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In this paper we study the connection between the zeros of the expected Euler characteristic curve and
the phenomenon which we refer to as homological percolation—the formation of “giant” cycles in persistent
homology, which is intimately related to classical notions of percolation. We perform an experimental study that
covers four different models: site percolation on the cubical and permutahedral lattices, the Poisson-Boolean
model, and Gaussian random fields. All the models are generated on the flat torus Td for d = 2, 3, 4. The
simulation results strongly indicate that the zeros of the expected Euler characteristic curve approximate the
critical values for homological percolation. Our results also provide some insight about the approximation error.
Further study of this connection could have powerful implications both in the study of percolation theory and in
the field of topological data analysis.
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I. INTRODUCTION

This paper aims to make a connection between two seem-
ingly unrelated mathematical topics in the context of spatial
stochastic processes. The first is a large-scale phenomenon
we refer to as homological percolation, where giant cycles are
formed. The second is an integer-valued topological invariant,
known as the Euler characteristic (EC).

To describe these two topics and the connection between
them, we will use the language of persistent homology
[1–4], which is the main workhorse in the field of topolog-
ical data analysis (TDA) [5,6]. Persistent homology is an
algebraic-topological functional that is applied to filtrations
(nested sequences) of topological spaces. It is essentially a
tool that tracks the formation and destruction of topologi-
cal features such as connected components (0-cycles), holes
(1-cycles), cavities (2-cycles), and their higher-dimensional
analogs (nontrivial k-cycles). Persistent homology has been
demonstrated to be a powerful tool in the analysis of various
types of data (e.g., neuroscience [7], cosmology [8], and
complex networks [9]).

In a data-analytic language, we can think of the giant cycles
as the “topological signal” hidden in the filtration, as they
capture information about the underlying space. The small
cycles are considered as nuisance “noise” one might wish
to filter, in order to reveal the signal, see Fig. 1. One of the
main challenges in TDA is to identify which feature belongs
to which group. Suppose that X is a “nice” topological space,
and that we have a filtration {Xt }t∈R of spaces such that Xs ⊂
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Xt ⊂ X for all s < t . We can classify the cycles captured by
persistent homology into two groups: the group of “giant”
cycles will be those that are also nontrivial cycles (holes) in X ,
while all other cycles (that are trivial in X ) will be considered
“small.” These cycles could just as accurately be referred to as
infinite or essential cycles.

The appearance or birth of the giant k-cycles, or in other
words the intrinsic homology classes of the underlying space,
is the phenomenon we refer to as homological percolation.
Our definition is inspired by the question: At what scale does
the nontrivial k-cycles of the underlying space first appear.
These are precisely the cycles described above.

From the theoretical-probabilistic perspective, the study of
this type of phenomena (in terms of intrinsic topology) is at
a very early stage. However, relying on classical results in
percolation theory together with recent simulations (including
in this paper), it is conjectured that homological percolation
occurs as a sharp phase transition. In other words, given a
random filtration {Xt } the probability for creating the giant
cycles switches from zero to one as a result of an infinitesimal
increase in the filtration parameter t . Moreover, for a fixed k
the thresholds for all giant k-cycles coincide, and the critical
values are increasing in k. In other words, if tperc

k is the critical
value for the emergence of the giant k-cycles, then tperc

k � tperc
k′

for all k < k′.
An important difference in our definition is the use of

persistent homology to quantify “giant” rather than geometric
size. While in the percolation literature, “giant” or “infinite”
is often described in terms of the number of vertices or the
diameter of the component, a different characterization has
recently been widely used [11]: asking whether the origin is
connected to the boundary of a surrounding box as the size
of the box goes to infinity. This is an inherently topological
definition, as it asks if such a path exists. The relationship
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FIG. 1. Persistent homology for a point sample on the two-
dimensional flat torus (a unit box with periodic boundary conditions).
(a) A set of 50 points X sampled from the flat torus. The filtration
Xt taken here is the union of balls of radius t around the points. We
increase t from 0 to ∞ and calculate PH1. (b) The barcode for PH1.
Each 1-cycle is represented by a bar, where the endpoints are the
radii in which the cycle was formed and filled in (birth, death). The
two red bars (bottom two with arrows) correspond to the two cycles
in the torus (“the giant cycles”) while the blue ones are considered as
“noise”. (c) The persistence diagram for PH1. Here the (birth, death)
pairs are plotted as points in the plane. Two points are far away from
the diagonal (shown by the vertical red dashed line), representing the
true nontrivial or giant cycles of the torus. This figure was generated
using the GUDHI package [10].

between this notion and our definition is discussed in more
detail in Sec. II.

There are a few other higher-dimensional definitions for
percolation studied in the literature. A common definition,
known as “Topological percolation” [12], studies changes
in the behavior of the number of k-dimensional nontrivial
cycles in X (the kth Betti number). In a number of models, it
has been observed that for each dimension, there is a range
where the corresponding Betti number dominates [13] and
the percolation threshold is defined in terms of the crossover
between these ranges. This phenomenon has been studied in
mean-field models, such as higher-dimensional versions of
the Erdős-Rényi random graph (e.g., the Linial-Meshulam
model [14] or the Erdős-Rényi clique complex [13]). A related
phenomenon is the appearance of the “giant” shadow, where
most new simplices form new topological features, which has
been observed to also occur in the vicinity of the crossover of
the Betti numbers (see Ref. [15]). As the underlying space of
the these mean-field models is the complete simplex, it has
no intrinsic topology making our definition useless for the
study of these types of phenomena. On the other hand, the
definition in terms of Betti numbers only counts the number
rather than the size of the cycles which appear, while our
definition specifically asks when a global structure appears.
In our experiments, we investigate the relationship between
these two definitions which concludes this part of the story.

The second half of the story in this paper is about a rather
different object. The Euler characteristic (EC) is an integer-
valued topological invariant that can be assigned to a topolog-
ical space. Quite remarkably, the EC can be defined in several
different ways, vastly different in nature (e.g., geometric,
combinatorial, topological, analytic), which are all equivalent
under quite general conditions (local compactness). There are
many ways to compute the EC. For example, we can compute
the EC by counting the number of cells in a cell complex,
counting the critical points of a Morse function, or integrating

the Gaussian curvature of a manifold. For our purposes, we
use the “homological” definition of the EC, i.e.,

χ (X ) :=
∑

k

(−1)kβk (X ), (1.1)

where X is a topological space and βk (X ) denotes the kth
Betti number. The EC is an intriguing mathematical object
[16,17], and over the years it was also found to be very
useful as a statistical tool. Two areas of applications where the
EC was proven to be quite powerful are cosmology [18–20]
and brain imaging [21,22]. In the random setting, somewhat
surprisingly, much more is known about the distribution of the
EC for a random space X (as we see in Sec. III) compared to
the individual Betti numbers defining it.

Given a topological space X and a filtration {Xt }t∈R, one
may calculate its EC curve χ (t ) := χ (Xt ). For several ran-
dom filtrations, such as the ones discussed in this paper, the
expected value E{χ (t )} has been analyzed in the past [23,24].
In all the models we discuss here, as well as many others,
while the EC curves look completely different, the expected
EC curve has exactly (d − 1) zeros (where d is the dimension
of the generating model). Denote these zeros by t ec

1 , . . . , t ec
d−1,

and recall that tperc
1 , . . . , tperc

d−1 are the homological-percolation
thresholds. The question we wish to pursue in this paper is the
then following: Is there a connection between tperc

k and t ec
k ?

A priori, there is no obvious reason why such a connection
should exist. Indeed, both homological percolation and the
EC curve are related to the homology of a given filtration.
However, homological percolation describes the giant cycles
formed, while the EC contains information about the total
number of cycles, regardless of their size. Therefore, while
it could be expected that the percolation defined in terms of
dominating behavior of Betti numbers [12] would be related to
the EC (see discussion of related work below), the connection
with the intrinsic topology of the underlying space is much
more unexpected.

Our main goal in this paper is to argue that such an un-
expected connection exists and is potentially universal in the
sense that it occurs across vastly different stochastic models.
We note that we are not aiming to provide any analytic
statements here. Instead, we want to suggest that this link
exists by presenting simulation results for several random
systems.

In this paper we consider four percolation models: site per-
colation on a cubical grid, site percolation on a permutahedral
grid, a continuum percolation model, and the sublevel sets
of Gaussian random fields. In all these models, an explicit
formula for the expected EC curve can be calculated. We
simulate these models on the d-dimensional flat torus (i.e.,
a d-dimensional box with periodic boundary conditions) and
compare the critical percolation values to the zeros of the
expected EC curve.

A. Main results

The simulations we present in Sec. IV highly suggest a
positive answer to the question above. In all models and
all dimensions tested, the simulations indicate that tperc

k ≈
t ec
k , where determining the exact meaning of “≈” remains

future work. Note that all the models we study depend on a
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parameter n (either grid size, or number of points). Defining
�k := (tperc

k − t ec
k ), it would be tempting to conjecture that

�k
n→∞−−−→ 0. However, our simulation results indicate that

while the difference converges, the limit might be nonzero. If
the model is symmetric with respect to the parameter t (e.g.,
the permutahedral complex and a zero-mean Gaussian field),
and if d is even, then our simulations as well as analytical
arguments show that indeed �d/2 = 0. A second-order ob-
servation we make from the simulations is that the sign of
the error term �k is not arbitrary. For k < d/2 it seems that
we always have �k < 0, while for k > d/2 we have �k > 0.
We also experimentally illustrate a connection between our
definition and a definition in terms of Betti numbers which
has been studied before (see below).

In addition to the interesting and surprising mathematical
phenomenon that we reveal here, there are also potential
applied aspects to the conjectures we make in this paper.
In most models in statistical physics, the exact percolation
thresholds are not known. At best there exist some theoretical
bounds, or numerical approximations. However, since the
zeros of the expected EC curves can be found in many cases,
our hope is that these could be used them as an improved
approximation for the real percolation thresholds. In addition
to probability and statistical physics, we also believe that
these results can have implications in TDA, for example by
enhancing the detection of significant topological features in
data. For example, we can infer that we have captured the
k-dimensional homology of the underlying space if once the
k + 1-Betti numbers dominate.

Percolation, i.e., the appearance of giant or infinite con-
nected components, has been and continue to be the subject
of intensive research in statistical physics, complex systems,
and mathematics. Identifying numerical values for relevant
thresholds is an important and difficult problem. So it is not
surprising, given the computability of the Euler characteristic
that the the connection between percolation thresholds and
the EC has been previously studied in Ref. [25], and has
certainly inspired the current work. There, the authors focused
on classical percolation (the formation of giant connected
components) which is a special case of the higher-dimensional
homological notion we consider here. Thus, there is only a
single threshold to consider. In addition, the models consid-
ered in Ref. [25] are two- and three-dimensional, whereas here
we wish to argue that this phenomenon is more universal in
that it occurs in all dimensions and across various types of
percolation models. In our setting, we define percolation in
terms of persistent homology and investigate the connection
with zeros of the Euler characteristic curve. In upcoming
work [26], we will make the connection between classical
notions of percolation and the homological percolation we
introduce here precise. Another related work is Ref. [27],
where the authors studied a closely related notion on the
two-dimensional torus for discrete models looking for the
appearance of components which “wrap-around,” which they
studied through winding numbers.

As mentioned earlier, there are numerous other notions of
topological phase transitions. For example, Ref. [28] studies
the connection between the EC zeros and the switch between
the dominant Betti number from βk to βk+1. This is shown to

occur around the (k + 1)th zero of the expected EC. While
we also show experimentally that these phase transitions are
related to our notion of homological percolation, these are
very different types of phase transitions. The Betti numbers
are quantitative descriptors, counting the total number of
cycles. The majority of these cycles can be shown to be small
and local. Moreover, from the definition of the EC (1.1), it is
highly conceivable that the EC zeros are strongly connected
to changes in the Betti numbers. On the other hand, in this
paper we study the emergence of the essential cycles, which
is a qualitative phenomenon that describes the formation of
global structures. Here the connection to the EC is quite
unexpected. In addition, the model studied in Ref. [28] is the
clique complex over the Erdős-Rényi random graph, which
is different than the geometric models studied here. We note
that the connection between the crossover of Betti numbers
and the EC has also been previously observed in several
geometric models [29,30]. The connection with the statistics
of persistence diagrams (i.e., the distribution of “small” cy-
cles) has been studied in Refs. [31,32]. We refer the reader
to the references in Ref. [28] for other connections between
physical quantities and the zeros of the Euler characteristic
curve. Finally, some aspects of persistent homology in the
continuum percolation model were explored in Ref. [33] and
the special case of the appearance of top-dimensional homol-
ogy, which we do not consider here has been investigated in
Refs. [23,34,35].

II. PRELIMINARIES

In this section we wish to provide a rather nonformal
introduction to the fundamental terminology we will be using
in this paper. We include references for more formal treatment
of the topics discussed.

Homology is an algebraic-topological structure that de-
scribes various types of topological phenomena in topological
spaces using algebraic structures. Let X be a topological
space. In this paper we will use homology with field coef-
ficients. In this case, the kth homology Hk (X ) is a vector
space, such that its basis elements correspond to the following
features. The basis of H0(X ) corresponds to the connected
components of X (also referred to as 0-cycles), H1(X ) to
“holes” in X (1-cycles), H2(X ) to “voids” or “bubbles” in
X (2-cycles), and, more generally, Hk (X ) represents k-cycles
that can be thought of as shapes similar to a k-sphere. The
Betti numbers are the corresponding dimensions βk (X ) :=
dim Hk (X ) that count the number of nontrivial k-cycles in X .
In Fig. 2 we present a few examples for spaces along with
their Betti numbers. There are many excellent introductions
to homology theory, for example, we refer the reader to [36].
In addition to describing the topology of a single space X , the
language of homology also provides means to match k-cycles
between two spaces. Let X,Y be topological spaces, and
let f : X → Y be a continuous function. Then for every k
there exists a corresponding linear transformation called the
induced map f∗ : Hk (X ) → Hk (Y ) that maps k-cycles in X
into k-cycles in Y .

Persistent homology is one of the fundamental tools used
in the field of applied topology or topological data analysis.
The motivation for developing persistent homology was that
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β0 = 1
β1 = 0
β2 = 0

β0 = 1
β1 = 1
β2 = 0

β0

β1 = 0
β2 = 1

β0 = 1
β1 = 2
β2 = 1

= 1

FIG. 2. Example of simple topological spaces with their Betti
numbers. From left to right: a disk, a circle, a two-dimensional
sphere, and a two-dimensional torus. For the torus, we marked the
two 1-cycles in dashed lines.

as data-analytic features, homological properties can be quite
unstable in the sense that small perturbations to the data may
result in a significant change of the homological structure.
The solution provided by persistent homology is that instead
of extracting the homological features of a single space, we
consider a sequence of spaces and extract information about
homological cycles together with their evolution throughout
the filtration. This can be thought of as a “multiscale” version
of homology.

A bit more concretely, a filtration X = {Xt }t is a set of
topological spaces such that for all s < t we have Xs ⊂ Xt . The
inclusion maps i : Xs ↪→ Xt induce mappings between cycles
i∗ : Hk (Xs) → Hk (Xt ). These mappings allow us to track the
evolution of cycles as they form and disappear throughout
the filtration. Without getting into the formal mathematical
definitions, we can think of the kth persistent homology
PHk (X) as a collection (more accurately a graded-module)
of k-persistent cycles. For each cycle γ ∈ PHk (X) we can
assign two values bth(γ ) and dth(γ ) standing for “birth” and
“death” [bth(γ ) � dth(γ )], representing the times where the
cycle γ was formed and later filled in. As a data-analytic tool,
persistent homology provides a topological signature for data
that also includes some geometric information that makes it
more robust to noise than the fixed-scale homology. See Fig. 1
for an example. For more details as well as formal definitions
see Refs. [3,37]. For an overview of TDA see Refs. [5,6,38].

A. Giant cycles

We are now ready to define homological percolation. Let M
be a “nice” compact space, and let {Xt } be a filtration such that
Xt ⊂ M for all t . As mentioned in the Introduction, by giant
cycles we refer to those cycles that appear in the filtration for
some t and represent one of the nontrivial cycles in Hk (M ).
These are also referred to as essential cycles. We will make
this description a bit more formal.

For each t , the inclusion map i : Xt ↪→ M induces a map
in homology i∗,t : Hk (Xt ) → Hk (M ). The image of i∗,t stands
for all the cycles that exist in Xt and are mapped to nontrivial
cycles in M. We will refer to these cycles as “giant.” By the
term homological percolation we refer to the study of how and

when these giant cycles are formed. For example, the longest
red bars in Fig. 1(b) represent the two holes of the torus, and
therefore we consider them as giant, while the other cycles are
noise.

Suppose that the filtration {Xt } is generated at random (we
will discuss specific random models in Sec. III). For each t ,
fixing k we can define the following events:

Et := {
Im

(
i∗,t

) 	= 0
}
, At := {

Im
(
i∗,t

) = Hk (M )
}
.

In other words, Et is the event that there exists a giant k-cycle
in Xt , while At is the event that all possible giant k-cycles
exist in Xt . It is conjectured that similarly to other percolation
models, the appearance of the giant k-cycles follows a sharp
phase transition. This means that there exists a value tperc

k > 0
such that

P(Et ) = P(At ) =
{

1 t > tperc
k

0 t < tperc
k

, (2.1)

where in most cases we study, the stochastic model has an
intrinsic parameter n and the equalities above hold in the limit
when n → ∞. This conjecture is supported by simulations
(as the ones presented in this paper), as well as a theoretical
work in progress [26] for the Boolean model discussed below.
It is further conjectured that the thresholds are ordered, so
that tperc

1 < tperc
2 < · · · < tperc

d−1 where d is the maximal degree
possible (dictated by the dimension of M).

For our experiments, we choose M to be the d-dimensional
torus. This has the advantage that it has nontrivial homology in
all dimensions. In this setting, the giant component in classical
percolation is related to the one-dimensional homology of the
torus. We expect that the giant component “wraps” around to
form a giant 1-cycle but this has not been rigorously proven
[39] and something we will address in Ref. [26].

The Euler characteristic (EC) is an integer-valued additive
functional. Using the language of homology, one can define
the EC of a topological space X as

χ (X ) :=
∑

k

(−1)kβk (X ),

where βk (X ) are the Betti numbers discussed above. One of
the key properties of the EC is that it is a topological invariant,
namely X and Y are two spaces that are “similar” topolog-
ically in the sense that there is a continuous transformation
form one to the other (known as homotopy equivalence)
and then χ (X ) = χ (Y ). The EC shows up in various areas
of mathematics (combinatorics, integral geometry, topology,
analysis, etc.) and can be defined in various different ways.

In most stochastic models, evaluating quantities related
to the distribution of homology or persistent homology is
between difficult to impossible. Surprisingly, however, this is
not the case for the EC. For example, the expected values
of the Betti numbers are unknown in almost all stochastic
models studied to date, while in almost all the models an
explicit formula for the expected EC exists (see Sec. III).
Therefore, for probabilistic and statistical analysis, the EC is
much favorable, and indeed several interesting applications
in statistics and data science were developed based on EC
calculations [20,21,40,41].

Studying a filtration {Xt } as in persistent homology, we can
define the EC curve χ (t ) := χ (Xt ), that tracks the evolution of
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the EC in time. In the random setting we study in this paper,
we will mainly focus on the expected EC curve

χ̄ (t ) := E{χ (t )}.

III. RANDOM PERCOLATION MODELS

We focus on three different types of stochastic models
to establish our conjectures about the connection between
the Euler characteristic and homological percolation. In this
section we provide the basic definitions for these models, as
well as the formulas we use to calculate the expected EC
curve. One of the main reasons for choosing these models is
that in all of them, we can derive an explicit formula for the
expected EC curve χ̄ (t ) (where t = p, λ, or α depending on
the model below).

All the models we discuss generate random subsets of the
d-dimensional flat torus Td . By “flat torus” we refer to the
quotient of the box [0, 1]d with the relation {0 ∼ 1} (i.e.,
opposite faces are “glued” together). The flat torus is a good
model to study topological phenomena as (a) the metric on
it is locally Euclidean, (b) it is a manifold with no boundary,
and (c) it has nontrivial homology in all degrees k = 0, . . . , d .
More precisely, βk (Td ) = (d

k

)
. While the models discussed

below may be defined for general Riemannian manifolds (e.g.,
with nonzero curvature), we do not investigate this further in
this paper. This investigation would go beyond the scope of
this paper as even generating Poisson samples for arbitrary
manifolds is a difficult problem in its own right. We note
that while the EC should generically have (d − 1) zeros, not
all manifolds have nontrivial homology for all k. Thus, it is
possible that there will be a zero without a corresponding giant
cycle. Nevertheless, we conjecture that it is still true that the
kth zero of the EC approximates the birth time of the giant
k-cycles, assuming the latter exist. Showing this is left as a
future direction of research.

A. Site percolation models

We start with simple discrete models for random subsets
of Td . As opposed to the continuous models we discuss later,
discrete percolation models are well studied and often more
tractable, both from a theoretical and simulation perspective.
We will examine two types of structures, discussed next.

1. Cubical complex

A cubical complex Q is a collection of cubical faces (i.e.,
vertices, edges, squares, cubes, etc.), that is closed under the
boundary operation. We denote by Qd

n the cubical complex
obtained by taking the flat torus Td = [0, 1]d\{0 ∼ 1} and
splitting it into n equal-size boxes, where we assume that
n = md , for some m ∈ N. Note that every d-dimensional box
is in Qd

n together with all its k-dimensional faces (k = 0, . . . ,

d − 1).
We will consider cubical complexes Q that are subsets of

Qd
n . Each such complex is homeomorphic to a subset of Td via

the natural embedding. Thus, we will interchangeably refer
to Q as either a sub complex of Qd

n or as a closed subset of
Td . Denote by Fk (Q) the number of k-dimensional faces of Q.

Then the EC of Q can be calculated by (cf. Ref. [36])

χ (Q) =
d∑

k=0

(−1)kFk (Q). (3.1)

The random cubical complex we study here, denoted Q(n, p),
is generated by taking Qd

n and declaring each d-dimensional
face (or a site) as either open with probability p or closed with
probability 1 − p, independently between the faces. We then
define Q(n, p) as the union of all open boxes (together with
their lower-dimensional faces). See an example in Fig. 3(a)
and the persistence diagram in Fig. 3(e). Calculating the
expected EC using (3.1) (see Appendix A) yields

χ̄Q(p) : = E{χ (Q(n, p))}

= n
d∑

k=0

(−1)k

(
d

k

)
[1 − (1 − p)2d−k

]. (3.2)

Remark. Notice that the definition of Q(n, p) does not
imply any connection between Q(n, p1) and Q(n, p2) for p1 	=
p2. However, in order to discuss percolation phenomena as
well as persistent homology for the cubical complex, we want
the sequence {Q(n, p)}1

p=0 to be a filtration, so that Q(n, p1) ⊂
Q(n, p2) for all p1 < p2. The simplest way to establish that
is the following. Let U1, . . . ,Un be n independent and identi-
cally distributed random variables, so that Ui ∼ U [0, 1]. Then,
for any fixed p, we say that site i is open in Q(n, p) if
Ui � p. This way for all p ∈ [0, 1] the complex Q(n, p) has
the distribution we desire, and indeed Q(n, p1) ⊂ Q(n, p2) for
all p1 < p2.

2. Permutahedral complex

We introduce an alternative discrete model to address some
inherent shortcomings of the cubical model. In two dimen-
sions, a hexagonal tiling is often used in percolation theory
instead of the Z2 grid. Here we will use a higher-dimensional
notion, we refer to as a permutahedral tessellation, where the
basic building block is a permutahedron—the generalization
of a hexagon to arbitrary dimensions. Notice that taking all 3!
permutations of the coordinates (1,2,3) yields six vertices in
R3 that form a hexagon. Similarly, a d-dimensional permuta-
hedron is the polytope obtained by taking the convex hull of
all (d + 1)! permutations of (1, . . . , d + 1) in Rd+1.

Next we construct the permutahedral lattice. The defini-
tions here follow in Ref. [42] (Section 6.6) and Ref. [43].
Define

R̂d :=
{

(x0, x1 . . . , xd ) ∈ Rd+1

∣∣∣∣ d∑
i=0

xi = 0

}
,

i.e., R̂d is a d-dimensional plane in Rd+1. Define the Ad lattice
as Ad := Zd+1 ∩ R̂d , and its dual A∗

d as

A∗
d = {

x ∈ R̂d | ∀y ∈ Ad : x · y ∈ Z
}
.

Taking π : R̂d → Rd to be the natural isometry, then the
Voronoi cells of π (A∗

d ) form a permutahedral tessellation of
Rd , and the set of centers of these cells π (A∗

d ) is called a
permutahedral lattice.
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FIG. 3. The emergence of the giant 1-cycles in two dimensions for (a) the cubical site model Q(n, p) with (n = 2500, p = 0.43), (b) the
permutahedral site model P(n, p) with (n = 1024, p = 1

2 ), (c) Poisson-Boolean model B(n, λ) with (n = 500), and (d) the GRF model G(α)
(computed on a 512 × 512 grid). The red and green lines mark the two giant 1-cycles (recall the period boundary gluing). Note in P(n, p) that
only one giant cycle has appeared and that it is the sum of the two “obvious” giant cycles. [(d)–(g)] PH1 for the corresponding models with the
red vertical lines mark the birth times of the giant 1-cycles. [(h)–(l)] The persistence diagrams for the corresponding models for d = 4. In this
case we have homology in degrees k = 1, 2, 3 (which alternatively dominate from left to right in increasing order of dimension). The vertical
lines mark the birth times of the giant k-cycles. The relevant scale parameter is n = 65536 for Q(n, p), P(n, p), as well as the grid size for the
GRF model. For B(n, λ), n = 5000.

A site in this model is the closure of a Voronoi cell of the a
point in π (A∗

d ). Each site has the structure of a d-dimensional
permutahedron, hence the name of the model. Note that the
points of π (Ad ) form the vertices of this polytope (see also
Ref. [44]).

To go from a tessellation of Rd to a tessellation of the
the torus Td , we use an analogous method as in the cubical
case, gluing “opposite” faces together. In practice, this is
done by identifying points of π (A∗

d ) (similarly to the periodic
Delaunay complex [45]). As in the cubical case, this limits
our choice of grid size (n), depending on the dimension. We
denote the corresponding tessellation of Td as Pd

n .
Similarly to the random cubical model, we define a random

permutahedral complex. Let P(n, p) be a random subset of Pd
n

where each site is open with probability p, and closed with
probability 1 − p. As in the cubical case, we can calculate the

EC by counting faces in different dimensions. This leads to
(see Appendix A),

χ̄P(p) : = E{χ [P(n, p)]}

= n
d∑

k=0

(−1)d−k
[
1 − (1 − p)k+1

]
×

k+1∑
j=0

(−1)k+1− j

(
k

j

)
jd+1. (3.3)

The main reason for our interest in the permutahedral
complex is that, in contrast to the cubical model, it exhibits
a powerful duality property. Let P ⊂ Pd

n be a sub complex
and recall that we define a giant as an element in the image
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FIG. 4. The expected EC curve and the giant cycles. In each plot we draw the expected EC curve (solid line), along with the birth time of
the first giant k-cycle for k = 1, . . . , d − 1 (dots). We simulated all the models on the d-dimensional torus, for d = 2, 3, 4 (from left to right).
[(a)–(c)] The random cubical complex. [(d)–(f)] The random permutahedral complex. [(g)–(i)] The Boolean model. [(j)–(l)] The Gaussian
random field.

i∗ : Hk (P) → Hk (Td ). Define,

Bk (P) := dim{i∗[Hk (P)]},

i.e., Bk (P) is the number of giant k-cycles in P. Next, let
Pc = cl(Pd

n \P), the closure of the complement. The follow-
ing lemma (in fact a stronger version of it) is proved in
Appendix C.

Lemma 3.1. For 0 � k � d ,

Bk (P) + Bd−k (Pc) = βk (Td ).

The lemma implies that whenever a giant k-cycle emerges
in P, a giant (d − k)-giant cycle disappears in Pc and vice
versa. This lemma can be viewed as a “homological” version
of the duality argument used for percolation in Z2 (see, e.g.,
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FIG. 5. Statistics for the birth time of the giant k-cycles. For each model we repeated the simulations in order to estimate the mean and
variance of the birth time of the first giant k-cycle. In each figure the x axis is ln n, and the y axis represent the parameter value (p, λ, or α). The
dots represent the mean value estimate, and the bars around them follows the standard deviation. The horizontal lines mark the corresponding
zeros of the EC curve. [(a)–(c)] The random cubical complex. [(d)–(f)] The random permutahedral complex. [(g)–(i)] The Boolean model.
[(j)–(l)] The Gaussian random field.

Ref. [46]), that is, the fact that a horizontal crossing in one
grid prevents a vertical crossing in the dual grid.

Notice that by the definition of P(n, p), we have that
Pc(n, p) has the same distribution as P(n, 1 − p). Recall from
the Introduction that we conjecture the existence of an in-
creasing sequence of sharp thresholds denoted pperc

1 < pperc
2 <

· · · < pperc
d−1 where the the giant k-cycles appear. Therefore,

together with Lemma 3.1, we can show that if the sharp

thresholds exist, then in the permutahedral complex case we
have

pperc
k = 1 − pperc

d−k .

In other words, the appearance of the k-cycles in this model
is in symmetry with the appearance of the (d − k)-cycles (as
can be seen in the simulations later). Notice that if d is even,
then we have that pd/2 = 1/2. This is a generalization of
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the phenomenon known for the two-dimensional hexagonal
lattice, where the (classic) percolation threshold is exactly
1/2 (see, e.g., Ref. [46]). The symmetry between Pc(n, p)
and P(n, 1 − p) also implies a symmetry for the expected EC
curve, so we have (see Appendix C),

χ̄P(p) = (−1)d−1χ̄P(1 − p).

While the symmetry of the EC curve is not obvious in
Eq. (3.3), it is quite apparent in the simulations we present
later.

B. Boolean model

Let X1, X2, . . . , be a sequence of independent and iden-
tically distributed random variables uniformly distributed on
Td . Let N ∼ Poisson(n) be a Poisson random variable, in-
dependent of {Xi}. Then the process Pn := {X1, . . . , XN } is
called a spatial Poisson process on Td . The simple Boolean
model we consider here is merely the union of balls

Br (Pn) :=
⋃
p∈Pn

Br (p),

where Br (p) is a closed ball of radius r > 0 around p. In
this model, it is known [47] that percolation occurs when
ωd nrd = λ (or r = (λ/ωd n)1/d ) for some fixed value λ > 0,
where ωd is the volume of the unit ball in Rd . Consequently,
the percolation model we study is

B(n, λ) := B(λ/ωd n)1/d (Pn). (3.4)

In Ref. [23] a formula for the expected EC of B(n, λ) was
proved. The main idea was to consider the distance function
to the point process Pn and evaluate the expected number of
its critical points. A mathematical framework known as Morse
theory provides a formula similar to (3.1), where the number
of k faces is replaced by the number of critical points of index
k. The result in Ref. [23] is the following formula:

χ̄B(λ) := E{χ (B(n, λ)} = ne−λ

(
1 +

d−1∑
k=1

Ad,kλ
k

)
, (3.5)

where Ad,k are defined in Ref. [23] via some geometric
integrals. For d = 2 we can show that this results in

χ̄B(λ) = ne−λ(1 − λ).

For d = 3, the calculations in Ref. [48] show that

χ̄B(λ) = ne−λ

(
1 − 3λ + 3

32
π2λ2

)
.

For higher dimensions, the integral formulas in Ref. [23] are
difficult to calculate explicitly. In our simulations for d = 4,
we use numerical methods to approximate the coefficients
Ad,k .

C. Gaussian random fields

The last model we study is of a completely different nature
than the previous ones. A real-valued Gaussian field on the
torus, is a random function f : Td → R such that for every
k and every collection of points x1, . . . , xk ∈ Td , the random
variables f (x1), . . . , f (xk ) have a multivariate Gaussian (nor-
mal) distribution. It is known that the entire distribution of the

random field f is determined by its expectation function μ :
Td → R and covariance function C : Td × Td → R, defined
as

μ(x) : = E{ f (x)},
C(x, y) : = Cov( f (x), f (y))

= E{[ f (x) − μ(x)][ f (y) − μ(y)]}
for all x, y ∈ Td . In this paper we will consider f with μ ≡ 0
and with a covariance function

C(x, y) = exp

(
−||x − y||2

σ 2

)
. (3.6)

For a given Gaussian field f , we will study the percolation
phenomena as well as the EC for the sublevel sets, defined as

G(α) := {
x ∈ Td : f (x) � α

}
.

Notice that by definition {G(α)}∞α=−∞ is a filtration. This, in
particular, implies that we can define the notions of persistent
homology and homological percolation for this model as well.

The evaluation of the expected EC for G(α) is the most
complicated of all the models in this paper. This was done
in Ref. [24] via a formula known as the Gaussian kinematic
formula (GKF). The fundamental idea behind the GKF is to
use Morse theory in a similar way to that of the Boolean
model. With some assumptions on the mean μ(·) and the
covariance function C(·, ·), one can show that the random
function f is a Morse function with probability 1. Briefly,
Morse functions are differentiable, and have at most a single
critical point at each level α. Evaluating the expected number
of critical points then leads to the expected EC of G(α), as in
the Boolean model.

The GKF as presented in Ref. [24] covers general Gaussian
fields defined on general Riemannian manifolds. In the special
case that we examine in this paper, i.e., a Gaussian field on Td

with the covariance function given in (3.6), the GKF yields
the following formula:

χ̄G(α) := E{χ (G(α)} = 2

ωd
(2π )−

d+1
2 Hd−1(−α)e−α2/2,

(3.7)
where ωd is the volume of a unit ball in Rd and Hn is the
Hermite polynomial, given by

Hn(x) = n!
�n/2�∑
j=0

(−1) jxn−2 j

j!(n − 2 j)!2 j
. (3.8)

Finally, note that when simulating a Gaussian random field
we have to take a discretized grid. The size of this grid will
bed noted by n.

IV. RESULTS

In this section we present simulation results for the four
models described above, for dimensions d = 2, 3, 4. The
computations were done using the GUDHI [10] library.
The technical details about the simulations can be found in
Appendix D.

Remark. Notice that tperc
k was defined in (2.1) as the

(nonrandom) critical value for the probability of homological
percolation to switch form 0 to 1. For the models we are
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studying, these phase transition is always defined in the limit
as n → ∞. Since we do not have an access to the limit, we
use the (random) birth time of the first giant k-cycle, as an
approximation to tperc

k .
In Fig. 4 we show the theoretical expected Euler curves,

together with the mean appearance of the giant cycles. This
figure demonstrates several noteworthy phenomena. Across
all models and dimensions, the appearances of the giant cycles
align with the zeros of the EC curve. In particular, for the
permutahedral complex in the even dimensions [Figs. 4(d) and
4(f)], the giant cycle in the middle dimension aligns perfectly
with the corresponding zero of the EC curve. This is a direct
consequence of the symmetry between the complex and its
complement discussed in Sec. III A 2. Note that in the odd
dimension (3) the EC curve for the permutahedral complex
is still symmetric, but there is no middle dimension for the
giant cycles. Finally, for dimensions 3 and 4, the giant cycles
appear before the corresponding zero in the lower dimensions
and after the zero in the higher dimensions. Smaller examples
in dimension 5 also follow this pattern. This leads to the
following conjecture.

Conjecture 4.1. For d � 3 and every k < d/2 we have
tperc
k � t ec

k , while for every k > d/2 we have tperc
k � t ec

k .
For the middle dimension (d/2 when d is even), if the

model is symmetric with respect to the parameter t , then the
middle giant cycle should align perfectly with the correspond-
ing zero in the EC curve, as in the permutahedral complex.
Notice that the GRF model we take is also symmetric (zero
mean). We suspect that the tiny difference between tperc

d/2 and
t ec
d/2 [Figs. 4(j) and 4(l)] is due to the fact that we are using a

discretized sample of a continuous field. This is supported by
the statistics presented below. For asymmetric models (e.g.,
the cubical and Boolean), it is not clear what should happen
for d/2. In Figs. 4(a), 4(c), 4(g), and 4(i), we consistently see
t ec
d/2 < tperc

d/2 ; however, this behavior would have flipped if we
were to take the complement objects.

Conjecture 4.1 may have significant implications. For ex-
ample, in Gaussian random fields, it is not known (for d � 3)
whether the percolation thresholds for the super- and sublevel
sets are separated, i.e., whether there exists a regime where
both the sub- and superlevel sets have a giant component
simultaneously. In Ref. [26], we show that tperc

1 coincides
with the percolation threshold for the sublevel sets, while tperc

d−1
coincides with the threshold for the superlevel sets. Therefore,
given that the expected EC curve is known in a closed form,
bounds on the relationship between the zeros of the expected
EC curve and the giant cycles would imply separation. The
experiments imply a refinment of the above conjecture.

Conjecture 4.2. There is an interlacing of percolation
thresholds and zeros of the Euler curve. That is depending on
k, either t ec

k−1 � tperc
k � t ec

k+1 or t ec
k � tperc

k � t ec
k+1.

This type of result would provide rigorous upper and lower
bounds on the percolation thresholds. Though the conjectures
yield useful results, ultimately, the goal would be to bound
the difference between tperc

k and t ec
k . So we next investigate

the error terms �k = (tperc
k − t ec

k ). In Fig. 5 we show some
statistics for the examples in Fig. 4. For each of the models we
repeated the simulation and estimated the mean and variance
for the first birth time of a giant k-cycle. We observe that
�k converges rather quickly in the number of points (though
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FIG. 6. Appearance of giant cycles vs. zeros of the expected EC
curve. The x coordinate of each point is the corresponding zero of the
expected EC curve, and the y coordinate is the value when a giant k-
cycle appears. (a) Cubical site model; (b) permutahedral site model;
(c) Gaussian random field; (d) Poisson-Boolean.

as noted above not necessarily to zero), and the variance be-
comes small very quickly—note that the x axis is logarithmic
(in base e). Furthermore, with the exception of the Gaussian
random field, we observe that �k generally remains either
always positive or always negative in line with Conjecture
IV.1. Note that the standard deviation in the Gaussian random
field model remains roughly constant and centered around
zero for all grid sizes. This is because the covariance function
of the GRF is held constant, indicating that the correlation
effects are the key driver of variability in the appearance of
the giant cycles.

To give an alternative view on the error term �k in Fig. 6
we show a scatter plot of zeros of the EC curve and the
individual appearance of the giant cycles for each of the four
models. Note that each plot includes many different values of
n, and the large spread in values is due to smaller values of n.

Another quantity that is interesting to consider are the
Betti curves (i.e., the evolution of βk over time). It has been
observed in the past that these curves exhibit a “separa-
tion” phenomenon, where for each range of parameters a
single Betti number dominates all the others (see Fig. 7).
The connection of this phenomena and the zeros of the EC
have been previously studied as described in Sec. II. This
experimentation yields further evidence that these phenomena
are related. Therefore, if we consider β0, . . . , βd−1, then we
can define

tbetti
k := inf {t : βk−1(t ) = βk (t )}.

Our simulations show that tbetti
k is tightly connected to tperc

k and
t ec
k . Further, Figs. 7 and 8 suggest the following conclusions:

(i) The giant k-cycles appear after the peak in βk−1 and
before the peak in βk .
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FIG. 7. The empirical (average) Betti curves and the giant cycles. In each plot, we draw the Betti curves (solid line), along with the birth
time of the first giant k-cycle for k = 1, . . . , d − 1. We simulated all the models on the d-dimensional torus, for d = 2, 3, 4 (from left to right).
[(a)–(c)] The random cubical complex. [(d)–(f)] The random permutahedral complex. [(g)–(i)] The Boolean model. [(j)–(l)] The Gaussian
random field.

(ii) Expanding on previous work, the relationship between
the zeros of the EC curve as a good approximations for the
tbetti
k hold in a wide range of geometric models across multiple

dimensions.
If the above could be shown, then one potential path to un-

derstanding the difference �k could be through investigating
what percentage of (k − 1)-cycles must be filled before most
k simplicies create k-cycles (rather than destroying (k − 1)-
cycles), which is when we expect giant cycles to appear.

This is related to the recent study of phase transitions in
nongeometric models [15], and an object known as the “giant
shadow.”

We observe that the simulation results also support the
validity of open conjectures about the Betti curves being
unimodal [49] in certain models. If the above holds over a
large enough set of parameters, the shape of the Euler curve
may be used to show unimodality of the Betti curves. We
conclude this section by noting that the relationship between
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evidence that the appearance of higher-dimensional cycles occurs in
the vicinity of this equality. (a) Cubical site model; (b) permutahedral
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appearance of the giant cycles and the zeros of the EC in
random models where the Betti curves are known not to be
unimodal [29] remains an open question which we plan to
address in future work.

V. CONCLUSION

In this paper we defined a new type of percolation phe-
nomena we call “homological percolation” where giant k-
cycles appear in the homology of a random structure. Our
results suggest a strong connection between the percolation
thresholds tperc

k and the zeros of the expected EC curve t ec
k , as

well as expanding settings where the latter is connected with
tbetti
k . This connection is demonstrated in four types of random

percolation models across multiple dimensions. It remains
an open question as to the how far-reaching the connection
between “giant” cycles and the zeros of the EC curve is.

The results in this paper are purely experimental and
should serve as the basis for a deep theoretical study to
prove the conjectures we made in this paper. Aside from the
mathematical challenge of proving these conjectures, they can
have significant implication in various fields. For example, for
most models in percolation theory the exact thresholds are not
known. Therefore, proving an explicit rigorous link between
the expected EC curve and the percolation thresholds, will
allow us to approximate the thresholds in various models, and
perhaps even find their exact values.

Another application is in the field of TDA. A significant
effort in TDA is to identify significant topological features
in data. If we consider the giant cycles to be significant (as
they represent a feature of the true underlying shape), then
our conjectures suggest that in order to locate these significant
features, we may calculate the EC curve and search for cycles

that appear around the corresponding zero of the EC. This
heuristic would avoid the need to determine certain constants
which are often impossible to compute in practice and should
be further developed, once any of the conjectures is proved.

This work raises several interesting research directions.
We have studied three distinct phenomena: the emergence
of giant cycles, the zeros of the EC, and the crossover of
Betti numbers, which all seem to occur in the same vicinity.
The giant cycles have a strong dependence on the underlying
space, e.g., a giant cycle in a certain dimension may not
exist; however, we speculate that the same relationship should
hold, i.e., the kth zero should correpond to the k-dimensional
giant cycle. A deeper understanding of the precise relationship
between these concepts is still at a very early stage. For
example, to the best of our knowledge, the giant shadow [15]
remains completely unexplored for geometric models. Un-
derstanding these phenomena is undoubtedly a fundamental
question which will require substantial further research.
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APPENDIX A: CALCULATING THE EC FOR
SITE-PERCOLATION MODELS

Here we present the details of the calculation of the ex-
pected Euler characteristic curve. Recall, that for the site per-
colation models the filtration parameter is t = p. To establish
a formula for χ̄ (p), we use Eq. (3.1) and the linearity of
expectation. Thus, we need to evaluate the expected number
of k faces in each of the site models.

Beginning with the cubical model, we observe that each
d-dimensional cube has 2d−k

(d
k

)
k faces on its boundary. In

addition, since we consider Qd
n (the discretization of Td into

n boxes), each k face is on the boundary of precisely 2d−k

d-dimensional boxes. Therefore, the total number of k faces
in Qd

n is exactly n
(d

k

)
.

Now, for any k face, if it is included in Q(n, p), then at least
one of d-dimensional boxes that contains it must be open.
Therefore, the probability of a k faces to be in Q(n, p) is
(1 − (1 − p)2d−k

). Putting everything together, we have that

E{Fk (Q(n, p))} = n

(
d

k

)
[1 − (1 − p)2d−k

],

which then yields (3.2),

χ̄Q(p) =
d∑

k=0

(−1)kE{Fk[Q(n, p)]}

= n
d∑

k=0

(−1)k

(
d

k

)
[1 − (1 − p)2d−k

].
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The calculation for the permutahedral complex P(n, p) is
similar, where the only difference is the face counting. From
Ref. [44], each k face in Pd

n corresponds to a partition of the
set {0, . . . , d} into d + 1 − k nonempty parts. Therefore, the
number of k faces for each cell is given by a Stirling number
of the second kind [50],

F (Pd
1 ) = (d + 1 − k)!S(d + 1, d + 1 − k)

=
d+1−k∑

i=0

(−1)i

(
d + 1 − k

i

)
(d + 1 − k − i)d+1

=
d+1−k∑

j=0

(−1)d+1−k− j

(
d + 1 − k

j

)
jd+1

where the second equality follows from using the substitution
j = d + 1 − k − i.

Now every k face belongs to (d + 1 − k) d cells. This
follows from the genericity of the corresponding Voronoi cells
(see the proof of Lemma C.1 in the Appendix C). Hence, the
total number of k cells is

Fk (Pd
n ) = n

d+1−k

d+1−k∑
j=0

(−1)d+1−k− j
(d+1−k

j

)
jd+1

= n
d+1−k∑

j=0
(−1)d+1−k− j

(d−k
j

)
jd .

Therefore,

E{χP(n, p)} = n
d∑

k=0

(−1)k
[
1 − (1 − p)d+1−k

]
×

d+1−k∑
j=0

(−1)d+1−k− j

(
d − k

j

)
jd+1.

Exchanging between k and (d − k) then yields (3.3).

APPENDIX B: THE EXPECTED EC CURVE FOR THE
GAUSSIAN RANDOM FIELD

As stated in Section III C, the expected EC is calculated
via the Gaussian Kinematic Formula, developed in Ref. [24].
Suppose that M is a d-dimensional manifold, and let f :
M → R be a Gaussian random field with zero mean and unit
variance (with some further smoothness conditions detailed in
Ref. [24]). Let Du = [u,∞), then f −1(Du) is a superlevel set
of f . The GKF (Theorem 4.1 in Ref. [24]) then states that

E
{
χ [ f −1(Du)]

} =
d∑

j=0

(2π )− j/2L j (M )M j (Du),

where L j (M ) are geometric functionals of M known as the
Lipschitz-Killing curvatures and Mj is slightly different object
known is the Gaussian-Minkowski functional. For the special
case where M = Td it can be shown that L j (Td ) = 0 for all
j < d , and Ld (Td ) = 2/ωd . In addition, in Ref. [24] it is
shown that Mj (Du) = (2π )−1/2H j−1(u)e−u2/2, where Hn(u)
are the Hermite polynomial in (3.8). Thus, we have

E
{
χ [ f −1(Du)]

} = 2

ωd
(2π )−

d+1
2 Hd−1(u)e−u2/2.

Finally, recall that we defined G(α) as the sublevel sets of f . In
addition, since f is a zero-mean Gaussian field, we have that
f (x) and f̃ (x) := − f (x) have the same distribution. Since the
sublevel sets of f are the superlevel sets of f̃ , we have

χ̄G(α) := E{χ [ f̃ −1(D−α )]} = E{χ [ f −1(D−α )]},
and therefore

χ̄G(α) := E{χ (G(α)} = 2

ωd
(2π )−

d+1
2 Hd−1(−α)e−α2/2.

APPENDIX C: SYMMETRY AND DUALITY FOR THE
PERMUTAHEDRAL COMPLEX

In this section we provide formal proofs for the statements
on symmetry that are discussed in Sec. III A 2. For the case
of the site percolation on a hexagonal grid, the symmetry
around p = 1/2 is well known. Here we extend it to arbitrary
dimension, but note that the proofs assume some familiarity
with algebraic topology.

The idea behind the proofs is to relate a subspace of a man-
ifold (in this case, d torus), with its complement. Informally,
the topology of the manifold and a subspace determine the
topology of the complement. The most well-known example
of this is Alexander duality, which relates the kth homology
of a subspace with the d − k cohomology of the complement.
In our setting, we consider the Betti numbers so there is
no distinction between homology and cohomology. Before
getting to the duality, there is a technical obstacle to overcome.
In the site models we consider, taking the complement of the
open sites is not the same as considering the union of the
closed sites, but rather it is equivalent to the closure of the
complement. This difference can change the topology as in
the case of the cubical complex, as can be seen in Fig. 9.
Hence, we first prove that the complement and the closure of
the complement are equivalent. As in Sec. III A 2, let P ⊆ Pd

n
and Pc = cl(Pd

n \P).
Lemma C.1. For all 0 � k � d ,

Hk (Pc) ∼= Hk (Pd
n \P).

FIG. 9. An example of a failure of symmetry for the cubical
complex. The dark squares indicate open sites. The complement of
the open sites is different (bottom right) than the union closed sites.
In particular, the latter is connected (via the point in the middle),
while the former is not.
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Proof. To prove this lemma, we prove a stronger state-
ment, namely that the Pc and Pd

n \P are homotopy equivalent.
First, consider the open cover induced by the sites in Pc,
denoted by U . That is, each element in the cover is an open
neighborhood of each site. Since the sites are convex, it fol-
lows U is a good cover and hence Pc is homotopy equivalent
to the nerve of the cover, NU .

As noted in Sec. III A 2, each site is a permutahedron of
order d + 1. The interior of each site corresponds to the top-
dimensional cell of the permutahedra which are the same for
Pd

n \P and Pc. The two differ in that Pd
n \P is does not have

lower-dimensional faces (of the sites) which are adjacent to
sites both in Pc and in P. Taking the same open cover as above,
but on Pd

n \P, denoted by U ′. We show that this is a good cover
and that the nerves are the same, which implies the result.

First, we note that there is a one-to-one correspondence
between the (d − k) faces of permutahedron and k simplices
of the nerve [51]. That is, each intersection of (k + 1) cells
corresponds to a (d − k) face of the permutahedron. For any
(d − k) face τ in Pd

n \P, it must be adjacent to (k + 1) sites in
Pd

n \P and so cannot be adjacent to any sites in P. Note that

lower-dimensional faces of τ (which are in the closure of τ )
may be missing from Pd

n \P and so it is not convex. It, however,
remains star shaped and hence the (k + 1) intersection of
cover elements is contractible, implying that U ′ is a good
cover.

The same argument also shows that any face which is in Pc

but not Pd
n \P, does not affect the nerve as the corresponding

interesction remains nonempty. Note that in the 2D cubical
complex a pairwise intersection may correspond to a vertex
rather than an edge which breaks the argument above.

Hence the NU = NU ′ completing the proof.
The above lemma allows us to use Pc and Pd

n \P inter-
changeably. We can now prove Lemma 3.1.

Lemma C.2 (3.1). For 0 � k � d ,

Bk (P) + Bd−k (Pc) = βk (Td ).

Proof. In this proof, we use Pc in place of the com-
plement of P as they are equivalent by Lemma C.1.
There exists a commutative diagram where the rows are
exact, due to the long exact sequence for relative (co)
homology.

(C1)

The leftmost isomorphism follows from the Lefschetz duality,
the second from Poincare duality, and the third from the Five
Lemma. Note that a detailed proof can be found in Ref. [36].
We can decompose the full space as

Hk (Pd
n ) ∼= Im i∗ ⊕ coker i∗, (C2)

and by exactness and a diagram chase, we have that coker i∗ ∼=
Im j∗. We observe that

Bk (P) = dim(i∗),

Bd−k (Pc) = dim( j∗),

where the second equality follows from the equivalence for
ranks of homology and cohomology over fields. Substituting
into Eq. (C2), we obtain the result

βk (Td ) = βk (Pd
n ) = Bk (P) + Bd−k (Pc).

We conclude by proving the symmetry of the Euler curve.
Lemma C.3. For the permutahedral complex we have the

following symmetry:

χP(p) = (−1)dχP(1 − p).

Proof. Since Pc(n, 1 − p) ∼ P(n, p), it suffices to show
that χ (P) = (−1)dχ (Pc) for some P. Consider the diagram
(C1). By exactness,

βk (P) = dim(Im i∗(k)) + dim(Im δk+1),

βd−k (Pc) = dim[Im j∗(d − k)] + dim(Im δd−k ).

Note that we have added the dimension to the notation of the
corresponding morphisms, i.e., i∗(k) : Hk (P) → Hk (Pd

n ).

Furthermore, the diagram implies dim(Im δd−k ) =
dim(Im δk ). Computing the Euler characteristic yields

χ (P) =
d∑

k=0

(−1)kβk (P)

=
d∑

k=0

(−1)k
[
dim(Im i∗(k)) + dim(Im δk+1)

]
=

d∑
k=0

(−1)k

{(
d

d − k

)
− dim[Im j∗(d − k)]

+ dim(Im δd−k−1)

}

=
d∑

k=0

(−1)k
{
dim(Im δd−k−1) − dim[Im j∗(d − k)]

}
=

d∑
k=0

(−1)k[dim(Im δd−k−1) − βd−k (Pc)

+ dim(Im δd−k )]

= (−1)d
d∑

k=0

βk (Pc) +
d∑

k=0

(−1)k[dim(Im δd−k−1)

+ dim(Im δd−k )]

= (−1)dχ (Pc) + dim(Im δd ) − dim(Im δ−1)

= (−1)dχ (Pc),
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where for the last inequality, we use that dim(Im δd ) =
dim(Im δ−1) = 0.

APPENDIX D: SIMULATION DETAILS

Here we present some implementational details of the sim-
ulations. The persistence diagrams and hence Betti curves and
appearance of the giant cycles were computed with GUDHI
[10]. For the cubical site model, a nd grid with periodic con-
nectivity was used for varying values of n. After generating
a uniform random function taking values in [0,1], with the
values assigned to the top-dimensional cells. Persistence was
then computed directly on the resulting cubical complex. We
note that the Gaussian random field was also approximated on
a cubical grid according to the method described in Ref. [52].
The resulting GRF was always generated on the unit torus,
with σ 2 = 10−3.

The permutahedral complex was built by constructing a set
of points in the A∗

d grid embedded in Rd+1. The 1-skeleton was
then built by choosing an appropriate radius, so that all the
neighbors were connected. Note that this can be thought of as
the 1-skeleton of the Delaunay complex of the pointset. The
points, along wiht their adjacent edges, were then identified
with the outgoing edges appropriately identified. This embeds
the 1-skeleton in Td . The full complex was then computed us-
ing clique completion to higher dimensions. Again a random
function was assigned to the sites, which correspond to the
vertices of the resulting complex. Persistent homology of the
lower-star filtration on this complex was then computed.

Finally for the Boolean model, in dimensions 2 and 3, the
α filtration [53] on the torus was used, whereas for dimension
4, for each sample point set, the connectivity threshold was
first computed and was then used to compute the threshold for
the construction of the Čech filtration.
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