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In this paper the time evolution of a finite bipartite graph initially comprising two sorts of isolated vertices
is considered. The graph is assumed to evolve by adding edges, one at a time. Each new edge connects either
two linked components and forms a new component of a larger order (coalescence of graphs) or increases (by
one) the number of edges in a given linked component (cycling). Any state of the graph is thus characterized
by the set of occupation numbers (the numbers of linked components comprising a given numbers of vertexes
of the both sorts and a given number of edges. Once the rate of appearance of an extra edge in the graph being
known, the master equation governing the time evolution of the probability to find the random graph in a given
state is reformulated in terms of the functional generating the probability to find the evolving graph in a given
state. The exact solution of the evolution equation for the generating functional applies for analyzing the average
population numbers of linked components. In the limit of large order of the graph the distribution factorizes into
two multipliers, one of which is just the spectrum of linked components in the infinite bipartite graph, The second
multiplier includes the dependence on the total size of the graph. Both these multipliers contain information on
the emergence of the giant component that forms at a critical time.
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I. INTRODUCTION

Two finite sets of points (vertexes) connected with lines
(edges) form a bipartite graph. Figure 1 displays such a graph
where the vertexes are located on two circles [1–5]. The
graph is characterized by its total order—the pair (M, N)—the
numbers of vertexes of two sorts and the number of edges
νtotal. In what follows we consider graphs of constant order
having the random number of edges. We assume that the edges
are added to the graph at random moments of time and the rate
of their production is known.

Figure 1 explains what is this the random bipartite graph.
Two sorts of vertexes, M hearts and N diamonds, are ran-
domly connected with edges. Each graph comprises linked
components—the subgraphs where each vertex is connected
with all others by paths—the collections of edges belonging
to this subgraph. In what follows we consider the graph where
the edges connecting the vertices of the same sort are forbid-
den. The issue considered here is to find the average number
of linked components containing exactly m, n vertexes and
ν edges as the function of time t (the order-connectivity
spectrum) assuming the edges to be randomly added to the
graph one at a time. The initial graph is empty (no edges) and
comprises M and N vertexes.

Random graphs already attracted the attention of the scien-
tific community six decades ago [6–9]. The main interest in
this problem was associated with the emergence of a giant
linked component in graphs of large order and sufficiently
high connectivity (large numbers of vertexes and edges) [6].
The order of this component occurs comparable to the total
order of the graph. The undoubted similarity of random graphs
with the structures met in Nature and technical devices has
generated interest in studying the dynamics of changes in

random graphs as they are filled with random connections
[7–9].

Although now much is known about the statistical proper-
ties of unipartite random graphs, less attention was given to
multipartite graphs that are also of great importance because
they allow us to model the evolution of complex natural and
artificial systems. Among them are mixed polymers, the Inter-
net (a complex network of routers and computers), and inter-
acting spins in ordered and disordered lattices. The dynamics
of many important physical systems like Ising magnets can
also be formulated in terms of graphs.

The random graphs display a very remarkable property: a
sufficiently large graph always contains a giant linked compo-
nent [6]. This component appears suddenly as the number of
edges in the graph exceeds a critical value. This phenomenon
is similar to the phase transition. The most familiar example
of the transition perhaps is percolation in disordered electric
chains (see Ref. [10]).

There exist two approaches to studying random graphs:
(1) the static one that fixes the numnbers of vertexes and
edges and then uses the combinatorial analysis for finding the
distribution of linked components [7–9] and (2) the kinetic ap-
proach that considers the time evolution of the random graph
with the edges being randomly added one at a time [11–22].
The second approach is especially efficient because it applies
the Smoluchowskii equation for describing the time evolu-
tion of the order-connectivity spectra in thermodynamically
large graphs (M, N → ∞) rather than much more complex
combinatorics.

In the present paper the approach developed in my fairly re-
cent work [17] (see also Ref. [19]) applies for considering the
dynamics of evolving finite multipartite graph. This approach
relies upon the Marcus-Lushnikov scheme [11–13]. Although

2470-0045/2020/101(3)/032306(9) 032306-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.032306&domain=pdf&date_stamp=2020-03-16
https://doi.org/10.1103/PhysRevE.101.032306


A. A. LUSHNIKOV PHYSICAL REVIEW E 101, 032306 (2020)

FIG. 1. A bipartite graph with a collection of linked components.

I had mentioned a couple of times the bipartite graphs in
Refs. [18,19], the details of the solution were never published.
In this paper the analysis is based on the Riddell theorem [23]
applied for the first time for the analysis of unicyclic graphs
in my recent work [18].

The remainder of the paper is divided as follows. In Sec. II
the basic equations governing the time evolution of multi-
partite graphs are formulated and critical properties of the
evolving graphs are discussed The exact expression for the
order-connectivity spectrum is shown to factorized into two
multipliers, the first of which depends on the total size of the
graph while the second one is asymptotically independent of
the graph size. This multiplier includes the numbers of linked
components containing a given number of edges (Sec. III). In
Sec. IV the Riddell theorem [23] for bipartite graphs applies
for the derivation of the set of nonlinear integral equations for
the generating functions for the numbers of graphs of given
order and the connectivity. A recurrence procedure solving
this set of equation is developed. Since the number of vertices
in the tree is strictly fixed, adding one more edge without
changing the order of the graph leads to the appearance of
a cycle. The expression for the size-complexity spectrum
through the generating functions X and Y is derived and
the equation formulated in the preceding section are solved.
Exact expressions for the spectrum of trees and single-cycled
graphs are derived. The asymptotic form of the spectrum is
also analyzed in Sec. V. The concluding Sec. VI connects
the emergence of the giant component with the cyclization
process in graphs.

II. BASIC EQUATIONS

A finite bipartite graph is a sum of linked subgraphs (com-
ponents). No linked component contains isolated vertexes and
is thus characterized by three integers, the numbers of vertices
of two sorts, 1 � m, n < ∞, and the number of edges m +
n − 1 � ν � mn. Each state of the bipartite random graph is
given by the set of occupation numbers,

Q = (n1,0; 0, n0,1; 0, n1,1; 1, n2,1; 2 . . .) = {nm,n: ν}, (1)

where nm,n: ν is the numbers of linked components in the
graph.

Let us begin to add the edges to the initially empty bipartite
graph. This process gives rise either to a coalescence of
two linked components [bare vertexes are also considered as
linked component (1, 0; 0) and (0, 1; 0)],

(m, n; ν) + (k, l; λ) −→ (m + k, n + l; ν + λ + 1), (2)

or to filling a given linked component with one extra edge,

(m, n, ν) −→ (m, n; ν + 1). (3)

The time evolution of the graph goes along the routes

Q− → Q → Q+ or Q̃− → Q → Q̃+.

The coalescence process changes three occupation numbers in
the pair of the preceding states Q−, Q̃−,

nm,n; ν (Q−) = nm,n; ν (Q) + 1, (4)

nk,l; ν (Q−) = nk,l; ν (Q) + 1, (5)

nm+k,n+l; ν+λ+1(Q−) = nm+k,n+l; ν+λ+1(Q) − 1. (6)

If an edge is added to a linked component, then only two its
occupation numbers change,

nm,n; ν−1(Q−) = nm,n; ν (Q) − 1, (7)

nm,n; ν (Q−) = nm,n; ν (Q) + 1. (8)

Let us introduce the time-dependent probability W (Q, t )
to find the graph in the state Q at time t and write the master
equation for W ,

dW (Q, t )

dt

=
∑
Q−

A(Q, Q−)W (Q−, t ) −
∑
Q+

A(Q+, Q)W (Q, t )

+
∑
Q̃−

B(Q, Q̃−)W (Q̃−, t ) −
∑
Q̃+

B(Q̃+, Q)W (Q, t ).

(9)
The transition rates A and B have the form

A(Q, Q−) = 1

2T
(ml + nk)nm,n; ν (Q−)

× [nk,l; λ(Q−) − δm,kδn,lδν,λ] (10)

and

B(Q, Q̃−) = 1

T
(mn − ν + 1)nm,n; ν−1(Q̃−), (11)

where the value of T defines the timescale of the coalescence
process and δα,β is the Kroneker delta.

It is more convenient to deal with the generating functional
�(X, t ),

�(X, t ) =
∑

Q

W (Q, t )
∏

m,n; ν

xn(m,n; ν)(Q)
m,n; ν . (12)

The functional � obeys the equation

T
∂�

∂t
= (L̂ f + L̂c)�. (13)

The right-hand side of this equation contains two differential
operators, L̂ f and L̂c. The operator L̂ f adds the extra edges to
linked components and does not change their orders,

L̂ f =
∑

m,n,γ

[
(mn − ν + 1)xm,n;ν

∂

∂xm,n;ν−1

−(mn − ν)xm,n;ν
∂

∂xm,n;ν

]
. (14)
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The operator L̂c responsible for the coalescence of a couple of
linked components is

L̂c = 1

2

∑
l,λ;m,ν

(lm + nk)(xl+m,λ+ν+1 − xl,λxm,ν )
∂2

∂xl,λ∂xm,ν

.

(15)
After some simple algebra the equation for � acquires the
form of Eq. (13) with

L̂ f =
∑
m,n;ν

(mn − ν)(xm,n; ν+1 − xm,n; ν )
∂

∂xm,n; ν
(16)

and

L̂c = 1

2

∑
(ml + nk)(xm+k,n+l: ν+λ+1 − xm,n; νxk,l; λ)

× ∂2

∂xm,n; ν∂xk,l; λ
− N̂M − NM̂. (17)

Here

M̂ =
∑
m,n;ν

mxm,n;ν
∂

∂xm,n;ν
, N̂ =

∑
m,n;ν

nxm,n;ν
∂

∂xm,n;ν
(18)

are the operators of the total masses of the first and the second
components, respectively. The summation in Eq. (17) goes
over all indexes m, n; ν and k, l; λ. The nonnegative integers
M and N (the total numbers of the monomers of the first and
the second components, respectively) are the eigenvalues of
these operators. The evolution operator L̂ commutes with M̂
and N̂ , which means that the functional � can be chosen as
an eigenfunctional of these operators. This fact is of great
significance, because the above two equations make linear
the right-hand side of Eq. (13) with respect to the differential
operators N̂ and M̂ and thus allows for finding the solution,
the details of which can be found in Ref. [24]. Here we write
the final expression for the average composition spectrum (the
details of derivation are given in the Appendix),

n̄m,n; ν (t ) =
(

M

m

)(
N

n

)
× e−SM,N )(m,n)t/T (et/T − 1)νCm,n; ν,

(19)

where

SM,N (m, n) =mn − mN − nM = MN − (M − m)(N − n)
(20)

is the total number of vertexes accessible for filling them by
extra edges, and Cm,n; ν is the number of linked component of
order m, n containing exactly ν edges. Equation (20) is similar
to the result [17] for unipartite graphs.

III. FACTORIZATION

In this section we will demonstrate how the expression for
the order-complexity spectrum n̄m,n;ν (t ) [Eq. (19)] of linked
components can be split into two multipliers,

n̄m,n;ν = uM,N u∞, (21)

one of which (uM,N ) depends on the total orders M and N of
the graph and another one (u∞) does not.

At large T it is convenient to slightly regroup the multipli-
ers in Eq. (22) for n̄m,n;γ . We borrow the multiplier T ν from

FIG. 2. The composition of the giant component vs time. Shown
(dash and dot lines) are the time dependencies of the concentrations
xc and yc of stars and circles in the giant component as the functions
of time (in units of T ). Solid line displays the rate of production of
unicyclic graphs.

(et/T − 1)ν and input it to uM,N . The result is

uM,N = M!N!T −ν

(M − m)!(N − n)!
etmn/T . (22)

Let us apply the Stirling formula to approximate the factorials,

uM,N ≈ MmNnT −ν exp[−
√

MNR(x, y)], (23)

where x = m/M, y = n/N ,

R(x, y) = μ[(1 − x) ln(1 − x) + y]

+ ν[(1 − y) ln(1 − y) + y] − xyt

τ
,

and μ = √
M/N , ν = √

N/M, and τ = T/
√

MN .
Differentiating uM,N over x and y we discover that uM,N has

a sharp maximum at x = xc(t ), and y = yc(t ) with xc(t ), yc(t )
being the roots of the set of two equations,

t = T

Mxc
ln

1

(1 − yc)
, t = T

Nyc
ln

1

(1 − xc)
. (24)

A nonzero solution to this set exists at t > tc = T/
√

MN .
One recognizes the equation for the composition [xc(t ) ·

yc(t )] of the giant component in the bipartite graph [18].
The x dependence of uM is presented in Fig. 2 for the pre-
and postcritical periods. Below the transition point t < tc the
factor uM,N does not have a hump.

The second term in Eq. (21),

u∞ = 1

m!n!
e−(mN+nM )t/T (Tet/T − 1)νCm,n; ν, (25)
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is independent of M and N in the limit of large T → M, N .
Indeed, in the limit of large T the multiplier (Tet/T − 1)ν

converts to tν . The ratios M/T and N/T also become of order
of unity.

IV. GENERATING FUNCTIONS

Let us introduce the polynomials Pm−1,n−1(z) (see
Ref. [24]) as the generating functions for the numbers Cm,n;ν

of linked labeled bipartite graphs of order (m, n),

zm+n−1Pm−1,n−1(z) =
mn∑

ν=m+n−1

Cm,n;νzν . (26)

The limits of summation in this equation are just a minimal
number of edges in a tree of order m, n (lower limit) and the
maximal number of edges mn in the complete graph (upper
limit). Next, we introduce the bivariate exponential generating
function for the number of linked bipartite components,

w(ξ, η; z) =
∞∑

m,n=1

ξmηn

m!n!

mn∑
ν=m+n−1

Cm,n;νzν

=
∞∑

m,n=1

ξmηn

m!n!
zm+n−1Pm−1.n−1(z). (27)

According to the Riddell theorem [23] we have

w(ξ, η; z) = lnW (ξ, η; z), (28)

with W (ξ, η; z) being the exponential generating function
of all labeled bipartite graphs. The latter is readily found.
Indeed, the number of ways to connect m, n vertexes by ν

edges is ( mn
ν

). Hence, the polynomial (1 + z)mn generates the
numbers of graphs of order m, n having exactly ν edges. The
exponential generating function for these graphs is thus

W (ξ, η; z) =
∞∑

m,n=0

ξmηn

m!n!
(1 + z)mn. (29)

Here the summation goes over all nonnegative integers m, n.
Hence,

ln
∞∑

m,n=0

ξmηn

m!n!
(1 + z)mn =

∞∑
m,n=1

ξmηn

m!n!
zm+n−1Pm−1,n−1(z).

(30)
Equation (28) yields

W∂ξw = ∂ξW and W∂ηw = ∂ηW . (31)

Next, from Eq. (29) one finds that

∂ξW (ξ, η; z) = W (ξ, (1 + z)η; z),

∂ηW (ξ, η; z) = W ((1 + z)ξ, η; z). (32)

On combining Eqs. (28), (31), and (32) gives the set of
equations for w,

∂ξw(ξ, η, z) = ew(ξ,(1+z)η;z)−w(ξ,η;z),

∂ηw(ξ, η, z) = ew((1+z)ξ,η;z)−w(ξ,η;z). (33)

Let us introduce the generation functions X (ξ, η; z) and
Y (ξ, η; z) for the polynomials Pm+1,n(z) and Pm,n+1(z) playing

the same role as the polynomials Pm(z) for unipartite graphs
considered in Ref. [17]:

X (ξ, η; z) =
∞∑

m,n=1

ξmηn

m!n!
Pm.n−1(z),

Y (ξ, η; z) =
∞∑

m,n=1

ξmηn

m!n!
Pm−1.n(z). (34)

It is easy to see from Eq. (27) that

∂ξw(ξ, η, z) = X (zξ, zη : z),

∂ηw(ξ, η, z) = Y (zξ, zη : z). (35)

Then

ln X (ξz, ηz; z) = w[ξ, (1 + z)η; z] − w(ξ, η; z),

ln Y (ξz, ηz; z) = w(1 + z)ξ, η; z] − w(ξ, η; z). (36)

On replacing the variables ζ = ξz, θ = ηz, x = ξ (1 + uz)/z,
and x = θ (1 + uz)/z yields

ln X (ξ, η; z) = η

∫ 1

0
Y [ξ, (1 + uz)η; z] du,

ln Y (ξ, η; z) = ξ

∫ 1

0
X [(1 + uz)ξ, η; z] du. (37)

The functions X (ξ, η; z) and Y (ξ, η; z) generate polynomials
Pm+1,n(z) and Pm,n+1(z), respectively [see Eq. (34)].

V. CYCLED COMPONENTS

In what follows we will omit the arguments of X and Y ,
e.g., X stands for X (ξ, η; z).

The linked components of order (m, n) having a minimal
possible number of edges ν = m + n − 1 are trees, i.e., they
have no cycles. According to Eq. (26) the number of linked
components having exactly k cycles is

Cm,n;m+n+k−1 = 1

k!

dkPm−1,n−1

dzk

∣∣∣∣
z=0

. (38)

Thus the number Uk (g, t ) of linked components with k cycles
at the moment t in the graph is [see Eqs. (21) and (26)],

Uk (m, n, t ) = n̄m,n;m+n+k (t )

=
(

M

m

)(
N

n

)
e(mn−Mn−Nm)t/2T (et/T − 1)m+n+k−1

× 1

k!
∂m
ξ ∂n

η

∂kw(ξ, η; z)

∂zk

∣∣∣∣
z=0

. (39)

A. Trees

The number of trees (linked components without cycles,
k = 0) is thus expressed through Pm,n(0). Let us introduce the
special notation,

x = X (ξ, η; 0) = X o and y = Y (ξ, η; 0) = Y o. (40)
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Here and below the superscript o marks the functions at z = 0.
Of course, x and y remain the functions of ξ and η.

At z = 0 Eq. (37) reduces to the set of two transcendent
equations,

ln x = ηy, ln y = ξx. (41)

Then Pm,n(0) is found from the following chain of equalities:

Pm,n(0) = m!(n + 1)!Coefξ,η

x

ξm+1ηn+2

= m!(n + 1)!Coefu,v

eu(m+2)+v(n+2)

vm+1un+2
e−(u+v)(1 − uv)

(42)

where

u = ln x and v = ln y (43)

and the operation Coef is defined as follows (see Ref. [25]):

Coefu,v

∑
ak,l u

kvl = a−1,−1. (44)

The multiplier e−(u+v)(1 − uv) in the last term is just the
Jacobian appearing in replacing the variables ξ, η → u, v.
Rather simple algebra finally yields

Pm,n(0) = (m + 1)n(n + 1)m. (45)

The number of trees is thus

U0(m, n, t ) = n̄m,n;m+n−1(t )

=
(

M

m

)(
N

n

)
e(mn−Mn−Nm)t/2T

× (et/T − 1)m+n−1mn−1nm−1. (46)

B. Unicyclic components

In order to find the spectrum of unicyclic component we
should find the first derivative of polynomials Pm,n(z) over z.
To this end we introduced the notation,

Q = η

∫ 1

0
Y (ξ, η(1 + uz); z) du,

R = ξ

∫ 1

0
X (ξ (1 + uz), η; z) du, (47)

and differentiate Eq. (37) over z:

Xz = QzX, Yz = RzY (48)

Let then expand X (ξ (1 + uz), η; z) and Y (ξ, η(1 + uz); z) in
the integrands over uz:

X (ξ (1 + uz), η; z) = X + Xξ ξzu + Xξξ

ξ 2z2u2

2!
+ · · · ,

Y (ξ, η(1 + uz); z) = Y + Yηηzu + Yηη

η2z2u2

2!
+ · · · . (49)

We also expand Q and R. On substituting Eq. (49) into
Eq. (47) and integrating over u yield

Q = ηY + Yη

η2z

2!
+ Yηη

η3z2

3!
+ . . . ,

R = ξX + Xξ

ξ 2z

2!
+ Xξξ

ξ 3z2

3!
+ . . . . (50)

Their derivatives at z = 0 are then readily found:

Qo
z = ηY o

z + Y o
η

η2

2!
,

Ro
z = ξX o

z + X o
ξ

ξ 2

2!
. (51)

Combining Eqs. (48) and (51) leads to the set of linear
equations for X o

z and Y o
z :

X o
z − xηY o

z = yη(η2/2!)x,

−yξX o
z + Y o

z = xξ (ξ 2/2!)y. (52)

Differentiating Eq. (41) over ξ and η yields

xξ = ηx2y

�
, xη = xy

�
,

yξ = xy

�
, yη = ξxy2

�
, (53)

where

� = 1 − ln x ln y.

On substituting this into Eq. (52) we finally get

X o
z = η2ξx2y2

�2
(1 + ξx),

Y o
z = ξ 2ηx2y2

�2
(1 + ηy). (54)

C. k-cyclic components

Full expansions of X and Y over uz look as follows:

X (ξ (1 + uz), η; z) =
∞∑

s=0

(uz)sξ s

s!
∂s
ξ X,

Y (ξ, η(1 + uz); z) =
∞∑

s=0

(uz)sηs

s!
∂s
ηY. (55)

On substituting this into Eq. (47) and integrating over u yields

Q(ξ, η; z) =
∞∑

s=0

ηs+1zs

(s + 1)!
∂s
ηY,

R(ξ, η; z) =
∞∑

s=0

ξ s+1zs

(s + 1)!
∂s
ξ X. (56)

Let us differentiate l times over z both sides of Eq. (48). The
result is

∂ l+1
z X =

l∑
k=0

(
l

k

)
∂k+1

z Q∂ l−k
z X,

∂ l+1
z Y =

l∑
k=0

(
l

k

)
∂k+1

z R∂ l−k
z Y. (57)
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Equation (56) yields the k + 1-th derivatives of Q and R,

∂k+1
z Q =

∞∑
s=0

k+1∑
p=0

(
k + 1

p

)
ηs+1

(s + 1)!

(
∂ p

z zs
)
∂k−p+1

z ∂s
ηY,

∂k+1
z R =

∞∑
s=0

k+1∑
p=0

(
k + 1

p

)
ξ s+1

(s + 1)!

(
∂ p

z zs
)
∂k−p+1

z ∂s
ξ X. (58)

Now we put z = 0 in this set and obtain

(
∂k+1

z Q
)o =

k+1∑
p=0

(
k + 1

p

)
ηp+1

(p + 1)

(
∂k−p+1

z ∂ p
ηY

)o
,

(
∂k+1

z R
)o =

k+1∑
p=0

(
k + 1

p

)
ξ p+1

(p + 1)

(
∂k−p+1

z ∂
p
ξ X

)o
. (59)

On substituting this result into Eq. (59), and separating the
terms with p = 0 k = l in the sums on the RHS of these
equations, give the set of two equations for (∂ (l+1)

z X )o and
(∂ (l+1)

z Y )o, (
∂ l+1

z X
)o − ηx

(
∂ l+1

z Y
)o = �l ,(

∂ l+1
z Y

)o − ξy
(
∂ l+1

z X
)o = �l , (60)

where

�l =
l∑

k=0

k+1∑
p=0

Zl (k, p)ηp+1(∂k−p+1
z ∂ p

ηY )o
(
∂ l−k

z X
)o

,

�l =
l∑

k=0

k+1∑
p=0

Zl (k, p)ξ p+1
(
∂k−p+1

z ∂
p
ξ X

)o(
∂ l−k

z Y
)o

, (61)

and

Zl (k, p) = 1

(p + 1)

(
l

k

)(
k + 1

p

)
(1 − δp,0δk,l ). (62)

The solution to this set is(
∂ l+1

z X
)o = ηx�l + �l

�
,

(
∂ l+1

z Y
)o = ξy�l + �l

�
. (63)

The initial functions ∂zX o and ∂zY o are given by Eq. (54).

D. Leading approximation

We look for the solution to recurrences (60) in the form

1

k!

(
∂ (k)

z X
)o = ak (ηξx2y2)k/�3k−1,

1

k!

(
∂ (k)

z Y
)o = bk (ηξx2y2)k/�3k−1. (64)

According to Eq. (54) we have

a1 = η(1 + ξx), b1 = ξ (1 + ηy). (65)

Let us substitute Eq. (65) into Eq. (61) and neglect all terms
containing 1/�K with K < 3l − 2: i.e., we retain the most
singular terms. The proportionality coefficients ak and bk are
then determined from the set of recurrences,

al+1 − ηxbl+1 = φl ,

bl+1 + ξyal+1 = ψl ,
(66)

where

φl = ξ

l + 1

l−1∑
k=0

(k + 1)bk+1al−k + (3l − 1)

2
ξ 2bl ,

ψl = η

l + 1

l−1∑
k=0

(k + 1)ak+1bl−k + (3l − 1)

2
η2al . (67)

VI. BACK TO SPECTRA

The solution to the set (67) is independent of � and is
given by the sum of products ξαηβxγ yδ . We therefore begin
by calculating the partial contributions of a single term,

H = Coefξ,η

ξαηβxγ yδ

�3k−1ξm+1ηn+2
, (68)

where α, β, γ , δ are nonnegative integers. In order to evalu-
ate H we introduce the variables

x = eu, y = ev, ξ = ve−u, η = ue−v. (69)

Taking into account that the Jacobian of this transformation
J = ∂ (ξ, η)/∂ (u, v) = e−u−v (1 − uv) we have

H = Coefu,v

e(m+c)u+(n+d )v

(1 − uv)3k−2un+a+1vm+b+1
(70)

with

a = 1 − β, b = −α, c = γ − α, d = δ − β + 1. (71)

Let us expand the factor (1 − uv)3k−2 in powers of uv,

1

(1 − uv)3k−2
=

∞∑
r=0

(
3k + r − 3

r

)
(uv)r . (72)

Finally we have

H = (m + c)m+c(n + b)n+b

(m + c)!(n + b)!
Z, (73)

where

Z =
rm∑

r=0

(
3k + r − 3

r

)

× (m + a)!(n + b)!(m + c)−r (n + d )−r

(m + a − r)!(n + b − r)!
. (74)

Here rm = min(m + c, n + d ).

A. Unicyclic graphs

From Eqs. (39) and (70) we have

∂zPm,n(0) = m!(n + 1)!Coefξ,η

∂zX (ξ, η; 0)

ξm+1ηn+2

= m!(n + 1)!(R + S), (75)

where

R = Coefu,v

eu(m+1)+v(n+1)

vmun(1 − uv)
(76)

and

S = Coefu,v

eu(m+1)+v(n+1)

vmun(1 − uv)
v. (77)
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We expand 1/(1 − uv) in powers of uv and obtain

R =
∑

r�rmn

(m + 1)n−r−1(n + 1)m−r−1

(m − r − 1)!(n − r − 1)!
, (78)

where rmn = min(m − 1, n − 1) and

S =
∑

r�rmn

(m + 1)n−r−1(n + 1)m−r−2

(n − r − 1)!(m − r − 2)!
. (79)

After a simple but tedious algebra we have

∂zPm,n(0)

= m!n!
∑

r�rmn

(m + 1)n−r−1(n + 1)m−r−1

(m − r − 1)!(n − r − 1)!
(m + n − r + 1).

(80)

The RHS can be expressed through the truncated McDonald’s
function

IG
μ (x) =

G∑
k=0

(x/2)2k+μ

k!(k + μ)!
. (81)

Indeed, at m � n we replace s = m − r − 1 and find

∂zPm,n(0) = m!n!
m−1∑
s=0

(m + 1)n−m+s(n + 1)s

s!(n − m + s)!
(n + s + 2).

(82)

B. Asymptotic analysis

Two approximations,

m!

(m − r − 1)!
= (m − r)(m − r − 1) · · · m

= mr+1
(

1 − r

m

)
· · ·

(
1 − 1

m

)

≈ mr+1 exp

(
−

r∑
s=1

s

m

)

≈ mr+1 exp(−r2/2m) (83)

and (
3k + r − 3

r

)
≈ r3k−3

(3k − 3)!
, (84)

apply in our further asymptotic analysis. Equation (83) can be
cast into the form

∂zPm,n(0) = (m + n)m(n−1))n(m−1),

×
∫ ∞

0
exp[−(r2/2m) + (r2/2n)] dr

= 1

2
(m + n)m(n−1))n(m−1)

√
πmn

2(m + n)
. (85)

Now we calculate Z [see Eqs. (73) and (74)]

Z = 1

(3k − 3)!

∫ ∞

0
rk exp[−(r2/2m) + (r2/2n)] dr

= 1

(3k − 3)!

[√
πmn

2(m + n)

]k+1

�(k/2). (86)

It is important to note that the asymptotic expression for Z is
independent of the parameters a, b, c, d [see Eq. (77)]. This
fact allows us to write the asymptotic form of the spectrum of
k-cyclic biparite graphs not even solving the set (68).

VII. RESULTS AND DISCUSSION

In this paper the kinetic approach of Ref. [18] applied for
the analysis of the time evolution of initially empty bipartite
random graph. Assuming that the M, N graph evolves by
randomly adding edges one at a time, the expression for the
average order-complexity spectrum was shown to factorize
into two multipliers n̄M,N = uM,N u∞, the first of which (uM,N )
describes the effects related to the finiteness of the graph,
whereas the second one (u∞) coincides with that found in
the thermodynamic limit [24]. It is remarkable that both
multipliers carry the information on the emergence of the
giant component at the critical time t = tc = 1/

√
MN . The

first multiplier uM,N has a sharp maximum at the critical
time t = tc = 1/

√
MN . The second one has an algebraic

form c(m, n, tc ) ∝ (mn)−3/2 with the second moment of u∞
diverging as 1/(tc − t ) [24]. However, their singular behavior
is suppressed with the finiteness of the graph. The algebraic
part of the spectrum is modulated by an exponential factor
depending now on M and N

The number of k-cycled graphs has been expressed in terms
of k-derivatives of the polynomials Pm,n(z) over z which are,
in turn, serve as the generating functions for the number of
bipartite graphs having exactly m and n vertexes and ν edges.
The set of nonlinear integral equations (39) for the generating
functions for the polynomials Pm,n(z) has been derived by
applying the Riddell theorem.

The main results of this article can be formulated as
follows:

(1) It has been shown that in sufficiently large graphs the
average order-complexity spectrum [Eq. (19)] factorizes into
two multipliers n̄m,n;ν = one of which depends on the total
order of graph while the second does not. It depends only
on the order-complexity of its irreducible components m, n; ν.
This factorization repeats my result [17] found for ordinary
graphs comprising one sort of vertexes. The multiplier uM,N

has a maximum in the plane m, n the position of which defines
the phase transition point t = tc and the time dependence of
the composition of giant components [see Eq. (24) and Fig. 2].
The analytical expressions for the both multipliers are given
by Eqs. (23) and (25).

(2) Equations (19) and (23) show that the k-cycled order-
complexity spectrum contains the multiplier T −(k−1). The
spectrum of trees is thus proportional to T , the spectrum of
unicyclic graphs is proportional to 1. More complex graphs
contain negative powers of T , which means that in the limit of
large T the trees and the unicyclic components contribute to
the time evolution process of the graph. This fact gives the
answer to the questions, what is going on at the transition
point and what is the gel. At first sight, the kinetics of coalesc-
ing trees should be described by the Smoluchowskii equation.
It is not so in the presence of cyclization: the transition
of trees by adding one extra edge that goes with the rate
T −1(m − 1)(l − 1)n̄l,m [see Eq. (14)], where ν = m + n − 1
in trees) considerably modifies the spectrum of trees. The
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point is that the cyclization is the first-order process (linear
in the concentration of graphs) that does not contribute to the
kinetics compared to the second-order process of coalescence
of graphs. The ratio of the rates of these processes is 1/T �
1 at m, n ∝ 1. At large m, n the rates of cyclization and
coalescence become comparable, and the giant component
emerges. The number concentration C of trees then obeys the
equation [Eq. (55) of Ref. [24]] Ċ ∝ (1 − xcyc).

(3) The average mass spectrum has been expressed in
terms of the polynomials Pm,n introduced in Ref. [24]. Here
these polynomials have been introduced as the generating
functions for the number of irreducible components of the
graph with fixed degree of filling ν. This step allows one to
apply the Riddell [23] theorem for deriving the set of integral
equations (37).

(4) The general expression for the number of k–cycled
components derived in Sec. V [Eq. (39)] has been used for
deriving the exact expression for the spectrum of the unicyclic
components [Eq. (46)].

(5) The asymptotic behavior of k-cycled components has
been analyzed in Sec. VI. It has been shown that their spectra
have the form c(k)

m,n → [πmn/(m + n)]k [Eq. (86)].
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APPENDIX

We construct the solution to Eq. (13) in the form

� = M!N!Coefu,v

{
u−Mv−N

× exp

[∑
m,n;ν

xm,n; νam,n; ν (t )umvn

]}
, (A1)

where the coefficients am,n; ν (t ) will be defined later [see
Eq. (A5)]. Here the operation Coef (see Ref. [25]) is intro-
duced as follows:

Coefu,v

[∑
m,n

bm,numvn

]
= b−1,−1. (A2)

The spectrum of linked components of order m, n with
ν edges n̄m,n;ν (t ) can be expressed in terms of am,n;ν (t ) as
follows:

n̄m,n; ν (t ) = ∂�({xm,n; ν}, t )

∂xm,n; ν

∣∣∣∣
{xm,n; ν }={1}

= M!N!am,n; ν (t )Coefu,v{u−M+mv−N+n

× exp[G(u, v; 1|t )]}. (A3)

Here

G(u, v; ζ |t ) =
∑

m,n; ν

am,n; ν (t )umvnζ ν (A4)

is the generating function for am,n; ν (t ).

On substituting � in the form (A1) into Eq. (13) with
L̂ f and L̂c defined by Eqs. (14) and (15) yields the set of
equations for am,n; ν (t ),

T
dam,n; ν

dt
=

m.n∑
k,l=0

ν−1∑
μ=0

(m − l )kam−l,n−k; ν−μ−1(t )al,k; μ(t )

+ mnam,n; ν (t ),

− 1

2
(Mn + Nm)am,n; ν (t ) + (mn − ν + 1)am,n; ν−1

− (mn − ν)am,n; ν . (A5)

This set is subject to the condition corresponding to the
initially empty graph,

am,n; ν (0) = (δm,1δn,0 + δm,0δn,1)δν, 0. (A6)

It is easy to check that the condition (A6) corresponds to
�|t=0 = xM

1,0; 0xN
0,1; 0.

The equation for the generating function G can be readily
derived from Eqs. (A4) and (A5),

T
∂G

∂t
= ζ

[
u
∂G

∂u
v
∂G

∂v
+ uv

∂2G

∂u∂v

]

− (ζ − 1)ζ
∂G

∂ζ
− 1

2

(
Nu

∂G

∂u
+ Mv

∂G

∂v

)
. (A7)

The initial condition for this equation is

G(u, v; ζ |0) = u + v. (A8)

Now let

D(u, v; ζ |t ) = exp[G
(
ueNt/2T , veMt/2T ; ζ |t)]. (A9)

Then, instead of Eq. (A7), we derive a linear equation for D,

T
∂D

∂t
= ζuv

∂2D

∂u∂v
− (ζ − 1)ζ

∂D

∂ζ
. (A10)

The initial condition for this equation follows from Eq. (A8),

D(u, v; ζ |0) = eu+v. (A11)

Equation (A10) is readily solved by separating variables. Let

D(u, v; ζ |t ) =
∑
m,n,κ

�κ (t, )Zm,n,κ (ζ )umvn.

Then �κ (t ) = eκt/T and

κZm,n; κ = ζmnZm,n; κ + ζ (1 − ζ )
dZm,n; κ

dζ
, (A12)

where κ is a separation constant. The solution to this
equation is

Zm,n; κ (ζ ) = bm,n; κ (1 − ζ )mn−κζ κ . (A13)

The function D should be analytical at ζ = 0. Hence, κ = s,
where s is a nonnegative integer. Next, the coefficients bm,n; κ

should be chosen from the initial condition (A8). It is easy to
see that

bm,n; s = 1

m!n!

(mn

s

)
.
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We then come to the result

D(u, v; ζ |t ) =
∞∑

m,n=0

umvn

m!n!
(1 − ζ + ζet/T )mn. (A14)

In order to return to ag,ν (t ) we use Eq. (38),

ln
∑
m,n

umvn

m!n!
(1 + δ)mn =

∞∑
m,n=1

umvn

m!n!
δm+n−1Pm−1,n−1(δ),

(A15)
with δ = ζ (et − 1). Then Eqs. (A11) and (A15) allow us to
restore

Am,n(ζ , t ) =
∑

ν

am,n; ν (t )ζ ν.

We find

Am,n(ζ , t ) = 1

m!n!
e−(mN+nM )t/2T )

× (et/T − 1)m+n−1ζ m+n−1Pm−1,n−1[ζ (et/T − 1)],
(A16)

where the polynomial Pm,n(δ) is defined as the generating
function for the numbers Cm,n;ν of a linked labeled bipartite
graph of order m, n,

δm+n−1Pm−1,n−1(δ) =
mn∑

ν=m+n−1

Cm,n;νδ
ν. (A17)

Equation (A17) is readily applied for restoring am,n; ν (t ). The
result is

am,n; ν (t ) = 1

m!n!
e−(mN+nM )t/2T )(et/T − 1)νCm,n; ν . (A18)

Now we are ready to find the average number of linked
components of order m, n with ν edges. From Eq. (A3) we

have

n̄m,n; ν (t ) = M!N!am,n; ν (t )Coefu,vu−M+mv−N+nD(u, v; 1|t ).
(A19)

At ζ = 1 Eq. (A14) gives

D(u, v; 1|t ) =
∞∑

m,n=0

umvn

m!n!
emnt/T . (A20)

Hence,

Coefu,vu−M+mv−N+nD(u, v; 1|t )

= exp(−mN t/2 − nMt/2 + mnt/T )

(M − m)!(N − n)!
. (A21)

We thus come to the result

n̄m,n; ν (t ) =
(

M

m

)(
N

n

)
e(mn−mN−nM )t/T (et/T − 1)νCm,n; ν .

(A22)

Because the function D(u, v, 1|t ) coincides with the D–
function corresponding to the spectrum of coagulating par-
ticles in the system with the kernel K (m, n; k, l ) = mk + nl
considered in Ref. [19], we can easily derive the expression
for the spectrum of linked components over their orders (num-
bers of vertices), n̄m,n = ∑

ν n̄m,n; ν . The result has the same
form as the average particle mass spectrum in the coagulating
system with the coagulation kernel K (g, l ) = mk + nl ,

n̄m,n(t ) =
(

M

m

)(
N

n

)
e(mn−mN−nM )t/T

× (et/T − 1)m+n−1Pm,n(et/T − 1). (A23)
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