these two types of measurement can be found
in [27].

The CME of model I whose reactions are given by (1)
is straightforward to solve using the method of generating
functions. In steady state, its solution reads as

G(z) =
[

1

1 − α(z − 1)

]β

, (2)

where G(z) = ∑
n znP(n) is the probability generating func-

tion (PGF), P(n) is the steady-state protein distribution of
protein number n, and β = r/d . Note that β is the average
number of mRNA molecules produced in the protein life-
time. In the case of stable proteins (which degrade only by
dilution) it follows from our previous results for effective
degradation rates that β = 3y/2 for lineage measurements and
β = y/ log 2 for population snapshot measurements, where
we have defined y = rT as the average number of mRNA
produced in a cell cycle. The distribution can be obtained
using P(n) = (1/n!)dGn/dzn|z=0 which leads to a negative
binomial NB(β, α/(1 + α)).

III. MODEL II: STOCHASTIC GENE EXPRESSION
WITH EXPLICIT MODELING OF A FIXED

LENGTH CELL CYCLE

Next, we consider a model where protein production oc-
curs in bursts as in model I but there is no effective first-order
reaction modeling protein degradation. Instead, we explicitly
model binomial partitioning of the proteins at cell division.
The major assumption of this model is that cell division occurs

at regular time intervals of length T . This is often referred to
as a “timer” mechanism and has been found in certain types of
cells, e.g., early frog embryos [30]. In what follows, we will
find an exact steady-state solution of the CME for this model
and compare it with that of model I.

Let t ∈ [0, T ] be the age of a given cell, namely, t = 0
corresponds to its birth and t = T corresponds to the time at
which it divides into two. The CME describing bursty protein
expression and no active degradation in a cell is given by

dP j (n, t )

dt
= r

∞∑
m=0

P j (n − m, t )Q(m) − rP j (n, t )
∞∑

m=0

Q(m),

(3)
where P j (n, t ) is the probability that at cell age t in generation
j there are n proteins observed. Here, Q(m) = p(1 − p)m with
α = (1 − p)/p is the geometric distribution with mean α.
Note that each time cell division occurs, the generation num-
ber j is increased by one. The PGF equation corresponding to
the CME is

∂Gj (z, t )

∂t
= −rGj (z, t )

[
1 − 1

1 + α(1 − z)

]
, (4)

which has a time-dependent solution

Gj (z, t ) = F j (z) exp

[ −αrt (1 − z)

1 + α(1 − z)

]
. (5)

Note that F j (z) = ∑
n znP j (n, 0), namely, the PGF cor-

responding to the protein distribution at cell birth in
generation j.

Introducing binomial partitioning at mitosis leads to a
simple relationship between the protein distribution at cell
division of a cell in generation j and the distribution observed
at the birth of the daughter cell in generation j + 1,

P j+1(n, 0) =
∞∑

i=0

(
i

n

)
2−iP j (i, T ), (6)

which implies for the PGF

F j+1(z) = Gj+1(z, 0) = Gj

(
1 + z

2
, T

)
. (7)

Note that in Eq. (6) we used the convention that i choose
n equals zero when n > i. In this case, we cannot impose
steady state as in model I because cell division occurs at
regular time intervals. Rather, we consider cyclostationary
conditions which are achieved when the probability that a
cell of age t has a given number of proteins is independent
of which generation it belongs to, i.e., the superscript j
in Eqs. (3)–(7) can be ignored. Hence, substituting Eq. (7)
in Eq. (5) we obtain

G(z, t ) = G

(
1 + z

2
, T

)
exp

[ −αrt (1 − z)

1 + α(1 − z)

]
. (8)

Next, we proceed to solve Eq. (8) by substituting t = T in
this equation to obtain

G(z, T ) = G

(
1 + z

2
, T

)
f (z), (9)
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where f (z) = exp{−αrT (1 − z)/[1 + α(1 − z)]}. Equation
(9) can be solved by iteration as follows:

G(z, T ) = f (z) f

(
1 + z

2

)
G

(
3 + z

4
, T

)

= f (z) f

(
1 + z

2

)
f

(
3 + z

4

)
G

(
7 + z

8
, T

)

= G(1, T )
∞∏

s=0

f

(
2s + z − 1

2s

)
=

∞∏
s=0

f

(
2s + z − 1

2s

)
.

(10)

Note that here we used G(1, T ) = 1 which follows from the
normalization of the distribution. Substituting Eq. (10) in
Eq. (9) we obtain G((1 + z)/2, T ) which after substituting
in Eq. (8) leads us to an explicit solution of the generating
function for model II in cyclostationary conditions:

G(z, t ) =
[ ∞∏

s=0

f

(
1 + z − 1

2s+1

)]
exp

[−αrt (1 − z)

1 + α(1 − z)

]

= exp

(
rxt

1 − x
+ rxT

∞∑
s=0

1

21+s − x

)
, (11)

where in the last line we used the definition of the function f
and the definition x = α(z − 1). Note that the sum over s in
the argument of the exponent can be written in terms of the
q-digamma function.

The solution we have computed corresponds to the PGF
of the protein distribution computed from an ensemble of
identical cells, all of which are at the same cell age t . However,
distributions are often calculated from experimental measure-
ments of time traces of the fluorescent protein molecules along
a cell lineage or else from population snapshots. Considering
the single lineage case, the corresponding PGF is given by a
time average of the generating function calculated earlier:

Gs(z) =
∫ T

0

1

T
G(z, t )dt

= x − 1

xy

[
exp

(
xy

x − 1

)
− 1

]
exp

(
xy

∞∑
s=0

1

2s − x

)
,

(12)

where we have used y = rT as we did for model I. Note that
the subscript s will henceforth be used to denote single lineage
measurement. Note also that the time average is computed
since the probability of observing cells of any age is uniform
in lineage measurements. Comparing this PGF to that of
model I, i.e., Eq. (2), it is clear that in model II the protein
distribution is generally not equal to the negative binomial
distribution of model I.

To understand the differences between these two distribu-
tions, we next use the PGF’s given by Eq. (2) (with β = 3y/2)
and Eq. (12) to compute the mean 〈n〉 and variance σ 2 in
stationary conditions

〈n〉NB,s = 3

2
αy, (13)

σ 2
NB,s = 3

2
αy + 3

2
α2y = 1.5αy + 1.5α2y, (14)

〈n〉s = 3

2
αy, (15)

σ 2
s = 3

2
αy + α2

(
5y

3
+ y2

12

)
≈ 1.5αy + 1.67α2y + 0.08α2y2. (16)

It is clear that while the mean of the two distributions is the
same, the variances are generally different. In Appendix A,
we clarify the origin of this discrepancy. In particular, model I,
under certain conditions described earlier, can match the mean
number of proteins in a three-stage model of gene expression
with explicit mRNA and protein dynamics, binomial parti-
tioning, and fixed cell cycle length T whereas model II can
match the full PGF of the three-stage model under the same
conditions (see in particular Appendix A 2). The variance of
model II is always greater than that of model I (σ 2

s > σ 2
NB,s).

Furthermore, while the two variances are both quadratic in
α, σ 2

NB,s is linear in y while σ 2
s is quadratic in y. The relative

error between the two variances computed as (σ 2
s − σ 2

NB,s)/σ 2
s

increases monotonically with α and y but is mostly determined
by the value of y, i.e., the average number of mRNA pro-
duced in a cell cycle, as illustrated in Fig. 1(a). Expressions
for the skewness squared can also be easily derived from
the PGF

S2
NB,s = 2(2α + 1)2

3α(α + 1)y
, (17)

S2
s = 108[2α2(7y + 54) + 7α(y + 20) + 42]2

49αy[α(y + 20) + 18]3
. (18)

For small y, both of these expressions are proportional to
1/y while for large y, we have S2

NB,s ∝ 1/y while S2
s ∝ 1/y2,

i.e., for large enough y model II will predict a less skewed
distribution than model I. Generally, the skewness of the
distribution of model II can be larger or smaller than that of
model I depending on the values of α and y [Fig. 1(b)].

To get a fuller picture of the differences between the two
models (assuming lineage measurements), we plot in Fig. 2
the distributions for various values of y while keeping the
value of α fixed. Note that the distribution of protein numbers
for model II is constructed by first expanding the generating
function (12) as a Taylor series using a symbolic computation
software and then P(n) is simply given by the nth coefficient
of this series. The theoretical predictions for model II are
also verified by means of the stochastic simulation algorithm
(SSA, see Appendix B for a full description of the algorithm).
The negative binomial distribution of model I (red line) is a
good approximation of the distribution of model II (black line)
for small y but clearly is inappropriate for large y; it can also
be shown that the difference between distributions becomes
more pronounced if α is increased.

A visual inspection of the distribution of model II
(black line) leads one to believe that one can likely fit
well an effective negative binomial for the cases shown in
Figs. 2(a)–2(c) but not for 2(d). This intuition is verified in
Fig. 2 by plotting an effective negative binomial of the same
mean and variance (green open circles) as the distribution of
model II; in Fig. 2(d), the distribution is considerably flatter
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FIG. 1. (a) Plot of the relative error between the steady-state variance of model I and the cyclostationary variance of model II as a function
of the mean burst size (α) and the mean number of mRNAs produced in one cell cycle (y), assuming lineage measurements. (b) Plot of
the relative error between the skewness of models I and II as a function of α and y. Note that for burst sizes α � 10, the relative errors
are a strong function of y, with only a weak dependence on α. Model I in all cases underestimates the variance of model II. In contrast,
model I underestimates the skewness of model II for small y and overestimates it for large y. The relative error in the variance is defined as
(σ 2

s − σ 2
NB,s)/σ 2

s and the relative error in the skewness is defined as (Ss − SNB,s)/Ss.

near the mode than the fitted negative binomial. Note that the
effective negative binomial is given by NB(z1, z2) where

z1 = 27y

y + 20
, (19)

z2 = α(y + 20)

α(y + 20) + 18
. (20)

Since model I has a negative binomial solution, it follows
that through renormalization of its parameters, it can be
matched to the effective negative binomial for model II. If the
renormalized parameters for model I are ye and αe, then its
solution is NB(z1, z2) where z1 = 3ye/2, z2 = αe/(1 + αe).
Equating z1, z2 to those in Eqs. (19) and (20), we obtain

αe = α

(
y + 20

18

)
, (21)

ye = y

(
18

y + 20

)
. (22)

Note that renormalized model I is the same as the green open
circles shown in Fig. 2 which is a much better approximation
to model II (black line) than the original model I (red line).
From these equations, it is also clear that if parameters had to
be estimated from experimental data (with low cell cycle dura-
tion variability) using model I, then the estimated mean burst
size αe overestimates the true value α, while the estimated
mean number of mRNA per cell cycle ye underestimates the
true value y.

In this section we have so far focused on the distributions
for single lineage measurements. The distribution of protein
numbers for population snapshots can also be derived and

instead of Eq. (12) we then have

Gp(z) =
∫ T

0

21−t/T log(2)

T
G(z, t )dt

= (x − 1) log 2

xy + (x − 1) log 2

{
exp

[
xy + (x − 1) log 2

x − 1

]
− 1

}

× exp

(
xy

∞∑
s=0

1

2s − x

)
, (23)

where the subscript p will be used to denote population
snapshot measurements from hereon. Note that we used the
fact that when interdivision times are regularly spaced in
time, the probability of observing a cell of age t ∈ [0, T ] is
21−t/T log 2/T for population measurements [17] (see also
Appendix D for a derivation of the latter). The PGF of model
I has already been calculated for the population scenario in
Sec. II and was found to be given by Eq. (2) [with β =
y/ log(2)]. For the parameters used in Fig. 2, the protein
distributions for population data for models I and II are found
to be close to those calculated for lineage data and, hence,
we do not show them. The mean and variance of the protein
numbers of models I and II are now given by

〈n〉NB,p = αy

log(2)
, (24)

σ 2
NB,p = α(1 + α)y

log(2)
≈ 1.44αy + 1.44α2y, (25)

〈n〉p = αy

log(2)
, (26)
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FIG. 2. Comparison of the protein number distributions (assuming lineage measurements) of models I and II in steady-state and
cyclostationary conditions, respectively. For model I (red line), the distribution is NB(3y/2, α/(1 + α)) and for model II (black line) it is
given by P(n) = (1/n!)dGn

s /dzn|z=0 where Gs is given by Eq. (12). Note that the numerical computation of the distribution from Eq. (12) can
be greatly accelerated (while maintaining accuracy) if the sum over s is truncated to a few tens of terms. The dots show the distributions of
models I and II obtained from stochastic simulations (simulations of model I are done using the conventional SSA and those of model II are
done using a modified SSA, see Appendix B and also at the end of this caption). The open green circles show the negative binomial distribution
which has the same first and second moments as the distribution of model II. The stochastic simulations of model II are performed as follows.
Initially, we have a single cell with zero protein. We measure the protein content of the cell at intervals T/Z where Z = 10π . Each time a cell
divides, we follow only one of the daughter cells. The simulation is run until 105 cycles have passed and a histogram is calculated from these
data (we discard the first 103 cell cycles to ignore any possible transients). The cell cycle length is T = 1 in all cases. All lineage simulations
in this article use this protocol, unless otherwise stated.

σ 2
p = 1

log 2
αy + 6 − 4 log 2

3 log 2
α2y + 1 − log2 2

log2 2
α2y2

≈ 1.44αy + 1.55α2y + 0.08α2y2. (27)

These equations are the population equivalent of Eqs. (13)–
(16) and the same observations we made earlier regarding the
comparison of the moments of models I and II for single lin-
eage data are also seen to hold for population data. Note also
that generally we can state 〈n〉p < 〈n〉s and σ 2

p < σ 2
s , which

can be explained by the enhanced probability of observing
younger cells (and hence having a smaller protein content) in
population measurements (as mentioned in Sec. II).

Summarizing, our results in this section imply that the
effective degradation reaction in model I cannot effectively
account for dilution via binomial partitioning. Generally, the
models agree on the mean number of proteins in stationary
conditions but not on the higher-order moments. The discrep-
ancies are particularly obvious whenever y is greater than a
few tens. The variance of model I is always less than that
of model II, but the skewness of model I can be greater or
smaller than that of model II. We have also shown that the
protein distribution of model II can be well approximated by
an effective negative binomial distribution only if y, the mean

number of mRNAs produced in a cell cycle, is small. In this
case, it is possible to renormalize the parameters in model I so
that its solution approximates that of model II well.

IV. MODEL III: STOCHASTIC GENE EXPRESSION WITH
EXPLICIT MODELING OF AN ERLANG DISTRIBUTED

CELL CYCLE LENGTH

Next, we consider a more complex and realistic model
of bursty gene expression, namely, one that includes cell
cycle length variability. Such variability could, for example,
originate in cell types where the cell growth rate is stochastic
and cell division is triggered when the volume of a cell
exceeds its volume at birth by a certain fixed amount (also
called an “adder” mechanism, see for example [31]). As
we shall see, this requires a very different master equation
description than the previous models. Specifically, the model
has the following properties: (i) The cell cycle is divided in
N phases where the duration of each phase is exponentially
distributed with parameter k. It then follows that the cell
cycle length distribution is Erlang, the mean cell cycle time
is T = N/k and the coefficient of variation of the cell cycle
duration is 1/

√
N . (ii) Proteins are produced at a rate r and

in geometrically distributed burst sizes with mean α. (iii) Cell
division occurs instantaneously after the end of the N th phase
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which leads to binomial partitioning of proteins between
mother and daughter cells. Note that an Erlang distribution
provides a good fit to some of the measured cell cycle length
distributions [21,28].

Let Pi(n, t ) be the probability that the cell cycle is in phase
i at time t and that there are n protein molecules. We shall here
ignore the generation number since in steady-state conditions
this does not matter. It then follows that the master equation
describing the above model is given by

dP1(n, t )

dt
= −kP1(n, t ) + kP′

N (n, t )

+ r
∞∑

m=0

P1(n − m, t )Q(m)

− rP1(n, t )
∞∑

m=0

Q(m), (28)

dPi(n, t )

dt
= −kPi(n, t ) + kPi−1(n, t )

+ r
∞∑

m=0

Pi(n − m, t )Q(m)

− rPi(n, t )
∞∑

m=0

Q(m), i ∈ [2, N] (29)

where Q(m) = p(1 − p)m is the geometric distribution with
mean α = (1 − p)/p. The first term in these equations models
exits from the present cell cycle phase into the next phase,
the second term models the entry into the present cell cycle
phase from the previous one, and the third term models bursty
protein production. Note that binomial partitioning during cell
division is explicitly taken into account by the second term of
Eq. (28). In particular, this process implies

P′
N (n, t ) =

∞∑
m=0

(
m

n

)
2−mPN (m, t ), (30)

where we take the convention m choose n equals zero when
n > m. The PGF equations corresponding to the CME equa-
tions (28) and (29) are given by

∂G1,s(z)

∂t
= −kG1,s(z) + kGN,s

(
1 + z

2

)

− rG1,s(z)

[
1 − 1

1 + α(1 − z)

]
, (31)

∂Gi,s(z)

∂t
= −kGi,s(z) + kGi−1,s(z)

− rGi,s(z)

[
1 − 1

1 + α(1 − z)

]
, i ∈ [2, N] (32)

where we have suppressed the time dependence for con-
venience. Note that while for model II, the cyclostationary
condition meant that the protein distribution at a given cell
age is independent of generation number, for model III the
condition means that the protein number at a given cell cycle
phase is independent of the generation number. Hence, we can

set Eq. (32) to zero and solve recursively for Gi,s(z) to obtain

Gi,s(z) =
[

k(x − 1)

k(x − 1) + rx

]i−1

G1,s(z), i ∈ [2, N]. (33)

Substituting Eq. (33) with i = N in Eq. (31) with the left hand
side equal to zero, we obtain

GN,s

(
1 + z

2

)
= k(x − 1) + rx

k(x − 1)
G1,s(z)

=
[

k(x − 1)

k(x − 1) + rx

]−N

GN,s(z). (34)

Following the same method of solution as used for solving
Eq. (9), we obtain

GN,s(z) =
∞∏

s=0

[
1 − rx

x(k + r) − 2sk

]N

, (35)

where we used the normalization condition for the conditional
distribution in each phase, i.e., Gi(1) = 1. Using Eqs. (33) and
(35) we obtain the PGF for the conditional protein distribution
in cell phase i:

Gi,s(z) =
[

1 + rx

k(x − 1)

]N−i ∞∏
s=0

[
1 − rx

x(k + r) − 2sk

]N

,

i ∈ [1, N]. (36)

Since we are considering the case of single lineage mea-
surements, we must average the PGF over all cell phases by
marginalizing out the phase in which a cell is at observation
time. Note that in order to do this we need an expression for
�i,s, the probability that the cell is in phase i at observation
in a single lineage measurement. For our case of N identically
exponentially distributed phases it can be easily shown that
�i,s = N−1, reflecting that every phase is equally likely to
be observed. Using this we derive the PGF for the protein
distribution for lineage measurements

GE
s (z) =

N∑
i=1

�i,sGi,s(z) = x − 1

xy

{[
1 + xy

N (x − 1)

]N

− 1

}

×
∞∏

s=0

[
1 − xy

x(N + y)x − 2sN

]N

, (37)

where we used that y = rT and the mean cell cycle length
T = N/k. Note that the superscript E denotes an Erlang
distributed cell cycle length. This solution can be conveniently
written in terms of exponential functions yielding

GE
s (z) = x − 1

xy

(
exp

{
N log

[
1 + xy

N (x − 1)

]}
− 1

)

× exp

{
N

∞∑
s=0

log

[
1 − xy

(N + y)x − 2sN

]}
. (38)

Note that the argument of the log is always positive because
x = α(z − 1) � 0 due to z � 1. Note also that in the limit of
large N (at constant T ), the Erlang distribution describing the
cell cycle length tends to a delta function centered on T , i.e.,
a cell cycle of fixed length. It is straightforward to show by a
series expansion in 1/N that in the limit of large N , Eq. (38)
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FIG. 3. Plots of the protein number distribution P(n) for model II (blue line) and model III (black, green, cyan lines) with single lineage
(a)–(c) and population observations (d)–(f). The solid dots show the distributions obtained from stochastic simulations using the SSA (see
Appendix B) which agree with those from theory in all cases. Note that in the limit of large number of cycle cycle phases N  1, model III
approaches model II since the cell cycle length variability tends to zero. The non-negative binomial nature of model II for large y [the flat
region near the mode in (b) and (c) and the right shoulder in (e) and (f)] is washed away as the cell cycle length variability increases, i.e., as N
decreases in model III. Note that the numerical computation of the distribution of model III from Eqs. (37) and (45) can be greatly accelerated
(while maintaining accuracy) if the infinite product is truncated to a few tens of terms.

converges to Eq. (12), i.e., in the limit of small cell cycle
length variability, model III converges to model II. The mean
and variance of the protein number distribution in steady-state
conditions can be straightforwardly computed from the PGF:

〈n〉E
s = αy(3N + 1)

2N
, (39)

(
σ E

s

)2 = αy(3N + 1)

2N

+α2

{
[N (N + 10) + 5]y2

12N2
+ (5N + 3)y

3N

}
. (40)

As expected, the variance of model III is always larger than
that of model II; the mean of model III is slightly larger than
that of model II, but the difference can be ignored in most
cases of interest. Both the mean and variance are monotonic
decreasing functions of N and hence they are bounded from
above by the moments evaluated for N = 1, i.e., an exponen-
tially distributed cell cycle length.

The differences in the protein number distributions pre-
dicted by models II and III for lineage observations are
illustrated in Figs. 3(a)–3(c). There we show the excellent
agreement between the theoretical expressions and stochastic
simulations for both small y [Fig. 3(a)] and large y [Figs. 3(b)
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and 3(c)]. While the differences between models I and II are
due to binomial partitioning, the differences between models
II and III are due to cell cycle length variability. We find that
typically for N > 20 the differences between models II and III
are small; the differences are at their largest when the cell cy-
cle length is exponentially distributed, i.e., N = 1. Previously,
we saw how for model II the negative binomial was not a good
fit for the distribution when y was large. However, as can be
appreciated from Figs. 3(b) and 3(c), the fit becomes better
when we consider cell cycle length variability: the deviations
from negative binomial, which manifest in the flattish region
around the mode, become less visible as N decreases. Note
also that the deviations from negative binomial are largely
unaffected by the value of the mean burst size (increasing α

by 10 times in Fig. 3 causes the protein distributions to move
right and their height to be rescaled but their shape remains
practically unaltered).

Since the solution of model I is generally a negative
binomial, it follows that we can renormalize the parameters of
this model such that its protein distribution provides a good
match to the distribution of model III when the cell cycle
length variability is sufficiently high. Equating the mean and
variance of a negative binomial NB(z1, z2) to Eqs. (39) and
(40), we find

z1 = 3(3N + 1)2y

[N (N + 10) + 5]y + 4N (5N + 3)
, (41)

z2 =
{

6N (3N + 1)

α[N (N + 10) + 5]y + 4αN (5N + 3)
+ 1

}−1

. (42)

Equating these two parameters (z1, z2) to those of model I
with renormalized parameters [3ye/2, αe/(1 + αe)], we ob-
tain the relationship between the actual and renormalized
parameters:

αe = z2

1 − z2
= α

{
1 + N + 3

3(3N + 1)
+ y

[
N2 + 10N + 5

6N (3N + 1)

]}
,

(43)

ye = 2z1

3
= y

[
2(3N + 1)2

(N2 + 10N + 5)y + 4N (5N + 3)

]
. (44)

It also follows from these formulas that if we had to fit
a negative binomial to experimental data from cells with
an Erlang distributed cell cycle length (data consistent with
model III) and estimate the parameters using model I, then
this will lead to an overestimate for the mean burst size and
an underestimate for the mean number of mRNAs per cycle
(and hence for the transcription rate). The errors increase with
decreasing N and hence with increasing cell cycle duration
variability.

We have here focused on the distributions for single lin-
eage measurements. The distributions of protein numbers for
population snapshots can also be derived. Due to the rather
more complex analysis involved, the derivation is presented in
Appendix D. Here, we simply state the equivalent of Eq. (37)

for population measurements:

GE
p (z) = (2

1
N − 1)N (x − 1)

[ xy
N (x−1) + 2

1
N

]N − 1

(2
1
N − 1)N (x − 1) + xy

×
∞∏

s=0

[
1 − xy

x(N21/N + y) − N21/N 2s

]N

. (45)

The protein distributions corresponding to this PGF are shown
in Figs. 3(d)–3(f) where they are also compared with those
of model II. Note that given the same parameters, the protein
distributions for lineage and populations observations are con-
siderably different. These differences become more apprecia-
ble with increasing y and decreasing N . While the increase in
cell cycle length variability (through decreasing N) results in
little changes to the mode of the lineage distribution, it causes
the mode of the population distribution to shift to the left.
However, there are also qualitative similarities, namely, that in
both cases the deviations from negative binomial are maximal
for small cell cycle length variability (large N) and large y.
Similar to what we previously did for lineage observations
[see Eqs. (43) and (44)], from the equations for the mean and
variance for population snapshots (see Appendix D), it is also
possible to calculate the renormalized parameters in model I
such that it provides a good negative binomial approximation
to the population distribution of model III when there is
sufficient cell cycle length variability.

Summarizing in this section we have studied a model
(model III) of bursty gene expression with an Erlang dis-
tributed cell cycle length. This model recovers model II in the
limit of small cell cycle length variability. Also, the presence
of sufficient cell cycle length variability is found to lift the
deviations from negative binomial observed for model II; in
this case, by an appropriate renormalization of the parameters,
model I can describe the distribution predicted by model III
well. The mean and variance of protein numbers calculated
from a similar model (assuming lineage observations) have
been reported previously [22].

V. MODEL IV: STOCHASTIC GENE EXPRESSION WITH
HYPOEXPONENTIAL CELL CYCLE LENGTH

DISTRIBUTION AND AGE-DEPENDENT TRANSCRIPTION

We next consider a more general version of model III: (i)
the time spent in phase i of the cell cycle is exponentially
distributed with parameter ki, which implies that the cell cycle
length distribution is hypoexponential; (ii) the transcription
rate and burst size are age dependent, i.e., they are ri and αi

in phase i, respectively. Note that the Erlang distribution is a
special case of the hypoexponential distribution and hence the
use of this distribution, in principle, allows more flexibility
in fitting experimental cell cycle distributions. Note also that
modeling the transcription rate as age dependent enables
us to capture replication, hence considerably extending the
realism of our model. The master equation describing the
above model is a generalization of that for model III and is
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given by

dP1(n, t )

dt
= −k1P1(n, t ) + kN P′

N (n, t )

+ r1

∞∑
m=0

P1(n − m, t )Q1(m)

− r1P1(n, t )
∞∑

m=0

Q1(m), (46)

dPi(n, t )

dt
= −kiPi(n, t ) + ki−1Pi−1(n, t )

+
∞∑

m=0

riPi(n − m, t )Qi(m)

− riPi(n, t )
∞∑

m=0

Qi(m), i ∈ [2, N] (47)

where Qi(m) = pi(1 − pi )m is the geometric distribution with
mean αi = (1 − pi )/pi. Note that P′

N (n, t ) is defined as before
using Eq. (30). The corresponding PGF equations are given
by

∂G1,s(z)

∂t
= −k1G1,s(z) + kN GN,s

(
1 + z

2

)

− r1G1,s(z)

[
1 − 1

1 + α1(1 − z)

]
, (48)

∂Gi,s(z)

∂t
= −kiGi,s(z) + ki−1Gi−1,s(z)

− riGi,s(z)

[
1 − 1

1 + αi(1 − z)

]
, i ∈ [2, N] (49)

where we have suppressed the time dependence for conve-
nience. Setting Eq. (49) to zero (steady-state conditions) and
solving recursively for Gi,s(z) we obtain

Gi,s(z) = wi,s(z)G1,s(z), (50)

where

wi,s(z) =
{

1, i = 1∏i
j=2

k j−1(x j−1)
k j (x j−1)+r j x j

, i ∈ [2, N]. (51)

Note that here we defined x j = α j (z − 1). Substituting
Eq. (50) with i = N in Eq. (48) with the left hand side equal
to zero, we obtain

GN,s

(
1 + z

2

)
= GN,s(z)

[
k1(x1 − 1) + r1x1

kN (x1 − 1)wN (z)

]
. (52)

Following the same method of solution as used for solving
Eq. (9), we obtain

GN,s(z) =
∞∏

s=0

N∏
j=1

[
1 − r jx j

x j (k j + r j ) − 2sk j

]
, (53)

where again we used the normalization condition for the con-
ditional distribution in each phase, i.e., Gi,s(1) = 1. Hence,
finally by means of Eqs. (50) and (53), we can write an
equation for the PGF of the distribution assuming single
lineage measurements

Gi,s(z) = wi,s(z)

wN,s(z)
GN,s(z), (54)

GH
s (z) =

N∑
i=1

�i,sGi,s(z), (55)

where again we let �i,s denote the probability of observing the
cell in phase i in a lineage measurement, which can be shown
to be given by �i,s = k−1

i /(
∑

j k−1
j ). Note the superscript H

(standing for hypoexponential) is to distinguish this PGF from
the one calculated for model III using the Erlang distribution.

A. Modeling replication

We next use this theory to understand the effects of gene
replication on stochastic gene expression. One of the simplest
models of this process assumes (i) the transcription rate to
be a constant r before replication, doubling to 2r right after
replication (the doubling in transcription rate is due to the
doubling in gene copy number during replication); (ii) the cell
cycle length and the replication time are Erlang distributed.
This implies the special case where ki = k and αi = α for
all i, and ri = r, i ∈ [1, M], and ri = 2r, i ∈ [M + 1, N],
where M is the cell cycle phase after which replication occurs.
Substituting these values in Eqs. (54) and (55), we obtain

GH
s (z) = (x − 1)

2xy

([
2xy

N (x − 1)
+ 1

]N−M
{

2

[
xy

N (x − 1)
+ 1

]M

− 1

}
− 1

)

×
∞∏

s=0

[
1 − 2xy

x(N + 2y) − N2s

]N−M[
1 − xy

x(N + y) − N2s

]M

. (56)

This can also be written in exponential form as we have previously done for other expressions. The mean and variance of protein
fluctuations are given by

〈n〉H
s = αy[M(M − 1) + 2N (3N − 2M + 1)]

2N2
= 〈n〉E

s

[
M + 2(N − M )

N

]
− αyM(N − M )

2N2
, (57)

(
σ H

s

)2 = αy[M(M − 1) + 2N (3N − 2M + 1)]

2N2
+ α2y

[
10N2 + 2N (3 − 4M ) + 3M(M − 1)

]
3N2

+ α2y2

{
4N4 + 40N3 − 4[3M(M + 3) − 5]N2 + 12M(M2 − 1)N − 3M2(M − 1)2

12N4

}
. (58)
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Using the notation (σ E
s )2|

vy
to denote the variance in model III, i.e., Eq. (40), when the transcription rate is vr we find

(
σ H

s

)2 =
[(

σ E
s

)2
∣∣∣
y

(
M

N

)
+ (

σ E
s

)2
∣∣∣
2y

(
N − M

N

)]
− αyM(N − M )

2N2

{
1 + 2α − αy

[
(M − 1)2 + N (N − 3M − 2)

]
2N2

}
. (59)

Note that for the special cases M = 0 and N , these two
equations are the same as the mean and variance of model III
[given by Eqs. (39) and (40)] with y replaced by 2y and y,
respectively; this is since in this case the transcription rate is
the same in all phases of the cell cycle and equal to 2r and
r, respectively. It also follows that model II is obtained by
setting M = N and taking the limit N → ∞. Hence, model
IV contains as special cases the previous models II and III.
Note that while we have considered the cases M = 0 and N
to see the relationships between the various models, when
we want to explicitly model replication we need 0 < M <

N and N � 2 since there is always a prereplication and
postreplication phase of the cell cycle. In Fig. 4 we show
that the theoretical protein distributions for each phase of the
cell cycle accurately match those obtained from stochastic
simulations.

The coefficient of variation squared [CV 2
s = (σ H

s /〈n〉H
s )2]

can be shown to decrease monotonically with increasing α and
y. However, the dependence on N and M (the replication phase
of the cell cycle) is nonmonotonic (see Appendix C). In Fig. 5
we show plots of the CV 2

s as a function of all four parameters
which numerically verifies the aforementioned properties. We
also observe that the size of noise as measured by CV 2

s is
almost independent of the replication phase M for large y but
increases monotonically with M for small y.

There is an interesting relationship between models III and
IV, as follows. If we renormalize the parameter y in model III
by changing it to 	sy where

	s = 2 − M

N
− M(N − M )

N (1 + 3N )
, (60)
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FIG. 4. Plots of the protein distribution at different points in
the cell cycle for model IV with an Erlang distributed cell cycle
(10 phases) and replication occurring at the start of phase 6. The
distributions (solid lines) are calculated from the theory for lineage
observations while the dots show the same calculated from a single
trajectory generated by the SSA for 106 cell cycles. Note that the
theory is for model IV Eq. (54) with i = 1, 6, 10, ki = k = N/T , and
αi = α for all i, and ri = r, i ∈ [1, M], and ri = 2r, i ∈ [M + 1, N],
where M is the cell cycle stage in which replication occurs. The
parameters are N = 10, M = 5, α = 1, y = 20, T = 1.

then 〈n〉H
s = 〈n〉E

s and (σ H
s )2 ≈ (σ E

s )2. Note that while the
relationship between the means is exact, this is not true for
the variances; the accuracy of the latter, however, is shown
for six different parameter sets in Fig. 6(a). Note also that
since the mean and variance of model IV and the renormalized
model III match, it follows that if the distribution in both
models is well approximated by a negative binomial (a two
parameter distribution), then we expect the two distributions
to also match. This is indeed the case for models with small
y and including sufficient cell cycle length variability, i.e.,
moderate N , as can be seen in Fig. 6(b).

However, when the cell cycle length variability decreases
as N → ∞, we see that the distribution of model IV starts to
deviate from the renormalized model III when y grows large as
we show in Fig. 6(c). This can be understood from the obser-
vation that the prereplication and postreplication phase of the
cell for large y have distinct protein distributions, which was
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FIG. 5. Effects of the position of the replication point in the cell
cycle on the size of protein fluctuations for lineage observations.
Plots of the coefficient of variation squared CV 2

s as a function of the
mean burst size α, the mean number of mRNAs produced in a cell
cycle y, and the fraction of the cell cycle in the prereplication stage
M/N for model IV (same setup as previous figure). The mean and
variance for the computation of the CV 2

s are given by Eqs. (57) and
(58). A comparison of (a) and (b) shows that the CV 2

s decreases with
increasing α and y. However, the CV 2

s has a complex dependence on
M: for large y, CV 2

s is roughly independent of M while it increases
with M for small y. Solid dots show the results of the SSA and solid
lines show the theory.
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FIG. 6. Relationship between models III and IV for lineage (de-
noted by subscript s in figure) and population observations (denoted
by subscript p in figure). (a) Renormalizing the parameter y in
model III (lineage) by changing it to 	sy, we find that the variance
agrees to a good degree of approximation with the variance of model
IV (lineage) for all parameter sets tested. The mean of the two
models is exactly the same under this renormalization. The same
applies for population observations (not shown). (b) The protein
distribution of model IV and of the renormalized model III are also
in excellent agreement (these are obtained from the PGF solutions
of both models) for small y and N . Note the renormalization factors
are given by Eq. (60) for lineage and 	p = 21−M/N for population
observations. (c) In contrast, the distributions of model IV (lineage)
and of renormalized model III (lineage) are very different when y
and N are large. In (d) we show that the same conclusion holds
for population observations. In all cases, dots show the distribution
obtained from the SSA is in good agreement with the theory (solid or
dashed lines) for models III and IV. Parameter sets are as follows. The
six parameter sets for model IV in (a) are as follows: (1) N = 4, α =
10, y = 10, (2) N = 4, α = 20, y = 100, (3) N = 20, α = 1, y = 10,
(4) N = 20, α = 2, y = 50, (5) N = 10, α = 5, y = 100, and (6)
N = 10, α = 2, y = 10; for renormalized model III, the parameters
are the same except that y is renormalized. For each parameter set,
we take M = 0, . . . , N . Parameters for (b) are N = 2, α = 1.0, y =
20, M = 1 for model IV and same but with y = 20	s,p for renormal-
ized model III. Parameters for (c) and (d) are N → ∞, α = 1.0, y =
100, M = 0.5N for model IV and same for renormalized model III,
but with y = 100	s,p. Population snapshot SSA data for model IV
consist of ∼106 cells starting from a single cell with zero protein
content (see Appendix B for details of the simulations).

visible in Fig. 4 as well, and the fact that the total observation
distribution is a sum of both contributions. For moderate N ,
i.e., significant cell cycle length variability, the prereplication

and postreplication protein distributions overlap since they are
wide, which yields good correspondence with model III as can
be seen in Fig. 6(b) (compare solid and dashed blue lines).
However, for N large enough (low cell cycle length variabil-
ity) and large y, the overlap between the two contributions
becomes smaller, resulting in the almost bimodal nature of
the distribution in Fig. 6(c). Hence, it follows that replication
effects in model IV can be described well by an appropriately
scaled model III provided cell cycle length variability is not
too small. It also follows that it can also be well described
by model I with renormalized parameters since the latter we
have shown in Sec. IV to be in good agreement with model III
provided y and N are not large.

Finally, we mention that similar conclusions hold for popu-
lation snapshot observations as we have seen for lineage data.
A derivation of the snapshot distribution for model IV can be
found in Appendix D. The population equivalent of Eq. (56)
is given by GH

p (z) = GN,p(z)W (z), where

GN,p(z) =
∞∏

s=0

[
1 − 2xy

x(N21/N + 2y) − N21/N 2s

]N−M

×
[

1 − xy

x(N21/N + y) − N21/N 2s

]M

, (61)

W (z) = (2
1
N − 1)N (x − 1)

×
⎛
⎝[ 2xy

N (x−1) + 2
1
N

]N−M{[ xy
N (x−1) + 2

1
N

]M − 1
}

(2
1
N − 1)N (x − 1) + xy

+
[ 2xy

N (x−1) + 2
1
N

]N−M − 1

(2
1
N − 1)N (x − 1) + 2xy

⎞
⎠. (62)

As shown in Fig. 6(b), the difference between the popula-
tion snapshot distribution and the lineage distribution can be
significant (compare solid red and blue lines). The mean of
the former is less than that of the latter which is due to a
preponderance of young cells in population measurements (as
discussed in Sec. II). Considering the appropriate rescaling of
the parameter y by changing it to 	py, where 	p = 21−(M/N ),
we also get good agreement between models IV and III for
population snapshots when the cell cycle length variability
is moderate (small N) and y is small [compare dashed and
solid red lines in Fig. 6(b)]. This, however, does not carry
through for the case of large y and N [Fig. 6(d)] . Hence, while
the distributions are appreciably different for population and
lineage cases, nevertheless, qualitatively the results for the two
are similar.

VI. EXTRINSIC NOISE FLOOR

Plots of the coefficient of variation squared versus mean
protein number have been used in the literature to separate
intrinsic noise from extrinsic noise (see in particular Fig. 2B
of Ref. [32]). Specifically, intrinsic noise is associated with
the term proportional to the inverse mean since its contribution
decreases with the mean protein number, while extrinsic noise
is associated with the term which is independent of the mean.
Within this interpretation, using the expressions previously
derived for the mean and variance for lineage observations,
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it is clear that model I predicts no extrinsic noise (CV 2 is
inversely proportional to mean) while models II, III, and IV
predict extrinsic noise stemming from binomial partitioning
and cell cycle length variability. Since models II and III are
special cases of model IV, we shall only consider the latter.
Using Eqs. (57) and (58) for lineage distributions, we can

write the coefficient of variation squared in terms of the mean
protein expression level

CV 2
s = Es,int(M, N, α)

〈n〉H
s

+ Es,ext(M, N ), (63)

where the positive functions Es,int and Es,ext are given by

Es,int(M, N, α) = α

[
6M(M − 1) + 4N (5N + 3 − 8M )

3M(M − 1) + 6N (3N + 1 − 2M )

]
+ 1, (64)

Es,ext(M, N ) = 4N4 + 40N3 − 4[3M(M + 3) − 5]N2 + 12(M2 − 1)MN − 3M2(M − 1)2

3[M(M − 1) + 2N (3N + 1 − 2M )]2 . (65)

This shows that in the limit of abundant proteins, the protein
noise as measured by the coefficient of variation squared,
tends to a constant Es,ext(N, M ) which is independent of
the intrinsic protein dynamics. This limiting value is only
controlled by the cell cycle length variability via M and N .
The intrinsic noise, on the other hand, is governed by both
cell cycle length variability and protein burst size.

To study the dependencies on cell cycle length variability
we let M = uN , where u ∈ [0, 1] represents the fraction of
the cell cycle spent in the nonreplicated phase. It can be
shown that if u and α are fixed, then the internal component
of noise given by the first term in Eq. (63) increases with
N while the external component given by the second term
decreases with N (see Appendix C). Hence, unexpectedly,
CV 2

s can increase or decrease with cell cycle length variability.
More specifically in Appendix C [see Eq. (C9)] we show
that if y is above a threshold, then protein noise increases
with increasing cell cycle variability. This condition is met
in mammalian cells and yeast cells [33,34] since the range
of y and α is greater than one. In contrast in bacteria, due to
the very low mean mRNA produced per cell cycle (as low as
0.1 [32]), the condition is not necessarily met and hence it
is possible to have CV 2

s decrease with increasing cell cycle
length variability [the dependence is, however, very weak as
can be seen in Fig. 7(a)]. Note that one can derive population
expressions equivalent to Eqs. (64) and (65). It can be proved
(see Appendix C) that unlike for lineages, CV 2

p computed
from population snapshots always increases with increasing
cell cycle length variability (see Fig. 7).

Next, we determine bounds on the external noise floor for
N � 1. First of all, we note that since the extrinsic noise floor
Es,ext decreases monotonically with N , its upper bound must
be given by N = 1 while its lower bound by N → ∞. For the
case of purely exponential cell cycle length variability, i.e.,
N = 1, we then find that

Es,int(u, α) =
(

4α

3
+ 1

)
− 2αu(1 − u)

3(u2 − 5u + 8)
, (66)

Es,ext(u) = 1

3
+ 4u(1 − u)(2 − u)(4 − u)

3(u2 − 5u + 8)2
, (67)

which is maximal when u ≈ 0.55 at 0.39. On the other hand,
in the opposite limit of deterministic cell cycle times, i.e.,

N → ∞, the noise contributions become

Es,int(u, α) =
(

10α

9
+ 1

)
− 8αu(1 − u)

9(u2 − 4u + 6)
, (68)

Es,ext(u) = 1

27
+ 4u(1 − u)(7u2 − 22u + 12)

27(u2 − 4u + 6)2
, (69)

which is minimal when u ≈ 0.87 at 0.034. Hence, it follows
that the external noise floor for N � 1 is contained in the
approximate interval (0.034,0.39).

Note that for u = 0 or 1, the special case without a repli-
cation phase, Eq. (63) together with Eqs. (66) and (67) almost
perfectly recovers a recent result in the literature for the CV 2

of protein fluctuations in a model with exponential cell cycle
length variability [see Eq. (7) of Ref. [26]], CV 2 = (4/3)(α +
1/2)/〈n〉 + 1/3). The same result is obtained for population
snapshot calculations. The slight discrepancy is likely caused
by the continuum approximation for protein levels in [26].

An experimental value of approximately 0.1 has been
measured for the extrinsic noise floor in the bacterium E. coli
(see Fig. 2B of [32]) which falls within the range of our theory
(as described above). From the limited lineage data shown
in the Taniguchi et al. paper (Fig. 2C shows three lineages
with 9 cell division events), it is not clear which Erlang
distribution would best fit their data. However, if we consider
replication to occur in the middle of the cycle (M = N/2)
and the cell cycle length to be well described by an Erlang
distribution with N = 5 phases, then Eq. (65) predicts a value
of Es,ext ≈ 0.12 which is remarkably close to the experimental
value of 0.1. Note that N = 5 is not unrealistic; it would imply
a maximum difference of up to 1/

√
N ≈ 40% of the cell cycle

length from its mean which is consistent with some recent
experiments in E. coli [27,35]. The noise decomposition above
can also be done for population snapshots using the equations
for the mean and variance derived in Appendix D. It is found
that the theory predicts the same value of Ep,ext ≈ 0.1 for
extrinsic noise, and hence this result is insensitive to the type
of observations made.

VII. CONCLUSION

In this paper we have derived the PGF corresponding to
the stable protein number distributions in stochastic gene
expression models with cell cycle length variability. Our work
has the following special features: (i) the solution method used
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FIG. 7. Effects of the cell cycle variability on the size of protein
fluctuations showing the difference between lineage (solid) and
population snapshot (dotted) observations. Plots of the coefficient
of variation squared CV 2 as a function of the mean burst size α,
the mean number of mRNAs produced in a cell cycle y, and the
fraction of the cell cycle in the prereplication stage u = M/N . The
mean and variance for the computation of the CV 2

s are given by
Eqs. (57) and (58), whereas for CV 2

p we have used Eqs. (D23) and
(D26). A comparison of (a), (b), and (c) shows that the CV 2

s can be
both increasing and decreasing with increasing N , but CV 2

p is always
decreasing with increasing N , confirming theoretical predictions. For
large values of y, we see that the protein noise only weakly depends
on u, which can be understood from noting that this is the regime in
which protein noise is dominated by the extrinsic noise floor.

allows the derivation of distributions rather than the mean and
variance; (ii) the distributions for cell cycle length variability
assumed by the model are of a very general form (hypoex-
ponential) which fit the majority of experimentally measured
distributions; (iii) the model allows the explicit description of
the variation of transcription and burstiness with the position
of the cell cycle (the cell age); and (iv) the calculations are
done for both lineage and population snapshot observations
which enhances the match between theory and experiments. A
necessary underlying assumption of our approach to compute
the PGF is that protein is stable, i.e., its decay occurs purely
due to dilution by cell division. This is a good assumption

when protein lifetimes are much longer than the mean cell
cycle time such as in E. coli [15] and yeast [16]. In mammalian
cells, about 70% percent of proteins are longer lived than the
mean cell cycle time, and hence the approximation is also
reasonable [33].

Special cases of our model can be found in the literature:
(i) for a cell cycle composed of N phases, each of which
is exponentially distributed in length, and assuming lineage
observations, expressions for the mean and variance have been
obtained in Refs. [22,23]; (ii) for a cycle whose length is
exponentially distributed, an expression for the approximate
protein number distribution (assuming large enough protein
numbers) for both lineages and population snapshots has been
derived in Ref. [26].

A major contribution of our study is the comparison of
different models of gene expression including those with an
implicit cell cycle description (model I) via effective protein
degradation and models with an explicit cell cycle description
with either regular (model II) or random interdivision times
(models III and IV). We found that the protein distributions of
models II–IV are well approximated by a negative binomial
provided cell cycle length variability is large and y (the mean
number of mRNA per cycle) is small (we shall henceforth
call these the special conditions). In such cases, the implicit
cell cycle model (model I) with renormalized parameters can
describe the results of the explicit cell cycle models. When the
special conditions are not met, the distributions show either
a flat region near the mode or else have a right shoulder
which in some cases can almost look like bimodality; of
course, model I cannot capture these distributions. Such a case
may be common for gene expression in mammalian cells and
yeast where it is estimated that for many genes, y can take
values in the range of 1 to about 600 [33,34]; in contrast in
bacteria y has the range 0.1–10 [32] and hence deviations from
negative binomial distributions are likely much less common.
Also, we have shown that when the special conditions are
not met, the distributions of models including replication or
more complex age-dependent transcriptional dynamics cannot
be described by models that assume constant transcription
through the cell cycle such as those found in [26,27]. Our
analysis shows that in a model assuming Erlang distributed
cell cycle duration and replication time, for lineages, the
coefficient of variation squared can either increase or decrease
with cell cycle variability whereas for population snapshots,
the coefficient of variation squared increases with cell cycle
variability. We also show that the the coefficient of variation
squared has a complex dependence on the replication time;
it is practically independent of the replication time for large
y but increases monotonically with the replication time for
small y. Finally, we show that given experimental cell cycle
length distributions for E. coli and assuming replication occurs
halfway through the cell cycle, our theory predicts a value for
extrinsic noise which is within a few percent of that measured
in Ref. [32].

Despite its generality, our study has a number of limi-
tations: (i) The analytical approach cannot be extended to
derive mRNA distributions. This is since mRNA typically
degrades faster than the mean cell cycle time [32] and hence
is not stable, which is a necessary assumption to solve for
the PGF. (ii) We have assumed binomial partitioning. While
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this assumption presents the simplest reasonable model of
stochastic partitioning, it likely fails for those proteins which
are highly localized [36]. (iii) We have assumed that there is
no correlation between the cell cycle duration of mother and
daughter cells. Experiments show such a correlation exists
[37,38]. Overcoming these limitations is key to expanding the
realism of the model and is the subject of ongoing research.
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APPENDIX A: DERIVATION OF MODELS I AND II FROM
A MODEL WITH AN EXPLICIT DESCRIPTION OF mRNA

AND OF A CELL CYCLE OF FIXED LENGTH

1. Derivation of model I

We consider a three-stage gene expression model of the
type

G
σb−→ G∗, G∗ σu−→ G, G

ρu−→ G + M,

M
dm−→ ∅, M

h−→ M + P. (A1)

Note that there is no active protein decay and instead we
assume protein decay occurs only due to binomial partitioning
at cell division. The latter is assumed to happen at regularly
spaced time intervals of length T . If the rate of promoter
switching is very fast compared to the mRNA and protein
timescales, then there is no need to explicitly model G∗.
Rather, it is sufficient to model expression from a single
promoter state with an effective transcription rate equal to the
true transcription rate multiplied by the fraction of time that
the gene is on. In other words, the three-stage model (A1)

reduces to the two-stage model

G
r−→ G + M, M

dm−→ ∅, M
h−→ M + P, (A2)

where r = ρuσu/(σb + σu) is the effective mRNA transcrip-
tion rate. Let the PGF be defined as

G(z′, z, t ) =
∑
m,n

(z′)m(z)nP(m, n, t ), (A3)

where P(m, n, t ) is the probability of observing m mRNAs
and n proteins at time t . The PGF then satisfies a PDE which
when nondimensionalized on the cell cycle timescale, t = T τ ,
is given by

∂G

∂τ
= rT (z′ − 1)G + dmT (1 − z′)

∂G

∂z′ + hT z′(z − 1)
∂G

∂z′ .

(A4)

Furthermore, binomial partitioning under cyclostationarity
conditions [17] leads to the boundary condition (in nondimen-
sional form)

G(z′, z, 0) = G

(
z′ + 1

2
,

z + 1

2
, 1

)
. (A5)

By using the definitions of the mean numbers of proteins and
mRNA

〈n〉(τ ) = ∂G(z′, z, τ )

∂z

∣∣∣∣
z′=z=1

, 〈m〉(τ ) = ∂G(z′, z, τ )

∂z′

∣∣∣∣
z′=z=1

,

(A6)

it is straightforward to show that the time evolution of the
means is given by the coupled ordinary differential equations
(ODEs)

d〈n〉(τ )

dτ
= hT 〈m〉(τ ), (A7)

d〈m〉(τ )

dτ
= rT − dmT 〈m〉(τ ), (A8)

with the boundary conditions 2〈n〉(0) = 〈n〉(1) and
2〈m〉(0) = 〈m〉(1). Solving these ODEs one obtains

〈n〉(τ ) = hre−dmT τ {eτT dm [1 − (τ + 1)T dm] + 2e(τ+1)T dm [(τ + 1)T dm − 1] + eT dm}
d2

m(2eT dm − 1)
, (A9)

where τ is to be understood as the fractional cell age which
equals zero when a cell is born and one just before a cell
divides. Note that we do not show the equation for the mRNA
since it is not relevant to our analysis. Hence, it follows that
the mean number of proteins in single lineage and population
measurements is given by

〈n〉s =
∫ 1

0
〈n〉(τ )dτ = αy

[
dm(3T dm − 2) + 1

T −2TeT dm + 1
T

]
2T d2

m

,

(A10)

〈n〉p = log(2)
∫ 1

0
21−τ 〈n〉(τ )dτ = αTydm

T log(2)dm + log2(2)
,

(A11)

where we used y = rT and α = h/dm. Note that here we used
the fact that when interdivision times are regularly spaced
in time, the probability of observing a cell of age t ∈ [0, T ]
is uniform for single lineage measurements and equal to
21−t/T log 2/T for population measurements [17] (see also
Appendix D for a derivation of the latter). Taking the limit
that mRNA decays fast compared to the cell cycle length, i.e.,
dmT → ∞, we obtain

〈n〉s ≈ 3αy

2
, (A12)

〈n〉p ≈ αy

log(2)
. (A13)

Now, one may ask what constitutes an effective system of
reactions that describes protein dynamics and which has the
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same mean number of proteins as above. If we consider this
effective system to be given by model I, that is the set of
reactions

G
r−→ G + mP, P

d ′−→ ∅, (A14)

where m is a geometrically distributed random number with
mean α, it follows that the mean number of proteins is given
by

〈n〉I = rα

d ′ = αy

d ′T
. (A15)

Equating Eq. (A15) with (A12), we obtain the effective pro-
tein degradation rates for single lineage measurements,

d ′ = 2

3T
. (A16)

Similarly equating Eq. (A15) with (A13), we find that the ef-
fective protein degradation rates for population measurements
are

d ′ = log(2)

T
. (A17)

2. Derivation of model II

Starting from the same mRNA model as used in
Appendix A 1 we now derive model II. Consider the PDE
(A4) with boundary condition (A5). To solve this PDE, we
employ the method of characteristics which yields the system
of equations

dτ

ds
= 1, (A18)

dz′

ds
= dmT (z′ − 1) + hT z′(1 − z), (A19)

dz

ds
= 0, (A20)

dG

ds
= rT (z′ − 1)G, (A21)

where s is the characteristic variable. In particular, we see that
τ = s and z = z0 is constant.

To consider the case of unstable mRNA, we define ε =
1/(dmT ) as the asymptotic variable. We see that to achieve a
dominant balance as ε → 0 (or dmT → ∞) we could choose
hT = O(dmT ). As before, we use α = limdmT →∞(hT/dmT )
and taking this scaling we see that as ε → 0
we get

ε
dz′

ds
= z′ − 1 + αz′(1 − z) + O(ε), (A22)

and therefore have to leading order (z′ − 1) − αz′(z − 1) =
0. This results in z′ → 1/[1 − α(z − 1)] quickly in the limit
of ε → 0 and, therefore, the following effective PDE for the
PGF:

∂G

∂τ
= rT

α(z − 1)

1 − α(z − 1)
G. (A23)

Note that we can then define G̃(z, τ ) = limz′→1 G(z′, z, τ ) =∑
n ynP(n, τ ), i.e., the PGF for the marginal protein distribu-

tion. It follows now that G̃ satisfies the following cyclostation-
ary system in the limit of ε → 0:

∂G̃

∂τ
= rT

α(z − 1)

1 − α(z − 1)
G̃, (A24a)

G̃(z, 0) = G̃

(
z + 1

2
, 1

)
. (A24b)

Note that this is the same system satisfied by G(z, t ) from
model II, Eqs. (4) and (7) in the cyclostationary limit where
we drop the superscript for the generation. Therefore, we
have shown that the two-stage expression model (A2) with
binomial partitioning converges to model II in the limit of
fast mRNA decay compared to the cell cycle length, i.e.,
dmT  1.

APPENDIX B: STOCHASTIC SIMULATIONS

Stochastic simulations in this work were carried out using
a method similar to the First Division Algorithm in [27],
which effectively is the (modified) next reaction method with
the addition of cell division and observation events. Below
follows a description of the exact procedures used to calculate
stochastic realizations of models II, III, and IV in this paper.
The code used for this work can be found online in Ref. [39].

1. Lineage simulation

For the simulation of lineage data we consider a single
cell in a mother machine that we continuously track. Mea-
surements of the cell’s contents are taken at intervals defined
by some observation time distribution. For this paper we take
measurements at regular intervals, i.e., a delta distribution for
the observation interval distribution.

(1) Initialization. Start a cell in the mother machine at time
t = 0 with initial molecule content n. Assign a phase j and age
within the phase a.

(2) Generate waiting times τr , τp, and τo, the time until the
next biochemical reaction, the next phase change, and the next
observation, respectively.

(3) Until t � tfinal. Pick � = min(τr, τp, τo), update all
waiting times (τr, τp, τo) by τ → τ − �, and update phase
age a → a + �. Based on the minimum found for the waiting
times proceed to the following:

(a) Biochemical reaction. Select the biochemical reac-
tion occurring, e.g., using Gillespie-type algorithm, and
update cell molecule content. Generate a new time until
next biochemical reaction τr .

(b) Phase progression. Based on the current phase of
the cell proceed to the following:

(i) If phase of the cell is N , reset the new phase of
the cell to the first phase, j → 1. Binomially partition
the cell contents across the cell in mother machine and
daughter cell, discard daughter cell, and keep following
cell in mother machine.

(ii) Otherwise, set the new phase of the cell, j →
j + 1.

Set the age of cell in the new phase to a = 0 and
update the biochemical rate parameters according to the
current phase j. Generate a new time until next phase
progression τp and a new time until next biochemical
reaction τr .
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(c) Observation. Write the current cell contents and
other quantities of interest to disk. Generate a new time
until next observation τo.
Update simulation time t → t + � and return to the start

of step 3.

2. Population snapshot simulation

For the simulation of population snapshot data, we con-
sider an initial batch of cells that we let grow and divide until
some final time tfinal at which point we measure the contents
of all the cells present.

(1) Initialization. Start batch of cells at time ti = 0 with
initial molecule contents ni, where i index rolls over the batch
of present cells. Assign a phase ji and age within the phase ai

to each cell in the batch. Start with the first cell in the batch,
l → 1.

(2) Until all cells in batch have reached final time tfinal pick
the next cell in the batch and proceed to step 3.

(3) Generate waiting times τr and τp the time until the next
biochemical reaction and the next phase change, respectively.
Set the time until observation as τo → tfinal − tl .

(4) Until tl = tfinal. Pick � = min(τr, τp, τo), update all
waiting times (τr, τp, τo) by τ → τ − �, and update phase
age a → a + �. Based on the minimum found for the waiting
times proceed to the following:

(a) Biochemical reaction. Select biochemical reaction
occurring, e.g., using Gillespie-type algorithm, and update
cell molecule content. Generate a new time until next
biochemical reaction τr .

(b) Phase progression. Based on the current phase of
the cell proceed to the following:

(i) If phase of the cell is N , reset the new phase of
the cell to the first phase, j → 1. Binomially partition
the cell contents across the current cell and a daughter
cell. Add the daughter cell with its content to the batch
of cells with start time ti′ = tl , ai′ = 0, and ji′ = 1.

(ii) Otherwise, set the new phase of the cell, j →
j + 1.

Set the age of cell in the new phase to a = 0 and
update the biochemical rate parameters according to the
current phase j. Generate a new time until next phase

progression τp and a new time until next biochemical
reaction τr .
(c) Observation. Write the current cell contents and

other quantities of interest to disk. Let l → l + 1 and return
to step 2.
Update simulation time tl → tl + � and return to the start

of step 4.

APPENDIX C: COEFFICIENT OF VARIATION PROOFS
FOR MODEL IV

1. Effect of burst size α and mRNA production per cycle y

First, we prove that CV 2 (and CV ) monotonically decrease
with increasing α and y. We note using Eqs. (57) and (58) that
the mean and variance of protein numbers in model IV with
replication can be written as(〈n〉H

s

)2 = α2y2A,
(
σ H

s

)2 = αyB + α2yC + α2y2D,

where A, B,C, D are functions of M, N solely. First, we ob-
serve that A > 0 must hold by the observation that the mean of
the model IV is necessarily positive if α > 0 and y > 0. This
means that we have for the squared coefficient of variation

CV 2 = 1

A

(
B

αy
+ C

y
+ D

)
.

Note that CV 2 � 0 must hold for all α � 0 and y � 0. By
considering the limit α ↓ 0 we deduce that B � 0. Similarly,
by considering the limit y ↓ 0 we find that for all α � 0 we
must have B + Cα � 0 and therefore C � 0. Finally, from
the limit y → ∞ we deduce that D � 0. It then immediately
follows that CV 2 and CV decrease monotonically with α

and/or y increasing. Note that this argument applies equally
well to the population snapshot case.

2. Effect of cell cycle variability N for lineages

Next, we show that the extrinsic noise floor, i.e., the limit
of CV 2 for abundant proteins, is a monotonic decreasing
function of N . Recalling Eq. (65) and rewriting the noise floor
Es,ext(M, N ) using M = uN , where u ∈ [0, 1], we have

Es,ext(u, N ) = N2(−3u4 + 12u3 − 12u2 + 4) + N (6u3 − 36u + 40) − 3u2 − 12u + 20

3[N (u2 − 4u + 6) − u + 2]2
. (C1)

We then note that the derivative of the noise floor with respect to N is given by

dEs,ext

dN
= −4[(−3u3 + 16u2 − 48u + 40) + N (3u4 − 18u3 + 58u2 − 92u + 56)]

3[N (u2 − 4u + 6) + (2 − u)]3
< 0. (C2)

The inequality follows from considering every term in brack-
ets for N > 0 and u ∈ [0, 1] and showing it is positive. As
a result, we see that the external noise floor is a monotonic
decreasing function of increasing N , which can be interpreted
as decreasing cell cycle length variability.

Next, we show that CV 2
s is not monotonic in N for single-

cell lineage measurements. Recalling Eqs. (57) and (64), we
can rewrite the internal noise component and protein mean

using u and N as

Es,int(u, N ) = 1 + 2α − 8αN (2 − u)

3N (6 − 4u + u2) + 3(2 − u)
,

(C3)

〈n〉H
s =

(
6 − 4u + u2

2
+ 2 − u

2N

)
αy. (C4)
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Note that it then follows that
dEs,int

dN
= −

{
8(2 − u)2

3[N (u2 − 4u + 6) + (2 − u)]2

}
α < 0, (C5)

d〈n〉H
s

dN
= −

(
2 − u

2N2

)
αy < 0, (C6)

which does not allow us to immediately make a conclu-
sion about the behavior of the ratio of the two quantities.
Therefore, we note that the internal component of the coef-
ficient of variation squared in fact grows as N increases as
shown by

d
(
Es,int/〈n〉H

s

)
dN

= 2(2 − u){2α[N (3u2 − 4u + 2) + 3(2 − u)] + 3N (u2 − 4u + 6) + 3(2 − u)}
3αy[N (u2 − 4u + 6) + (2 − u)]3

> 0. (C7)

Since the external component of the coefficient of variation
squared has earlier been proved to decrease with N , it follows
that for some positive functions a1, a2 of u, N, α we find

dCV 2
s

dN
= a1

y
− a2, (C8)

which shows that CV 2
s can be both increasing or decreasing as

a function of N , depending on the exact values of α, y. In fact,
by considering a1 and a2 and their extreme behavior (which is
for u = 1) one can show that for

y >
3 + N

5 + 7N
+ 1

α

3 + 9N

2(5 + 7N )
, (C9)

the protein noise for lineages is monotonically decreasing,
whereas when this condition is not satisfied, we can find u =
M/N ∈ [0, 1] so that, perhaps counterintuitively, decreasing
cell cycle variability, i.e., increasing N , leads to an increase in
protein noise. On the other hand, this shows that if mRNA
production is large enough, the protein noise does become
monotonic as a function of cell cycle variability.

3. Effect of cell cycle variability N for population snapshots

For population snapshots we note from results in
Appendix D, Eqs. (D23) and (D26) in particular, that the
internal noise component is composed of

Ep,int(u, N ) = 1 + 2α − α(2 − u)21+u

3

N (21/N − 1)

21/N
, (C10)

〈n〉H
p = 21−u

N (21/N − 1)
αy. (C11)

From here it is easy to show that 〈n〉H
p and Ep,int(u, N ) mono-

tonically grow and decay, respectively, as N increases. As a
result, we note that their ratio, the internal noise component
(Ep,int/〈n〉H

p ), decays monotonically when N increases, i.e.,
the opposite scenario to what happens for single-cell lineage
measurements.

Finally, we will show that Ep,ext decays monotonically
when N increases and as a result that, in contrast to the lineage
framework, the total protein noise CV 2

p is always decreasing as
a function of increasing N , regardless of the values of α, y. We
note that this proof is more cumbersome than for the lineage
measurements and we only sketch the details here. We start
by noting that, with u ∈ [0, 1] as before,

Ep,ext(u, N ) = −2u

6

N (21/N − 1)

22/N

{
2u

[
3(2

1
N − 1)N (u − 2)2

+ 2
1
N (16 − 9u) + 3u − 4

] − 12 × 21/N
}

+ (−4u + 3 × 2u − 1). (C12)

To make computations slightly more tractable, we then make
the transformation to q = 21/N (which yields q > 1 for N > 0
and q → 1 when N → ∞) and note that dq/dN < 0 for all
N . This leaves us to show that dEp,ext/dq > 0 for all q > 1
in order to show that the external noise component satisfies
dEp,ext/dN < 0. We start with

h1(q) = dEp,ext

dq
= 2u log 2

6(q log q)3︸ ︷︷ ︸
>0

h2(q). (C13)

From here we note that limq↓1 h2(q) = limq↓1 h′
2(q) =

limq↓1 h′′
2 (q) = 0 and

d3h2

dq3
= 1

q3︸︷︷︸
>0

h3(q). (C14)

The new function h3 satisfies, for u ∈ [0, 1],

lim
q↓1

h3(q) = 6{2u[u2 log(8) − 12u log(2)

+ 2 + log(4096)] − 6} > 0,

dh3

dq
= 1

q︸︷︷︸
>0

h4(q).

In a similar fashion we proceed to show that for h4 and u ∈
[0, 1] we can write

lim
q↓1

h4(q) = 2(2u{u[(u − 4) log(8) − 48]

+ 78 + log(4096)} − 42) > 0,

lim
q↓1

h′
4(q) = 2(3 × 2u{u2 log(2) − 2u[11 + log(4)]

+ 38 + log(16)} − 78) > 0,

d2h4

dq2
= 8

q︸︷︷︸
>0

h5(q),

where h5(q) = q[2u(16 − 9u) − 12] + (−3 × 2uu + 5 ×
2u − 3) is a positive linear function in q when u ∈ [0, 1].
By arriving at h5 > 0 for q > 1 we find cascading back
that h′′

4, h′
4, h4 > 0 for q > 1. This then proves h′

3, h3 > 0
for q > 1 which in turn shows that h′′′

2 , h′′
2, h′

2, h2 > 0
for q > 1. Finally, having proven that h2 > 0 we find
dEp,ext/dq = h1 > 0 for q > 1, which was what we needed to
prove to show that dEp,ext/dN < 0.
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APPENDIX D: POPULATION SNAPSHOTS

In this Appendix, we correct for the fact that in a population
observation, the cell phases and observation times differ from
those in single-cell measurements. In order to construct the
PGF for the population observations we start from the expres-
sion

Gp(z) =
N∑

i=1

�i,pGi,p(z), (D1)

where Gi,p(z) denotes the PGF for phase i in the population
measurement case and �i,p is the probability to observe a cell
in phase i. Note that we take the distributions for each phase
to be normalized to unity to reflect that the Gi,p are in fact the
marginal distributions for protein in each phase i. We will next
show how to derive expressions for Gi(z) and �i,p.

1. Phase distribution

While the probability of observing a cell in cell cycle phase
i, denoted as �i, was obvious when performing single-cell
measurements, this is not the case for population measure-
ments. This is since each time a cell divides, two cells start in
phase 1 and hence we generally expect that the probability of
being in phase i decreases with i. We next derive an expression
for the probability �i,p for population measurements.

Let the average number of cells under cyclostationary as-
sumptions in cell cycle phase i at time t be denoted by 〈Ci(t )〉.
Then, it immediately follows from the model specification that
when each phase of the cell cycle is exponentially distributed
with parameter k, the time-evolution equations are given by

d〈C1(t )〉
dt

= −k〈C1(t )〉 + 2k〈CN (t )〉, (D2)

d〈Ci(t )〉
dt

= −k〈Ci(t )〉 + k〈Ci−1(t )〉, i = 2, . . . , N. (D3)

The factor 2 in the first equation stands for cellular division:
every time a cell divides (leaving phase N), two cells start in
phase 1. In the case that we are tracking single-cell lineages,
then the factor 2 is replaced by 1. More generally, for cases
with asymmetric division (after division some cells differen-
tiate) this factor 2 can be replaced by a factor ν ∈ [0, 2]. We
are interested in finding the probability that a cell is in phase
i, which is given by

�i(t ) = 〈Ci(t )〉∑N
i=1〈Ci(t )〉 . (D4)

Note that this expression is valid for both population snapshot
and lineage observations. While this quantity will change
with time, it will eventually approach a steady-state value
and this is what we are here interested in. We make the
ansatz that given long enough time, 〈Ci(t )〉 = λi〈C1(t )〉 where
λi are some time-independent constants which need to be
determined (except for λ1 = 1 which follows immediately).
Substituting this assumption in Eq. (D4) we find

�i,p = λi

1 + ∑N
j=2 λ j

. (D5)

Hence, next we determine the values of λi. Substituting the
ansatz in Eqs. (D2) and (D3), we find the relationship

λi−1

λi
= 2λN , i = 2, . . . , N (D6)

with λ1 = 1. Solving this recurrence relation one finds

λi = 2(1−i)/N . (D7)

Substituting the latter expression in Eq. (D5) and simplifying
one finally obtains

�i,p = 21/N − 1

2(i/N )−1
, i = 1, . . . , N (D8)

which in the limit of N → ∞ yields the familiar age struc-
ture in a population which doubles at mitosis, i.e., f (t ) =
21−t/T log 2/T . Note that this result is in contrast to the phase
distribution in the single-cell measurement case, which was
given by a uniform distribution, i.e., �i,s = 1/N for all i. In a
population we are more likely to observe cells in an early cell
phase compared to lineage data. Note that incidentally we can
derive the population growth rate (see next section) from this
formalism, which is necessary to derive the age distribution in
a population for each phase.

2. Population growth rate

To derive the population growth rate, we consider 〈C(t )〉 =∑
i〈Ci(t )〉, the expected total number of cells, i.e., the size

of the population. From Eqs. (D2) and (D3) we then find in
the long-time limit when the proportion of cells in each phase
relative to the total number of cells, i.e., �i,p, becomes stable
that the growth of the cell population is given by

d〈C(t )〉
dt

= k〈CN (t )〉 = k�N,p〈C(t )〉 = k(21/N − 1)〈C(t )〉.
(D9)

This shows that the average number of cells in the population
grows like 〈C(t )〉 ∝ eλt where λ = k(21/N − 1). Note that in
the limit of N → ∞ and k = N/T this becomes λ = log 2/T ,
showing that the population doubles in size after every cell
cycle when we consider the case of a deterministic cell cycle
of length T .

3. Population age distribution

Let us consider 〈Ci(t, τ )〉 the average number of cells in a
population that are in cell phase i at time t that have been in
that cell phase for a duration τ , i.e., are of an age τ . After a
small time duration δ, all the cells will either advance to an
age τ + δ or advance to the next cell phase. Therefore, we can
write the conservation equation

〈Ci(t + δ, τ + δ)〉 = 〈Ci(t, τ )〉 − 〈Ci(t, τ )〉kδ, (D10)

where k is the rate of advancing to the next cell phase.
Assuming that there is a stationary distribution for the age of
the cell population at a phase i, πi(τ ), we can write 〈Ci(t, τ )〉
as 〈Ci(t, τ )〉 = 〈Ci(t )〉πi(τ ), where 〈Ci(t )〉 as before is the
expected number of cells in cell phase i at time t . Introducing
this factorization of 〈Ci(t, τ )〉 in Eq. (D10), and taking the
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limit δ → 0, we get the differential equation

d〈Ci(t )〉
dt

πi(τ ) + dπi(τ )

dτ
〈Ci(τ )〉 = −〈Ci(t )〉πi(τ )k, (D11)

where we have used the chain rule to compute the derivative
of d〈Ci(x, x)〉/dx|t,τ . Given that in the long-time limit, the
population of cells is growing at an average rate λ, which we
derived in the previous section, and since the probability of
finding a cell in a certain phase i, �i, is constant in time, the
number of cells in a given phase has to grow with the same rate
as the population. This implies that therefore d〈Ci(t )〉/dt =
λ〈Ci(t )〉. Introducing this equality in Eq. (D11), we get an
equation solely for πi(τ ),

λπi(τ ) + dπi(τ )

dτ
= −πi(τ )k, (D12)

which can be solved by

πi(τ ) = (λ + k)e−(λ+k)τ = k21/N e−k21/N τ . (D13)

Finally, we note that there is a direct link between the age
distribution at measurement and the phase length distribution
on a population level. In order to achieve a stable distribution
for the age at measurement in the long-time limit we note that
the population phase length distribution has to be consistent
with the age distribution. Since the population age distribution
at observation in each phase is still exponential, but now with
rate k21/N , the distribution for the time it takes to progress to

the next cell phase in a population must also be exponentially
distributed with the same rate. This means that in a population
of cells we observe a quicker progression through the phases
(in distribution on a population level) than when following
a single cell. This can be understood from the observation
that cells that quickly progress through their phases (and thus
divide quickly) will be more abundant in populations than in
single-cell lineages.

4. Population snapshot observation distribution

By the results of the previous section, we can derive
the distribution for population snapshot measurements from
the single-cell measurement statistics via a rescaling of the
phase progression rates. The distribution for the length of
the cell phases is still exponential, which means the Marko-
vian nature of the problem remains intact in the popula-
tion case. This implies that in all the equations for the
PGF derived earlier (for single lineages) we replace k �→
k21/N to find the corresponding population equations. The
recipe for calculating population observations therefore is
as follows:

(1) To obtain Gi,p(z), replace k �→ k21/N in the expres-
sions for the lineage distributions Gi,s(z), e.g., in Eq. (50).

(2) Average over the different phases via Eq. (D1) using
�i,p from Eq. (D8).

Using these steps, we can then solve for the snapshot
observation distribution for model IV with replication which
we will write as Gp(z) = GN,p(z)W (z), where

GN,p(z) =
∞∏

s=0

[
1 − 2xy

x(N21/N + 2y) − N21/N 2s

]N−M[
1 − xy

x(N21/N + y) − N21/N 2s

]M

, (D14)

W (z) = (2
1
N − 1)N (x − 1)

⎛
⎝[ 2xy

N (x−1) + 2
1
N

]N−M{[ xy
N (x−1) + 2

1
N

]M − 1
}

(2
1
N − 1)N (x − 1) + xy

+
[ 2xy

N (x−1) + 2
1
N

]N−M − 1

(2
1
N − 1)N (x − 1) + 2xy

⎞
⎠. (D15)

This result then yields the explicit snapshot distribution for all the other models considered in this paper. We recover the special
case of model III by taking M = N which in turn simplifies the observation distribution to

GN,p(z) =
∞∏

s=0

[
1 − xy

x(N21/N + y) − N21/N 2s

]N

, (D16)

W (z) = (2
1
N − 1)N (x − 1)

[ xy
N (x−1) + 2

1
N

]N − 1

(2
1
N − 1)N (x − 1) + xy

. (D17)

Finally, we obtain a generalized version of model II by taking N → ∞; we call this generalized because unlike the one in the
main text, here for completeness we return to u = M/N so that we can model replication in model II. This yields

GN,p(z) =
∞∏

s=0

exp

[
(1 − u)2xy

2s − x

]
exp

(
uxy

2s − x

)
= exp

{
[2(1 − u) + u]xy

∞∑
s=0

1

2s − x

}
, (D18)

W (z) = (log 2)(x − 1)

[
exp

{ (1−u)[x(2y+log 2)−log 2]
x−1

}(
exp

{ u[x(y+log 2)−log 2]
x−1

} − 1
)

x(y + log 2) − log 2
+ exp

{ (1−u)[x(2y+log 2)−log 2]
x−1

} − 1

x(2y + log 2) − log 2

]
. (D19)

Note that for u = 1 this further simplifies to

Gp(z) = (x − 1) log 2

xy + (x − 1) log 2

{
exp

[
xy + (x − 1) log 2

x − 1

]
− 1

}
exp

(
xy

∞∑
s=0

1

2s − x

)
, (D20)
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which is the population equivalent of model II presented in the main text. In particular, we can now write the mean of protein
numbers for generalized models II, III, and IV, respectively,

〈n〉p = 21−u

log 2
αy, (D21)

〈n〉E
p = 1

N (21/N − 1)
αy, (D22)

〈n〉H
p = 21−(M/N )

N (21/N − 1)
αy, (D23)

where we recall u = M/N in the limit of N → ∞. We can also write expressions for the variances for generalized models II, III,
and IV:

σ 2
p = 21−u

log 2
αy + 4(u log 2 − 2 log 2 + 2−u3)

3 log 2
α2y

+ 21−2u{−4u[u2 log2 2 − u2 log 2(1 + 2 log 2) + 2 + 4 log2(2) + 4 log 2] + 2u+1(3 + 2 log 2) − 2}
log2 2

α2y2, (D24)

(
σ E

p

)2 = 1

N (21/N − 1)
αy +

[
2

(2
1
N − 1)N

− 1

3
22− 1

N

]
α2y +

[
1

(2
1
N − 1)2N2

− 21− 2
N (3N + 1)

3N

]
α2y2, (D25)

(
σ H

p

)2 = 21−(M/N )

N (21/N − 1)
αy + 4

[
3 × 2− M

N + 2−1/N (2N − M ) + M − 2N
]

3(2
1
N − 1)N

α2y

+
(

−21− 2
N (3(2

1
N − 1){−M2 + 2

1
N [−4MN + (M − 3)M + 4N2] + 4MN + M − 4N2})

3(2
1
N − 1)2N2

+ {4 M
N [−5 2

1
N +2N + 4N + 2

N+2
N (8N + 3)] + 3[2

1
N (2N + 3) − 2N]2

M+N+1
N − 3 2

N+2
N }

3(2
1
N − 1)2N2

)
α2y2. (D26)

Note that generalized model II for u = 1 simplifies to model II in the main text:

〈n〉p = αy

log 2
, σ 2

p = 1

log 2
αy + 6 − 4 log 2

3 log 2
α2y + 1 − log2 2

log2 2
α2y2 � 1.44αy + 1.55α2y + 0.08α2y2.
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