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Stock markets: A view from soft matter
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Different attempts to describe financial markets, and stock prices in particular, with the tools of statistical
mechanics can be found in the literature, although a general framework has not been achieved yet. In this paper
we use the physics of many-particle systems and the typical concepts of soft matter to study two sets of US and
European stocks, comprising the biggest and most stable companies in terms of stock price and trading. Upon
correcting for the center-of-mass motion, the structure and dynamics of the systems are studied (in the European
set, the structure is studied for the UK subset only). The pair distribution of the stocks, corrected to account for
the nonuniform distribution of prices, is close to 1, indicating that there is no direct interaction between stocks,
similar to an ideal gas of particles. The dynamics is studied with the mean-squared price displacement (MSPD);
the price correlation function, equivalent to the intermediate scattering function; the price fluctuation distribution;
and two parameters for collective motions. The MSPD grows linearly and the velocity autocorrelation function
is zero, as for isolated Brownian particles. However, the intermediate scattering function follows a stretched
exponential decay, the fluctuation distributions deviate from the Gaussian shape, and strong collective motions
are identified. These results indicate that the dynamics is much more complex than an ideal gas of Brownian
particles, and similar, to some extent, to that of undercooled systems. Finally, two physical systems are discussed
to aid in the understanding of these results: a low density colloidal gel, and a dense system of ideal, infinitely
thin stars. The former reproduces the dynamical properties of stocks, linear mean-squared displacement (MSD),
non-Gaussian fluctuation distribution, and collective motions, but also has strong structural correlations, whereas
the latter undergoes a glass transition with the structure of an ideal gas, but the MSD has the typical two-step
growth of undercooled systems.
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I. INTRODUCTION

Nonequilibrium statistical physics has been widely em-
ployed in studying different classes of financial markets, as
they display hallmarks characteristic to this physical field.
For instance, market price distributions are usually featured
by long tails [1], which cannot be described through a Gaus-
sian approach [2,3], or exhibit fractal properties [4], similar
to many other natural systems formed in out-of-equilibrium
processes [5,6], such as river networks [7], rock structure [8],
or aggregation of mesoscopic particles [9,10]. Here, the state
of the art has advanced significantly in the last decade [11,12].
Furthermore, the physical approach to financial markets pro-
vided by the physicists have contributed to the understanding
of financial markets. Relevant contributions have been made
by Lillo and Mantegna [13], Gabaix et al. [14], Brock and
Hommes [15], and Plerou et al. [16], to cite just a few.

Following the initial empirical analysis and development
of models within pure economy, the advent of physicists to
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finance started in the 1990s, bringing the techniques and mod-
els of statistical physics [17,18]. Whereas some works try to
describe the mechanisms for the evolution of prices or indices
within economic reasonings, such as the popular agent-based
models [19–22], many models have exploited the similarities
with some physical systems. For instance, the appearance
of power laws in the distributions (of price fluctuations, of
returns as a function of company size, etc.) is reminiscent
of critical phenomena [23,24]; the concept of microscopic
entropy has been used as an information measure for financial
time series [25,26]; models inspired on the Ising model have
been proposed to reproduce the dynamics of financial markets
[27,28]; random matrix theory, initially developed to analyze
the spectra of nuclei, has also been applied to describe the cor-
relations between stocks or agents [29,30]. However, a unified
framework in which markets are regarded as a nonequilibrium
system, inherent to this physical discipline, is still pursued
[31], in contrast to other, well-established particle systems,
such as colloidal, atomic, or molecular systems.

The dynamics of many financial systems (stocks, indices,
currency exchange, etc.) typically shows non-Brownian dif-
fusion, with a linear increase of the mean-squared price
difference, but a non-Gaussian fluctuation distribution [2,32].
This feature has attracted attention over decades, starting from
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simple diffusion, which however showed important deviations
with respect to the experimental distribution [2]. The Levy
distribution, with several modifications [33–36], and recently,
the q-Gaussian diffusion, based on the Tsallis entropy model
[37–39], are among the most widely used models to describe
it. Other models have tried to establish a firm connection with
well-known physical models, such as the financial Brownian
particle model, where the equivalent of a microscopic equa-
tion of motion for Brownian motion (Langevin and Boltzmann
equations) is obtained from the order book (the time-ordered
requests for buy and sell orders) [40–42]. Furthermore, be-
cause anomalous diffusion with long tails in the displacement
distribution is also observed in the complex dynamics of soft
matter [43], recently, we applied a model borrowed from soft
condensed matter to describe the distribution of fluctuations
in the exchange rate of many different currencies [44,45]. The
model describes the dynamics of the system as a combination
of the oscillation within a basin of the free energy, and
long-range hops from basin to basin. In the present work,
we aim to extend this approach and use the observables and
interpretation of soft condensed matter to propose a unified
view between finance, markets, and a natural nonequilibrium
physical system.

Two datasets composed of US and European stocks have
been studied as multiparticle soft-matter systems. Stocks from
the European market belong to different national floors from
economy drivers of the European nations. In both cases,
the stocks price from 2011 to 2018, with a time resolution
of 1 day, are used, with the motion of the center of mass
corrected prior to the analysis. The structure is studied using
the log-price distribution and the pair distribution function,
considering the nonhomogeneous price distribution. For the
dynamics, the mean-squared price difference (MSPD), and its
Fourier transform, equivalent to the intermediate scattering
function (ISF) in soft matter, are the main observables, but
we have also studied the log-price fluctuation distribution, and
two parameters to probe the collective motion.

The pair distribution function, which is constant and equal
to 1, indicates that there are no structural correlations, and the
MSPD grows linearly in the whole period, in agreement with
previous results. Furthermore, the velocity autocorrelation
function is zero at all positive times. These results apparently
show that the stocks diffuse freely, as noninteracting Brown-
ian particles. However, the ISF shows a nonexponential decay,
and its decay time decreases as ∼q−1.8 with the wave number
q, and the price fluctuation distribution deviates strongly from
Gaussian (which is well known for other financial markets
or indices). Also, cooperative motions in stocks, which have
been long discussed [32,46], have been studied with two
parameters for collective motion, borrowed from soft mat-
ter. These results are characteristic to undercooled particle
systems, close to the glass transition; indeed the fluctuation
distribution can be correctly reproduced with a model initially
designed for glasses. Thus, we seek a physical system with
a similar behavior. The analysis of colloidal gels or clusters
produces results in some agreement with those of the stocks
sets; the mean-squared displacement grows linearly, whereas
collective motions and non-Gaussian position fluctuations
are observed. However, gels or clusters are also character-
ized by strong structural correlations, which are absent in

stocks. We quote also previous results for a dense system
of stars with infinitely thin arms, which behave as an ideal
gas. This system undergoes a glass transition without struc-
tural correlations, but has the typical dynamical signatures
of undercooled systems, namely, a two-step growth in the
MSD [47].

The paper is organized as follows: In Sec. II, the de-
tails of the portfolios selection are given, and its overall
(center-of-mass) behavior is studied. Section III presents the
analysis of the structure and dynamics of the system, and a
discussion in terms of physical systems that reproduce the
behavior of stocks. The relevant conclusions are compiled in
Sec. IV.

II. STOCK PORTFOLIOS

The prices of three sets of stocks are used in this work, all
of them spanning from March 2, 2010 to November 1, 2018,
with a time resolution of 1 day. The sets are composed of US
stocks, UK stocks, and European (including UK) stocks, re-
spectively. The US and UK portfolios comprise N = 1095 and
N = 89 stocks, respectively, corresponding to the companies
with available data along the time span considered and with
the greatest average dollar volume. The European portfolio,
on the other hand, contains N = 240 stocks of companies
with available data along the period which are part of the
national indices of the UK (FTSE100), Germany (DAX30),
France (CAC40), Spain (IBEX35), Switzerland (SMI), Italy
(FTSE MIB), Portugal (PSI20), and Holland (AEX). This
selection (in the three sets) guarantees that only big and stable
companies are considered in this analysis. All sets of data have
been taken from Yahoo! Finance.

The selection of European stocks involves markets work-
ing with different currencies: UK pounds, Euros, and Swiss
francs. Nevertheless, it was decided to study this heteroge-
neous portfolio to increase its size and improve the statistics,
and to make the size of the overall markets more similar
(the US stock market represents 40.6% of the global mar-
ket, whereas the European stock markets considered here
add to a total of 19.6%) [48]. However, the different work-
ing currencies inhibit the study of cross correlations, and
thus the UK market has been taken as a proxy of the
European one.

In all cases, we have used the logarithm of the price (hence-
forth bare log price) instead of the bare price p(t ), xo(t ) =
ln [p(t )]. In this way, differences in xo(t ) are dimensionless,
and allows one to compare stocks with prices in different
currencies. In economy, differences in xo(t ) are known as the
log returns, normally used in the studies of financial markets,
and reflect the relative increase or decrease of the price.

In the following, we analyze the structure and dynamics of
the portfolios using the methods typical of particulate soft-
matter systems, with the log price as particle position. For
the structure, we use the log-price distributions and the pair
distribution function, and for the dynamics we use several
correlation functions such as the mean-squared log return (or
log-price difference), Van Hove functions, and observables to
capture the collective dynamics. As further discussed below,
the average of the log price for all stocks in the portfolio,
x(t ) = 1/N

∑
i xo

i (t ), called the index, is not stable in the time
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FIG. 1. Daily evolution of the indices of the three portfolios, as
labeled, for the whole period considered.

interval studied here (note that the index is only an ensemble
average, but not a time average). Thus, the effect of this drift is
subtracted from the behavior of single stocks by considering

xi(t ) = xo
i (t ) − x(t ), (1)

where the xo
i (t ) is the bare log price of stock i at time t .

III. RESULTS AND DISCUSSION

The evolution of the three indices in the 9 years studied
here is presented in Fig. 1. It is interesting to note that the three
of them display very similar changes. The overall trend is an
increase of one unit approximately, corresponding to a relative
increase of ∼170%. This implies an important change in the
overall log-price distribution, which needs to be corrected.
Thus, the log-price with the index subtracted, as given in
Eq. (1), is used in all the subsequent analyses.

We study first the structure of the three systems, using the
methods and techniques typical of particle systems, and then
move to the analysis of the dynamics. The results indicate
that the systems have no structure at the two-particle level,
while the dynamics differs from Brownian motion. In the final
part of this section, we seek a physical system that shows
the properties of the portfolios studied here. Although all the
properties cannot be reproduced, we conclude the section by
showing that colloidal gels share some similarities with stock
portfolios.

A. Structure

The log-price distribution of the three sets of stocks is
presented in Fig. 2, averaged over the whole time interval
considered in this work. Recall that the average is subtracted
from the stock log prices, as shown by Eq. (1), and thus the
average of this distribution is zero. Still, the three distributions
are very different. The US stock log prices follow a bell-
shaped distribution with a width of 0.82, while the distribution
of the European stocks is more heterogeneous, of width 2.26.
The heterogeneity of the European stocks is caused only partly
by the different origin of the stocks composing this portfolio,

FIG. 2. Log-price distribution for all sets, as labeled.

as one would naively guess. Indeed, the UK stocks, the biggest
component of the portfolio, is also more heterogeneous than
the US portfolio, despite it containing only 89 stocks.

In order to study the internal structure of the portfolios,
we construct the pair distribution function for stocks, g(w),
with w the log-price difference. Because the distribution of
stock log prices is not homogeneous, as shown previously, the
standard definition of the pair distribution function needs to
be generalized:

g(ω)dω = Number of pairs with ωi j ∈ [ω,ω + dω]

N
∫ ∞
−∞ dx ρ(x)ρ(x + ω)

, (2)

where ωi j is the log-price difference of the pair of stocks i
and j. With this definition, one ensures that a system without
correlations between the stocks is identified by g(ω) = 1,
irrespective of the overall distribution of particle positions.

The results for the US and UK stock markets are presented
in Fig. 3. Because this function compares the log prices of dif-
ferent stocks, we do not include here the European portfolio,
as this contains stocks from different national markets.

Both sets of stocks clearly show g(ω) ≈ 1, up to log-
price separations comparable to the width of the log-price

FIG. 3. Distribution of log-price differences for the US and UK
stocks, as labeled.
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distribution. Due to the small number of stocks in the UK
portfolio, the statistical noise in the g(ω) of this is larger.
In physical terms, g(ω) ≈ 1 indicates the absence of struc-
tural correlations, i.e., the stocks show the same structure as
an ideal gas, albeit confined to produce a nonhomogeneous
density. This result is not surprising, as no direct interaction
between the stocks is expected, although previous results have
identified correlations in the price evolution [29,30], as further
discussed below. The pair distribution functions of Fig. 3 show
that these correlations cannot be established at a structural
level.

It must be mentioned that in the calculations of g(w) shown
in the previous figure, the density has been averaged over
the full period (2011–2018). Because the index (and thus the
distribution) changes notably during this time interval, the
subtraction of the index in the calculation of the distribution
has an important effect. In particular, this affects the denom-
inator of Eq. (2). If the stock log prices are not corrected
with the mean log price, the calculated g(w) is larger than
1 for short log-price differences, and lower than 1 at larger
distances. This apparent interaction is, however, artificial, and
caused by the drift of the portfolio index.

One more aspect that needs to be discussed is that in Fig. 3
the whole systems are analyzed, which probably hides some
structural correlations between specific pairs of stocks. This
would correspond to a system of different species, with het-
erogeneous interactions between the constituents. The present
results, however, indicate that these specific interactions, if
they exist, are subdominant, and do not show up in the overall
structure of the system.

B. Dynamics

We move now to study the dynamics of the portfolios,
bearing in mind that the analysis of the structure yields the
picture of the portfolios as a confined ideal gas. Let us recall
that our data has a time resolution of 1 day, i.e., we focus
on the daily evolution of the market, missing the intraday
dynamics. The equivalent to the MSD in particle systems is
the MSPD:

〈[δx(τ )]2〉 =
〈

1

N

N∑
j=1

[x j (t + τ ) − x j (t )]2

〉
, (3)

where the summation runs over all stocks in the portfolio and
the average implies different time origins, t . The MSPD for
all sets of stocks are presented in Fig. 4, as well as the mean-
squared displacement of the index. The dispersion of the data
is also included in the graph for selected times as error bars,
signaling from the MSPD of the 10% slowest stocks to the
10% fastest ones (or in the cumulative distribution, the range
from 0.1 to 0.9). Despite the large dispersion of the data, the
MSPDs grow almost linearly with time for the whole period
studied, with little difference between them. This is confirmed
by studying the power spectrum (see inset), which follows the
1/ω2 behavior, characteristic of Brownian motion. This linear
growth of the MSPD with time has been reported previously
for market indices, currency exchange prices, etc. [32,46].

It is interesting to note that the growth of the MSPDs is
below 0.1, so that the confinement of the stock log price,

FIG. 4. Mean-squared log-price difference for the three sets of
stocks, as labeled (thick lines), with the error bars signaling from the
smallest 10% stocks to the fastest 10% ones. The thin lines present
the mean-squared displacement of the index, with the same color
code. The inset presents the power spectrum of the US stocks (thick
line) and the index of this set (thin line).

shown in Fig. 2, does not affect the motion in the time range
studied in the figure. On the other hand, the three indexes also
grow linearly, with little difference between them. Diffusion
of the center of mass of a system is also observed in colloidal
systems due to the Brownian forces acting on the particles,
but the precise relation depends on the structure of the system
(individual particles, clusters, etc.). The diffusion coefficient
for the index, obtained from the slope of the MSD vs time,
〈(δx)2〉 = 2Dτ , is smaller than the average for all stocks.
Table I compiles the diffusion coefficients for the stocks and
index of the three portfolios.

It is customary in the analysis of fluctuating time series
to subtract the local trend, so-called detrended analysis [49].
This allows the identification of the fluctuating part and
its analysis. For every stock, to the value of the individual
quotation at time t , we have subtracted a linear trend, fitted
in a time interval around t . The MSPD of the corrected data
shows a linear increase for short times, below the length of the
interval for the fitting, and flattens for longer times. The latter
behavior is indicative of fluctuations caused by a white noise,
compatible with Brownian motion in colloidal particles.

In experiments on soft matter, the dynamics is usually
studied with the density-density autocorrelation function, or
ISF. For Brownian motion, the ISF decays exponentially to
zero, whereas a nonexponential decay indicates the existence
of interactions among the particles, polydispersity, etc., and in

TABLE I. Self-diffusion coefficients of the stocks in the three
portfolios, Ds, and diffusion coefficient of the index, Di.

Portfolio Ds (day−1) Di (day−1)

US stocks 1.15 × 10−4 3.65 × 10−5

Eur. stocks 6.88 × 10−5 3.20 × 10−5

UK stocks 8.58 × 10−5 3.66 × 10−5

032307-4



STOCK MARKETS: A VIEW FROM SOFT MATTER PHYSICAL REVIEW E 101, 032307 (2020)

FIG. 5. Self part of the intermediate scattering function of the
US stocks for different wave numbers, increasing from top to bottom
as labeled. The thin lines show the exponential fitting of the initial
decay, and the thick lines correspond to the fitting of the stretched
exponential.

solids it decays to a positive value. We generalize the ISF to
stock markets:

�q(τ ) =
〈

1

N

∑
eiq[x j (t+τ )−xk (t )]

〉
, (4)

where q is the wave number, i the imaginary unit, the sum-
mation runs over all pairs of particles j and k, and the
angular brackets imply average over the time origin t . This
function requires a large statistics, but its general behavior
is captured by its self part, �s

q(τ ), setting j = k, which is
the Fourier transform of the MSPD. The self-intermediate
scattering function (sISF) for the US stocks is presented in
Fig. 5 for different wave numbers. The correlation function
decays to zero, as expected for a fluid state, but the decay
is more stretched than a simple exponential (shown by the
thin dashed lines). In fact, they can be well reproduced by the
Khoulrausch stretched exponential:

�s
q(τ ) = Aq exp{−(τ/τq∗)βq}, (5)

which is typically used to describe the correlation function in
undercooled liquids. There, Aq represents the nonergodicity
parameter, τq∗ is the time scale for the relaxation, and βq is
the stretching exponent. In our case, βq ≈ 0.8 for all wave
numbers, i.e., the decay is only slightly stretched. Similar
results are found for the other sets of stocks.

The timescale of the decay of the sISF as a function of
the wave number is plotted in Fig. 6 for the three sets of
stocks. For a Brownian particle, this timescale depends on the
wave number as q−2, while Fig. 6 shows that the timescale
in stocks decays with an exponent close to, but different from
−2. This analysis shows that the dynamics of the three sets of
stocks cannot be simply described by Brownian motion but it
presents slight deviations.

One more aspect that can be used to study the stock
dynamics borrowed from particle systems is the velocity
autocorrelation function, which is zero in Brownian dynam-
ics for all (positive) times [42,50]. We have defined the
daily stock velocity as vi(t ) = xi(t + 1) − xi(t ), measured in

FIG. 6. Timescale of the decay of the sISF for the three sets of
stocks. The dashed lines show the ω−2 behavior.

units of day−1. The velocity autocorrelation function is then
calculated as

Z (τ ) =
〈

1

N

∑
vi(t + τ )vi(t )

〉
, (6)

where the average implies different time origins, as above.
Figure 7 shows the velocity autocorrelation function for the
European, US, and UK stocks. In agreement with Brownian
motion, the correlation function is zero within the statistical
noise for all times, except at t = 0. It can be argued that the
decay of the velocity correlation function has occurred within
the first day, and is observed for the price correlations [32],
but this would be equivalent to using the Langevin description
of Brownian motion, which is valid for timescales below the
diffusion time.

So far, we have obtained conflicting conclusions about
the stock markets. Whereas the linear growth of the MSPD
and the absence of velocity correlations are comparable to
the Brownian motion of independent particles, the self part
of the ISF indicates the existence of weak interactions or
polydispersity. In addition to this discussion, it is well known

FIG. 7. Velocity autocorrelation function for the three sets of
stocks, as labeled.
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FIG. 8. Distribution of log-price differences for different times,
increasing from bottom to top as labeled. The thin US stocks are
presented in the upper panel, and European stocks in the bottom one.

that the distribution of log-price differences for a given time
interval, which corresponds to the Van Hove function in
particle motion, is not Gaussian. Within Brownian motion,
this distribution should be Gaussian—its second moment
being the MSD. However, it has been thoroughly discussed
in the literature that this is not the case for financial markets
[2,32,46].

Figure 8 shows the distributions of log-price variations,
�x, for different time lags, τ , both for the US and the
European sets. The experimental distributions show a promi-
nent peak at the origin, �x = 0, with long tails for large
differences, differing notably from a Gaussian distribution.

These tails are typical of different systems with slow or
arrested dynamics: undercooled fluids (atomic or colloidal),
close to a glass transition or granular matter [51,52], but
also in other financial markets [13,39]. Note that we study
all the stocks, different from other works where the index
is used [53], although the shape of the distribution is very
similar in all cases. Different models have been proposed to
describe it within statistical physics, such as the q-Gaussian
distribution function [39,52,54], but this requires typically
fitting the whole set of parameters for every lag- time, τ .

We used recently a model derived originally for parti-
cle systems with slow dynamics to reproduce quantitatively
the distribution of fluctuations of the Euro/USD exchange

rate [44] and many other currency pairs [45] for all lag times.
The physical model separates the rattling of particles inside
the cages formed by their neighbors, and long jumps from
cage to cage. Within the potential energy landscape picture
of glasses, with many local shallow minima or basins (and
possibly one deep narrow minimum corresponding to crystal),
these two motions correspond to oscillations in the local
basins and jumps from basin to basin. The dynamics of the
particles within the cage of neighbors, or basins, is described
by an Ornstein-Uhlenbeck process:

fvib(r, τ ) =
√

α

2πD(1 − e−2ατ )
exp

{
− αr2

2D(1 − e−2ατ )

}
(7)

with r the particle displacement, D the short-time diffusion
coefficient, and α = D/l2, with l the size of the cage [55–57].
This corresponds to a particle describing Brownian motion
with a linear central force pulling it towards its origin. Long-
range jumps are possible, according to a distribution fjump(r),
and the time interval for a jump follows a distribution φ(τ ) =
τ−1

j exp(−τ/τ j ). In the model proposed by Chaudri et al. [51],
two different timescales are used for the first and subsequent
jumps, τ1 and τ2, respectively, with τ2 < τ1. The overall
distribution, G(r, τ ), gives the probability of a displacement
r, at time lag τ , and it is calculated in the Fourier-Laplace
domain, G(q, s). G(r, τ ) is recovered by back transforming to
the space-time domain as

G(r, τ ) = τ1 fvib(r)φ1(τ ) + FT −1

[
f̃vib(q) f̃ (q)τ2

× exp{( f̃ (q) − 1)τ/τ2} − exp(−τ/τ1)

τ2 − τ1 + f̃ (q)τ1

]
. (8)

Here, f̃ (q) = f̃vib(q) f̃jump(q) and f̃ (q) is the Fourier trans-
form of function f (r), with q the conjugate variable of the
displacement in the Fourier space and FT −1 denotes the
inverse Fourier transform. This model, originally designed
for particles, is used to fit financial data taking now r as
the difference of log return, �x, and noticing that this is
a one-dimensional variable, instead of the three-dimensional
particle displacement. Also, while the distribution for long-
range jumps, fjump(r), is Gaussian in particles, we as-
sume here a Laplace distribution, which is more appropriate
for stocks due to the mixture of many different Gaussian
distributions [58].

The model, Eq. (8), is used to describe and rational-
ize the distribution of the fluctuations in the log return,
using the diffusion coefficient, D, the distances l and d ,
and the timescales τ1 and τ2 as fitting parameters. It must
be mentioned that these parameters have a simple physi-
cal interpretation, contrary to other models [54]. The op-
timization is achieved adjusting the absolute moments of
order O = {0.1, 1, 2, 3, 4}, i.e., minimizing the parameter
χ = ∑

o∈O

∑
τ∈T {ln [mome(τ, o)] − ln [momt (τ, o)]}2, where

mome(τ, o) and momt (τ, o) are the empirical and theoretical
moments of order o at time τ , respectively. T is a selection
of time lags, from 1 day to 3 years. Note that the moment of
order 0.1 improves the fit around the mode.

The model can indeed fit the moments of both the ex-
perimental data of the US and European stocks, with some
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TABLE II. Optimal parameters to fit the experimental distribu-
tions, obtained from the moments of the distribution (see text).

Portfolio D (day−1) l d τ1 (day) τ2 (day)

US stocks 1.17 × 10−4 0.173 0.195 200 169.9
Eur. stocks 8.13 × 10−5 0.159 0.098 200 61.59

deviations noticed only for small times; the maximum relative
difference between the experimental and fitted distributions is
below 3% for long lag times, and between 3% and 5% for
short times. The parameters that produce the optimal fitting
are given in Table II. Note that in both cases, the rattling inside
a cage of size ∼0.17 takes a long time (200 days), until a
jump outside this basin takes the system to a different local
minimum, not very far away.

The distributions resulting from these selections of param-
eters are presented as continuous lines, with the empirical
ones (points) in Fig. 8 for time lags of 4, 14, 30, and 90 days.
The overall agreement is good, capturing the two length and
time scales in the experimental data, although some differ-
ences can be observed, particularly for short times in the US
stocks. The fittings to the UK stocks (not shown) are of similar
quality, although the experimental data is noisier, due to the
smaller number of stocks.

Another important difference in the dynamics of stocks,
compared to Brownian motion, is the existence of cooperative
motion. In colloids, this has been discussed in connection
with nonergodic transitions, either led by the steric hindrance
(at high particle density), or by attractions, namely, gelation.
Different parameters have been devised to identify and charac-
terize these modes in particle systems, most of them studying
the relative motion of two particles, so-called, four-point cor-
relation functions [59,60]. The simplest parameter that can be
defined is the difference of particle displacements, which has
been used to study also the dynamic arrest in two dimensions
[61]. This can be simply applied to a one-dimensional system,
yielding

γ (τ ) =
〈

1

N

∑
i, j

′[δxo
i (τ ) − δxo

j (τ )
]2

〉
, (9)

where N is the number of stocks, and the pair i = j is
excluded in the summation; the brackets indicate averaging
over time origins. Note that the bare log prices, xo

i (τ ), are used
instead of the corrected ones, and δxo

i (τ ) = xo
i (t + τ ) − xo

i (t ).
This is introduced to identify collective motions that drive the
average. If all stocks move independently (Brownian motion),
γ (τ ) = 2〈(δxo)2〉, but if all stocks move in the same way,
γ (τ ) = 0. Figure 9 presents the ratio γ (τ )/〈(δxo)2〉 for the
three sets of stocks. Although this ratio fluctuates strongly,
all sets present a similar value of the ratio, well below 2,
indicating the presence of the cooperative motions of groups
of stocks.

Alternatively, Muranaka and Hiwatari defined a different
parameter, based on the MSD as well, to study cooperative

FIG. 9. γ (τ )/〈(δx)2〉 for the US, European, and UK stocks, as
labeled [see text for the definition of γ (τ )].

motion [62]. In this case,

C(τ ) = 1

〈(δxo)2〉

〈
1

N2

∑
i, j

′δxo
i (τ )δxo

j (τ )

〉
(10)

is close to zero when all stocks move independently, while
C(τ ) → 1 indicates that all stocks move by the same amount.
(Note that again the bare log prices are used). Figure 10 shows
the results for the three of them. Again, all sets of stocks show
similar degrees of cooperativeness in their dynamics.

To further explore the origin of this cooperative motion,
the distribution functions of these two parameters have been
studied. Figure 11 shows the distributions of both of them for
a time lag equal to 30 days for the US stocks. For comparison,
the corresponding distributions for a system of noninteracting
Brownian particles are also presented. The distribution for
γ (τ ) has a prominent peak at γ = 0, and extends to large
values of γ , while C(τ ) presents positive and negative values.
The comparison with the ideal system shows that the distri-
bution of γ (τ ) is less stretched in the case of the US stocks,
resulting in a smaller average. The distribution of C(τ ), on the

FIG. 10. C(τ ) for all sets of stocks, as labeled.
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FIG. 11. Distribution functions of C(τ ) and γ (τ ), as labeled, for
τ = 30 days of the US stocks (thick lines). The thin lines represent
the results for noninteracting colloidal particles.

other hand, is symmetric for the ideal gas, but it is skewed for
the US portfolio to positive values, yielding a positive average,
indicative of cooperative motions. Similar results are obtained
for the UK stocks, although the reduced number of stocks
results in an increased statistical noise.

The distributions of γ (τ ) and C(τ ) both deviate from the
expected results for the ideal gas. However, these deviations
do not allow us to identify clusters of stocks that move
cooperatively.

C. Discussion

In this section we seek to rationalize the results presented
so far, in terms of the properties of soft-matter systems. In
short, we have shown above that stocks present some signa-
tures of noninteracting particles but also of slow dynamics,
typical of undercooled systems. In particular, the lack of inter-
nal structure, the linear growth of the MSPD, and the absence
of velocity autocorrelation, are signatures of a noninteracting
Brownian system, while the nonexponential decay of the sISF,
the collective motion, and non-Gaussian Van Hove functions
are typical of undercooled fluids. However, the latter show a
two-step growth of the MSD (or two-step decay in the correla-
tion functions), separated by an intermediate plateau [60,63].
The extension of the plateau increases upon approaching the
glass transition, and ideally diverges at the glass point.

While this is the case for most glasses, in colloidal systems
with short-range attractions, the situation is different. For
small attraction strength, the particles form clusters, which
percolate for larger strengths and finally a gel is formed when
the structure does not relax. The low density of the system in-
troduces diffusion of independent clusters or breathing modes
without breaking the bonds between particles. These appear
as new relaxation mechanisms for the structure at intermedi-
ate and strong attraction strengths. In this case, the particle
dynamics is also apparently Brownian while other parameters
show the signatures of undercooled fluids. These relaxation
modes are possible due to the low density of particles in the
system, and are not present in other glass-forming systems at
high density.

FIG. 12. Mean-squared displacement (top panel) and analysis
of the cooperative motions in different states with low volume
fraction, φc = 0.10, for increasing attractions, from top to bottom as
labeled. The system is composed of N = 1000 particles, with radii
distributed according to a flat distribution of half-width 0.1a, where
a is the mean particle radius. The attractive interaction considers this
polydispersity, and on average its range is 0.1a, and its strength is
given by 16φpkBT .

Figure 12 shows the MSD and the parameters of collective
motion used above, for different states with increasing at-
traction strength. These results have been obtained in simula-
tions of quasihard polydisperse particles undergoing Langevin
dynamics, to mimic Brownian motion. A short-range attrac-
tion is added to induce gelation and a long-range repulsive
barrier to inhibit liquid-gas separation. Further details can be
found in Puertas et al. [64].

For φp = 0.50, the MSD grows linearly over five decades,
although a significant slowing down of the dynamics is ob-
served in the long-time diffusion coefficient. On the other
hand, the collective parameters, equivalent to γ (t ) and C(t ),
indicate that collective motions are indeed relevant, in qual-
itative agreement with the MSPD and collective motions in
Figs. 4, 9, and 10. The collective motions in gelling systems
originate from the motion of particles in clusters, or branches
of the percolating structure, if the attraction is strong enough.
A snapshot of the system with φp = 0.50 is shown in Fig. 13.
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FIG. 13. Snapshot of the system with a volume fraction of col-
loidal particles of φc = 0.10 and attraction strength φp = 0.50.

A branched, percolating structure with large voids is observed,
where long-time diffusion is caused by the slow restructuring
of the network and the collective motions correspond to the
movement of a branch. However, it must be stressed that col-
loidal systems with short-range attractions are characterized
also by internal structuring, as shown in the snapshot, which
are ultimately responsible for the dynamical behavior.

It must also be mentioned that special systems have also
been devised previously to produce a glass transition without
structural correlations [47,65]. In that system, infinitely thin
hard needles [65] or stars [47] are considered, which struc-
turally behave as ideal gases, whereas the impenetrability con-
dition provokes a significant dynamic slowing down at large
densities, although the glass transition is not reached. For
states with a significant arrest, the non-Gaussian parameter
grows, indicating that the distribution of position fluctuation
deviates from the Gaussian shape.

IV. CONCLUSIONS

The daily dynamics of two sets of stocks from the US
stock market (US stocks) and different national floors from
economy drivers of European countries (EU stocks) in the
period 2011–2018 have been analyzed in this work using the
concepts and tools of soft matter. This is motivated by a pre-
vious work where a model, initially developed to describe the
dynamics of undercooled fluids, glasses, and granular matter,
was used in the analysis of the distribution of fluctuations
in the exchange rates of different currency pairs. Here, a
stock market is considered as a system comprised of particles,
whose structure and dynamics is studied.

On the one hand, the equivalent of the MSD, namely, the
MSPD, grows linearly, the velocity autocorrelation function is
zero, and the pair distribution functions (for the US and UK
markets) show no structural correlation between the stocks.
On the other hand, the log-price correlation function, equiv-
alent to the sISF, shows a nonexponential decay, the distri-
butions of fluctuations of the stock prices are non-Gaussian,
featured with wings, i.e., leptokurtic distribution, and a signif-
icant degree of collective motion is observed by parameters
borrowed from the analysis of undercooled systems. Whereas
the former results point to a noninteracting Brownian system,
which can be easily described by free diffusion, the latter ones
are characteristic of a strongly interacting system.

Although this dichotomy does not have an evident phys-
ical analog to our knowledge, we propose two physical
systems which share some qualitative similarities with the
stock market. The first one is a colloid with short-range
attractions, which, upon increasing the attraction strength,
forms reversible clusters, which percolate for strong enough
interactions. Indeed, the MSD of this system grows linearly
for strong attractions, where the bonds affect particle diffu-
sion even at short times, but also present a high degree of
cooperativeness. However, gels also present strong structural
correlations, in stark difference with the case of stock markets.
The second system which can be compared with stocks is an
extension of the ideal gas, namely, it is composed of rigid in-
finitely thin stars, which has no structural correlations, but can
show a significant slowing down for large density. We hope
that a more appropriate physical model system can be found
or devised that can aid in future studies of stock markets.
In particular, introducing heterogeneous interactions between
stocks, as some pairs are expected to be more correlated than
others, appears a key ingredient of future models.

The work presented here aims to provide a method of
studying and analyzing the stock markets, using the theo-
retical toolbox of statistical mechanics, particularly of soft
condensed matter physics. Obvious extensions of this work
are the consideration of other parameters in the analysis of the
structure and dynamics, seeking correlations between them
that can help in identifying interaction potentials between the
assets.
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