
PHYSICAL REVIEW E 101, 032302 (2020)

Complex networks in the framework of nonassociative geometry
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In the framework of a nonassociative geometry, we introduce an effective model that extends the statistical
treatment of complex networks with hidden geometry. The small-world property of the network is controlled by
nonlocal curvature in our model. We use this approach to study the Internet as a complex network embedded in a
hyperbolic space. The model yields a remarkable agreement with available empirical data and explains features
of Internet connectance data that other models cannot. Our approach offers a new avenue for the study of a wide
class of complex networks, such as air transport, social networks, biological networks, and so on.
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I. INTRODUCTION

Due to its intrinsic interdisciplinary nature, network sci-
ence can, and already has, contributed research in very diverse
fields in both the natural sciences and the human world. Re-
finements in the techniques and methods of network science
would therefore be of interest to a wide variety of researchers
and, conceivably, policy makers and the general public.

Many real networks of large size, i.e., the Internet, the
World Wide Web, airline networks, neural networks, citation
networks, etc., are highly effective in exchanging information
among distant nodes. This feature implies the existence of
shortcuts between most pairs of nodes, known as the small-
world property [1,2].

Complex networks (CNs) have benefited from the adop-
tion of statistical mechanics as a powerful framework to ex-
plain properties of real-world networks [3–7]. The statistical
physics approach has also been extended using geometric and
topological ideas. Increasing attention to the geometrical and
topological properties of CNs is focused on four main direc-
tions: (i) characterization of the hyperbolicity of networks,
(ii) emergence of network geometry, (iii) characterization of
brain geometry, and (iv) network topology [8]. In particular,
in Refs. [9–11] a duality between a highly heterogeneous
degree distribution in a network and an underlying hyperbolic
geometry was found and exploited for the realistic modeling
of the Internet.

The exponential expansion of hyperbolic space illustrated
in Fig. 1 allows one to map an exponentially growing network
to a hyperbolic space. In this context, the emergence of scaling
in CNs can be explained by the hidden hyperbolic geometry
[13–17] (fundamental concepts concerning CNs, their statisti-
cal description and relation to hyperbolic geometry are treated
in detail in Refs. [2–4,6–11,13,16,18–22]).

The successful embedding of a CN in a geometric space
invites the possibility of further exploiting the geometric
properties of such CNs, namely by the known methods of dif-
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ferential geometry. The insights and calculational benefits of
statistical mechanics could thus be complemented with those
from geometry to form a more complete model. However,
it is not obvious how the methods of differential geometry
would apply to networks, which are fundamentally discrete
structures. The main challenge is to define the curvature of
networks. This is a hot mathematical topic, and different ap-
proaches to resolve it can be found in the literature [8,18,23–
28]. Nonassociative geometry [29–31], yielding a unified
algebraic description of discrete spaces and smooth manifolds
as well, opens a novel avenue for studying network geometry.
The presence of curvature in a nonassociative space results in
a nontrivial elementary holonomy, which is an equivalent of
(nonlocal) curvature.

In this paper, we show how nonassociative geometry can
be used to give a statistical description of CNs and reveal
underlying geometry. We focus on the contribution from
nonlocal curvature, described by elementary holonomy, to the
statistical properties of CNs and find that nonlocal curvature
controls the formation of a small-world network.

As a particular example, we perform a detailed study of the
Internet embedded in a hyperboloic space. Our model shows
excellent agreement with the empirical Internet connectance
data. (All technical details concerning intermediate steps of
our paper are presented in the Appendix.)

II. NONASSOCIATIVE GEOMETRY IN BRIEF

The main algebraic structures arising in nonassociative
geometry are related to nonassociative algebra and the the-
ory of quasigroups and loops (for details and review see
Refs. [29,32–35]).

Consider a loop 〈Q, ·, e〉, i.e., a set with a binary operation
(multiplication) (a, b) �→ a · b, and the condition that each of
the equations a·x = b and y·a = b has a unique solution: x =
a\b, y = b/a. In addition, a two-sided identity holds: a·e =
e·a = a, where e is a neutral element. A loop that is also a
differential manifold with an operation a·b that is a smooth
map is called a smooth loop.

Nonassociativity of the operation is described by the iden-
tity a·(b·c) = (a·b)l(a,b)c, where l(a,b) is an associator. If
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FIG. 1. Tiling of the Poincaré disk illustrating the exponential
expansion of space. All patterns are of the same size in the hyperbolic
space. The number of patterns exponentially increases with the
distance from the origin, while their Euclidean size exponentially
decreases. (Constructed with the Poincaré tool [12].)

l(a,b) = 1, then we obtain a·(b·c) = (a·b) · c and, thus, a loop
Q becomes a group. The multiplication of elements a, b ∈ Q
can also be written as a·b = Lab, where La is a left translation.
In terms of left translations, the associator is given by l(a,b) =
L−1

a·b ◦ La ◦ Lb.
The foundations of nonassociative geometry are based on

the fact that in a neighborhood of an arbitrary point a on a
manifold M with an affine connection one can introduce the
geodesic local loop, which is uniquely defined by means of
the parallel translation of geodesics along geodesics (Fig. 2).

The curvature of a nonassociative space is described by
elementary holonomy, ha

(b,c) = (La
c )−1 ◦ Lb

c ◦ La
b , where La

b de-
notes a left translation with a being a neutral element of the
local loop. The elementary holonomy describes the parallel
translation of the geodesic along the geodesic triangle (see
Fig. 3). As one can see, it is some integral (nonlocal) curva-
ture. If ha

(b,c) = 1, then we have a flat space.

FIG. 2. Parallel translation of the geodesic (ac) along the
geodesic (ab). The result, given by c′ = La

bc, is presented by the
geodesic (bc′) (red dashed curve).

FIG. 3. Elementary holonomy ha
(b,c) describes the parallel trans-

lation of the geodesic (az) along the geodesic triangle (abc). The
result is given by z′ = ha

(b,c)z and presented by the geodesic (az′) (red
dashed curve).

As a particular example, we consider a nonassociative
description of the two-dimensional hyperbolic space H2 pre-
sented by the Poincaré disk model. Let D be the open unit
disk: D = {ζ ∈ C : |ζ | < 1}. We define the nonassociative
binary operation ∗ as

Lζ η = ζ ∗ η = ζ + η

1 + ζ̄ η
, ζ , η ∈ D, (1)

where the bar denotes complex conjugation. The inverse
operation is given by

L−1
ζ η = ζ−1 ∗ η = η − ζ

1 − ζ̄ η
, ζ , η ∈ D. (2)

Inside D, the set of complex numbers with the operation ∗
forms the two-sided loop QH(2) [36,37].

The associator l(ζ ,η) on QH(2) is determined by

l(ζ ,η)ξ = 1 + ζ η̄

1 + ζ̄ η
ξ . (3)

Since the hyperboloid is a symmetric space, the elementary
holonomy is determined by the associator: h(ζ ,η) = l(ζ ,L−1

ζ η)

[32]. The computation yields

h(ζ ,η)ξ = 1 − ζ̄ η

1 − ζ η̄
ξ . (4)

We define the left-invariant metric on H2 as [35]

g(Lηζ , Lηξ ) = g(ζ , ξ ) = 4|ξ − ζ |2
(1 − |ζ |2)(1 − |ξ |2)

. (5)

For a hyperbolic space H2 with curvature K = −1/R2 the
previous formula should be modified to read

g(ζ , ξ ) = 4R2|ξ − ζ |2
(1 − |ζ |2)(1 − |ξ |2)

. (6)

Taking ξ = ζ + dζ , we find that

g(ζ , ξ ) → ds2 = 4R2dζd ζ̄

(1 − |ζ |2)4
. (7)

For each triplet of points, ζi, ζ j, ζk ∈ D, the elementary
holonomy, hi

jk , can be written as (see the Appendix)

hi
jk = 1 − ζ̄i jζik

1 − ζi j ζ̄ik
, (8)

032302-2



COMPLEX NETWORKS IN THE FRAMEWORK OF … PHYSICAL REVIEW E 101, 032302 (2020)

where

ζi j = ζ̄iζ j (|ζ j | − |ζi|)
|ζi||ζ j |(1 − |ζi||ζ j |) . (9)

Supposing that |ζi j |, |ζ jk|, |ζik| 
 1, we obtain

hi
jk ≈ 1 − i

�(i, j, k)

R2
. (10)

Here �(i, j, k) is the area of the geodesic triangle formed by
the triplet of points (i, j, k).

The phase gained by an arbitrary “vector” ζip during the
parallel translation along the geodesic path γ = γi j ∪ γ jk ∪
γki, where γi j denotes the geodesic connecting the points i and
j, is given by

�ϕ = 1

i
ln hi

jk ≈ −�(i, j, k)

R2
. (11)

This is consistent with the formula for the parallel transporta-
tion of a vector V along a small contour C (see the Appendix):

�V i = 1
2 Ri

klmV k�Slm. (12)

Here Ri
klm is the curvature tensor and �Slm is the area of the

segment restricted by C.
The loop QH(2) is isomorphic to the two-sheeted hyper-

boloid model (see the Appendix for details). The isomor-
phism between the loop QH(2) and the upper sheet H+ of
the hyperboloid is established by ζ = eiϕ tanh(θ/2), where
(θ, ϕ) are inner coordinates on H+. In the new variables,
(7) yields the conventional metric on the hyperbolic space:
ds2 = R2(dθ2 + sinh2 θ dϕ2).

To each pair of points ζi, ζ j ∈ D one can assign the hyper-
bolic distance, di j , as follows [19]:

cosh(κdi j ) = cosh θi cosh θ j − sinh θi sinh θ j cos ϕi j, (13)

where κ = √−K = 1/R and ϕi j = ϕ j − ϕi. The straightfor-
ward calculation shows that

sinh
di j

2R = 
i j

2R , (14)

where 
i j = √
g(ζi, ζ j ), and for d 
 R we obtain d ≈ 
.

III. COMPLEX NETWORKS IN THE FRAMEWORK OF
NONASSOCIATIVE GEOMETRY

A network is a set of N nodes (or vertices) connected
by L links (or edges). One can describe the network by an
adjacency matrix, ai j , where each existing or nonexisting
link between pairs of nodes (i j) is indicated by a 1 or 0 in
the i, j entry. Individual nodes possess local properties such
as node degree (or connectivity) ki = ∑

j ai j , and clustering
coefficient ci = ∑

jk ai ja jkaki/ki(ki − 1) [1,2,6]. The network
as a whole can be described quantitatively by its degree
distribution P(k) and connectance. The connectance is charac-
terized by the connection probability pi j , i.e., the probability
that a pair nodes (i j) is connected.

The most general statistical description of an undirected
network in equilibrium, with a fixed number of vertices N and
a varying number of links, is given by the grand-canonical
ensemble [7,38,39]. For a particular graph G, the probability

of obtaining this graph, P(G), can be written as

P(G) = e−βH (G)

Z
, (15)

where H (G) is the graph Hamiltonian, Z denotes the partition
function, and β = 1/T stands for inverse “temperature” of the
network.

In what follows we restrict ourselves to consideration of a
two-star model, one of the simplest and most fundamental CN
models. We assume that the CN is embedded in a hyperbolic
space of constant curvature. The Hamiltonian describing the
network generalizes the weighted two-star Hamiltonian intro-
duced in Ref. [7] and takes the form

H = 4J

N − 1

∑
i jk

hi
jkai jaik − 2B

∑
i j

αi jai j, (16)

where αi j is the weight of the edge 〈i j〉, J and B are coupling
constants, and hi

jk denotes the elementary holonomy associ-
ated with the nodes (i, j, k). In our approach the weights are
determined by the elementray holonomy and connectivity of
the nodes.

The first term in (16) describes inhomogeneity in the
distribution of links, resulting in natural clustering of nodes
into cliques. Thus, one can expect that the holonomy (nonlocal
curvature) is responsible for formation of the communities
inside the CN [40]. To clarify this issue, let us rewrite (16)
as H = ∑

i j Ei jai j , where the energy of the link 〈i j〉 is

Ei j = 4J

N − 1

∑
k

hi
jkaik − 2Bαi j . (17)

The first term in this expression describes the contribution to
the energy to the link 〈i j〉 from the remaining nodes (k �= i, j)
connected with the node i by the shortest path. This leads to a
mesoscopic inhomogeneity in the distribution of links in such
a way that nodes inside of the same group have very high
degree of connections, but between groups the connection is
low.

The variables ai j can be thought of as Ising pseudospins,
σi j , representing the edges connecting (i j) pairs of nodes in a
network. We can thus map the network to the Ising model by
setting σi j = 2ai j − 1, such that

σi j =
{

1 if i is connected to j
−1 otherwise . (18)

Inserting σi j into Eq. (16), after some algebra we obtain

H = J

N − 1

∑
i jk

hi
jkσi jσik −

∑
i j

Bi jσi j, (19)

where

Bi j = Bαi j − 2J

N − 1

∑
k

hi
( jk), (20)

and we have used the notation hi
( jk) = 1

2 (hi
jk + hi

k j ).
Within the mean-field (MF) approximation, the Hamilto-

nian (19) is replaced by

H = J

N − 1

∑
i, j,k

hi
jk〈σi j〉〈σik〉 −

∑
i j

σi jh
(e)
i j , (21)
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where 〈. . . 〉 denotes an expectation value, and the effective
field, h(e)

i j , is given by

h(e)
i j = Bi j − 2J

N − 1

∑
k

hi
( jk)〈σik〉. (22)

The total Hamiltonian of the system can be rewritten as H =∑
i j Hi j , where Hi j = H0

i j − σi jh
(e)
i j is the Hamiltonian for a

single pseudospin located on the edge (i j), and

H0
i j = 2J

N − 1

∑
k

hi
( jk)〈σi j〉〈σik〉. (23)

Since the pseudospins in the MF approximation are de-
coupled, the partition function factorizes into a product of
independent terms: Z = ∏

Zi j . We obtain

Zi j = 2 cosh(βhe
i j )e

−βH0
i j . (24)

The computation of the expectation value for the pseu-
dospin, 〈σi j〉 = ∂Zi j/∂ (βhe

i j ), yields

〈σi j〉 = tanh
[
βh(e)

i j

]
. (25)

Inserting 〈σi j〉 into Eq. (22), we obtain a self-consistent sys-
tem of transcendental equations to determine the effective
field,

h(e)
i j =Bi j − 2J

(N − 1)

∑
k

hi
( jk) tanh

[
βh(e)

ik

]
. (26)

We are now in position to calculate the connectance of
the network described by the connection probability, pi j ≡
〈ai j〉 = (1/2)(1 + 〈σi j〉). Employing Eq. (25), we obtain

pi j = 1
2

{
1 + tanh

[
βh(e)

i j

]} = 1

1 + e−2βh(e)
i j

. (27)

IV. THE INTERNET AS A COMPLEX
HYPERBOLIC NETWORK

We turn now to the study of the Internet as a particular
case of a scale-free CN embedded in a hyperbolic space H2, as
considered in Refs. [9–11]. A scale-free network is character-
ized by a power-law degree distribution, P(k) ∼ (γ − 1)k−γ ,
where k is the node degree.

The Internet nodes are mapped to a hyperbolic space
of curvature K < 0 by assigning to each a random angular
coordinate ϕ and a radial coordinate r = θ/κ (κ = √−K)
according to the radial node density

ρ(r) = αeα(r−R/2)

2 sinh(αR/2)
, 0 � r � R, (28)

where α = κ (γ − 1)/2.

The size of the network is given by

R = 2

κ
ln

[
N

k̄

(
γ − 1

γ − 2

)]
, (29)

where k̄ is the average degree in the whole network and

κ = 1 −
ln

[
2
π

(
γ−1
γ−2

)]
ln

[
2N
π k̄

(
γ−1
γ−2

)2] . (30)

To adapt our model to empirical Internet data we consider
d as the independent variable in our calculations, thus allow-
ing direct comparison to the results in Ref. [9]. We specify
our model writing Bαi j = (κ/4)(R − di j ), where di j is the
hyperbolic distance between nodes i and j. This yields the
connection probability (27) in the form of the Fermi-Dirac
distribution,

pi j = 1

eβ(εi j−μ) + 1
, (31)

where μ = κR/2 is the chemical potential, and

εi j = κdi j

2
+ 8J

(N − 1)

∑
k

hi
( jk)〈aik〉. (32)

The second term in this expression includes the contribution
to the energy εi j of the link (i j) from all nodes in the
network and, thus, leads to the formation of “small-world”
communities [1].

Taking the distance d between nodes as the independent
variable, we find that the connection probability can be written
as

p = 1

eβ(ε−μ) + 1
, (33)

where

ε = κd

2
+

2∑
a=0

4Jδa
{
1 + tanh

[
β
(

κd
4 − μ

2

)]}
cosh2

[
κ (d−ra )

2

] , (34)

and
∑2

a=0 δa = 1 (for technical details see the Appendix).
When the coupling constant J = 0, our model simplifies to the
model presented in Ref. [9] and describes the homogeneous
scale-free network with link energy ε = κd/2.

In the framework of our model, the Internet temperature
is defined from the following equation (for details see the
Appendix):

k̄ = Nσ (γ − 1)

2 sinh[βc(γ − 1)μ]
{eβc (γ−1)μ�[−eβμ, 1, σ (γ − 1)]

− e−βc (γ−1)μ�[−e−βμ, 1, σ (γ − 1)]}, (35)

where σ = βc/β, k̄ is the average node degree of the CN, and
�(z, a, b) denotes the Lerch transcendent [41]. The chemical
potential is given by

μ = Tc ln

[
N

k̄

(γ − 1

γ − 2

)]
. (36)

As shown in the Appendix, at the point T = Tc the sys-
tem experiences a phase transition. Near the critical point,
the chemical potential behaves as μ ∼ − ln(T − Tc), and its
derivative as dμ/dT ∼ −1/(T − Tc). This agrees with con-
clusions made in Ref. [10] on the behavior of the Internet size
near the critical temperature.
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TABLE I. Empirical Internet data and model parameters. BGP
and CAIDA data are extracted from Refs. [11,42].

Empirical Internet data BGP CAIDA

Number of nodes (N ) 17 446 23 752
Number of links (L) 40 805 58 416
Average node degree (k̄) 4.68 4.92
Exponent of degree distribution (γ ) 2.16 2.1

Model parameters BGP CAIDA

Curvature of the hyperbolic space (K ) −0.76 −0.72
Coupling constant (J ) 0.26 2.44
Size of the network (R) 23.47 25.65
Temperature of the Internet (T ) 1.037 1.067
Critical temperature (Tc ) 1 1

Below the critical temperature the graph is completely
disconnected, k̄ = 0. In the limit of T → ∞, we obtain

μ → β−1
c ln

[
2(γ − 1)

γ − 2

]
and

k̄

N
→ 1

2
. (37)

We use Border Gateway Protocol (BGP) data and the
Internet Archipelago data collected by the Cooperative Asso-

FIG. 4. (a) Connection probability in a logarithmic scale for the
BGP data (red diamonds) compared to the fitted model from expres-
sion (33) (blue). The connection probability for the homogeneous
model (J = 0) is depicted by the black dotted curve. Parameters:
J = 0.26 (blue solid), J = 0 (black dotted), T = 1.037, K = −0.76,
R = 23.47, δ0 = 0, δ1 = 0.87, δ2 = 0.13, r1 = 16.36, r2 = 25. The
results obtained in Ref. [9] are presented by green dashed curves.
The values of T , K , and R are taken as T = 0.6, K = −0.83, and
R = 26. (b) The details of the fit can be better appreciated on a linear
scale.

FIG. 5. Connection probability for the Internet Archipelago data
from Ref. [11] (red diamonds) compared to the holonomy-inclusive
model for expression (33) (blue). The connection probability for the
homogeneous model (J = 0) is depicted by the black dotted curve.
Parameters: J = 2.44 (blue solid), J = 0 (black dotted), T = 1.067,
K = −0.72, R = 25.65, δ0 = 0.595, δ1 = 0.305, δ2 = 0.1, r0 = 1,
r1 = 10.5, and r2 = 17.5. Numerical results obtained in Ref. [11]
are presented by green dashed curves, with R = 27, T = 0.69, and
K = −1. (a) Logarithmic scale. (b) Linear scale.

ciation for Internet Data Analysis (CAIDA), extracted from
Refs. [11,42], to estimate the size and temperature of the
Internet embedded in the hyperbolic space and the curvature
of the space as well. Table I summarizes the empirical Internet
data together with values of key model parameters.

Figures 4 and 5 show the results of our numerical simula-
tions and compare them with BGP data, CAIDA, and predic-
tions by the model presented in Refs. [9,11]. We adapted the
empirical connectance data for the BGP and CAIDA views
of the Internet directly from [9,11,42] and plotted them (red
diamonds) along with the graph obtained from Eq. (33) (blue
curves) and numerical results presented in Refs. [9,11] (green
dashed curves). (For details see Appendix E.)

Our findings show that a homogeneous model (J = 0)
yields (in general) a good agreement with available empir-
ical data (black dotted curve) but cannot explain noticeable
anomalies in the connection probability that break the scale-
free behavior of the Internet. As one can see, the predictions
of our complete (heterogeneous) model (blue curves) are in
excellent agreement with the empirical data (red diamonds).
The local minima in the connection probability around d ≈
16.5 in the BGP case (Fig. 11), and d ≈ 1, 10.5, 17.5 in the

032302-5



NESTEROV AND MATA VILLAFUERTE PHYSICAL REVIEW E 101, 032302 (2020)

CAIDA case (Fig. 12), are not artifacts in the empirical data
but rather effect of small-world communities described by
holonomy (nonlocal curvature).

A. Small-world properties

The small-world notion refers to the fact that for the most
real networks the typical length, 
, defined as number of
steps required to pass along the shortest path connecting two
randomly chosen pair of nodes, could be relatively small

 ∝ ln N [1].

We found that the homogeneous model (J = 0) reproduces
all the small-world properties with remarkable accuracy. The
contribution of the holonomy to the small-world geodesic dis-
tance is described by the corrections ∝ ln ln N . Thus, one can
say that the nonlocal curvature (described by the elementary
holonomy) is responsible for formation of the ultra-small-
world effect [43,44]. However, the corrections are tiny and this
point requires more thorough study to support our conjecture
(for the technical details see the Appendix).

B. Communities formation

The most real networks, including the Internet, exhibit
inhomogeneity in the link distribution leading to the natural
clustering of the network into groups or communities. Within
the same community vertex-vertex connections are dense, but
between groups connections are less dense [40].

We found that for BGP and CAIDA experimental data,
the exclusively holonomic model yields a high level of the
connection between nodes, k̄ ≈ N/2 (see the Appendix for
details). However, in the complete model we have k̄ 
 N .
This means that there are many vertices with low degree and
a small number with high degree. Our findings show that the
holonomy is responsible for the formation of the community
structure of the Internet.

V. CONCLUDING REMARKS

Inspired by theoretical studies of networked systems that
employ the methods of statistical physics and geometry, we
introduced a general, flexible, and viable model for CNs with
hidden geometry. Our approach incorporates the effects of
nonlocal curvature and extends the statistical treatment of
CNs. While we have considered CNs with hidden hyperbolic
geometry, our model can be applied to the study of CNs with
hidden geometry of space with arbitrary curvature as well.

We studied the Internet as a CN embedded in a hyperbolic
space to explain features of Internet connectance data not
only unexplained in previous studies but also completely un-
mentioned. We found an impressive agreement with available
empirical data. To our best knowledge, this is the first model
that explains all features of the Internet connectance data.

We show that nonlocal curvature is responsible for the for-
mation of communities and ultra-small-world network effects
inside of the Internet. However, the corrections are tiny and
our conjecture on the ultra-small-world network formation
requires more thorough study. This point will be addressed
in future work.
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APPENDIX A: POINCARÉ DISK MODEL

The Poincaré disk model is related to the two-dimensional
hyperbolic model as follows. Consider the two-sheeted hy-
perboloid, H2, defined in Cartesian coordinates (x, y, z) by
the equation: x2 + y2 − z2 = −R2, the curvature of the hyper-
boloid being K = −1/R2. We introduce the inner coordinates
on the upper sheet of H2 as follows:

x = R sinh θ cos ϕ, (A1)

y = R sinh θ sin ϕ, (A2)

z = R cosh θ, (A3)

where the radial coordinate is 0 � θ < ∞ and 0 � ϕ < 2π .
Taking a point P on the upper sheet of the hyperboloid, we
project it to the plane z = 0 by using the conversion formulas
(see Fig. 6)

Reζ = x

R + z
= tanh

(
θ

2

)
cos ϕ, (A4)

Imζ = y

R + z
= tanh

(
θ

2

)
sin ϕ, ζ ∈ D. (A5)

The nonassociative binary operation

Lζ η = ζ + η

1 + ζ̄ η
, L−1

ζ η = η − ζ

1 − ζ̄ η
, ζ , η ∈ D, (A6)

FIG. 6. A diagram of how points on the upper sheet of a two-
sheeted hyperboloid are mapped to the unit disk.
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where the bar denotes complex conjugation, is defined for the
neutral element located at the origin of coordinates. If the
neutral element is chosen at the point ζ0, then the operation
(A6) is modified as follows:

Lζ0
ζ η = ζ̃ + η̃

1 + ¯̃ζ η̃
,

(
Lζ0

ζ

)−1
η = η̃ − ζ̃

1 + ¯̃ζ η̃
, (A7)

where

ζ̃ = tanh

(
θ − θ0

2

)
ei(ϕ−ϕ0 ) = ζ ζ̄0(|ζ | − |ζ0|)

|ζ0ζ |(1 − |ζ0ζ |) , (A8)

η̃ = tanh

(
θ ′ − θ0

2

)
ei(ϕ′−ϕ0 ) = ηη̄0(|η| − |η0|)

|η0η|(1 − |η0η|) . (A9)

The computation of the associator and elementary holonomy
yields

lζ0
(ζ ,η)ξ = 1 + ζ̃ ¯̃η

1 + η̃ ¯̃ζ
ξ̃ , hζ0

(ζ ,η)ξ = 1 − ¯̃ζ η̃

1 − ¯̃ηζ̃
ξ̃ . (A10)

In general, for any three vertices i, j, and k, the elementary
holonomy with respect to i can be written as

hi
jk = 1 − ζ̄i jζik

1 − ζi j ζ̄ik
, (A11)

where

ζi j = tanh

(
θi j

2

)
eiϕi j = ζ j ζ̄i(|ζ j | − |ζi|)

|ζi||ζ j |(1 − |ζi||ζ j |) , (A12)

and we set θi j = θ j − θi, ϕi j = ϕ j − ϕi.
For each triplet of nodes, (i, j, k), the elementary holon-

omy, hi
jk , can be used as a measure of nonlocal curvature

around i. Indeed, for an arbitrary “vector,” ζip, we obtain

ζ ′
ip = hi

jkζip. (A13)

The phase gained by ζip is found to be

�ϕip = 1

i
ln hi

jk . (A14)

If we assume that |ζi j |, |ζ jk|, |ζik| 
 1, then we obtain

hi
jk ≈ 1 − i

�(i, j, k)

R2
�⇒ �ϕip ≈ −�(i, j, k)

R2
. (A15)

Here �(i, j, k) = (1/2)R2|θi j ||θik||ϕ jk| is the area of the
geodesic triangle formed by the triplet of points (i, j, k).
Employing Eqs. (A13) and (A15), we obtain

�ζip = (hi
jk − 1)ζip = −i

�(i, j, k)

R2
ζip. (A16)

This is consistent with the formula for the parallel transport of
the vector V along a small contour γ :

�V i = 1
2 Ri

jlmV j�Slm, (A17)

where Ri
klm is the curvature tensor and �Slm is the area of the

segment enclosed by γ . Indeed, for a space of constant cur-
vature K , we have Ri

jkl = K (δi
l g jk − δi

kg jl ). For K = −1/R2

we obtain

�V i = − 1

R2
Vj�Si j . (A18)

APPENDIX B: TEMPERATURE OF
COMPLEX NETWORKS

The most general statistical description of an undirected
network in equilibrium, with a fixed number of vertices N
and a varying number of links is given by the grand-canonical
ensemble [7,38,39]. For a graph model with energy given by
E = ∑

i< j εi jai j , the connection probability between nodes i
and j (i.e., the probability that the link exists) has the usual
form of the Fermi-Dirac distribution:

pi j = 1

eβ(εi j−μ) + 1
, (B1)

where εi j is the energy of the link 〈i, j〉 and μ is the chemical
potential. The chemical potential controls the link density and
the connection probability, while the temperature, T = β−1,
controls clustering in the network. Below we will focus on a
particular case, related to scale-free networks, where the link
energy has a simple form: εi j = εi + ε j and 0 � εi, j � μ.

Let us assign to each node a “hidden variable” xi =
eβc (μ−εi ). Then one can write the connection probability as

pi j = 1

eβ(εi+ε j−μ) + 1
= (zxix j )1/σ

1 + (zxix j )1/σ
, (B2)

where σ = βc/β and z = e−βμ. Suppose that xi is distributed
as ρ(xi ) ∼ (γ − 1)x−γ

i , where 1 � xi � x0 and γ > 1 [39].
This yields the distribution of εi = μ − Tc ln xi according to
�(εi ) ∼ βc(γ − 1)eβc (γ−1)(εi−μ).

We denote by p(ε) the connection probability between two
nodes with the fixed energy ε = εi + ε j ,

p(ε) = 1

Lε

∑
〈i, j〉∈�ε

pi j, (B3)

where �ε denotes the set of all pairs 〈i, j〉 having the energy
ε = εi j and Lε is the total number of links (edges) belonging
to �ε. Replacing the sum by an integral, we obtain

p(ε) = �(ε)

eβ(ε−μ) + 1
, (B4)

where

�(ε) = 1

Lε

∫∫
�(εi )�(ε j )δ(ε − εi − ε j )dεidε j = Ceβc (γ−1)ε.

(B5)

The constant C is defined by the normalization condition:∫ 2μ

0 �(ε)dε = 1. The computation yields

�(ε) = βc(γ − 1)eβc (γ−1)(ε−μ)

2 sinh[βc(γ − 1)μ]
. (B6)

To find the average node degree for the whole network, k̄,
we use the relationship L = k̄N/2, where L is the number of
total existing links,

L = N (N − 1)

2

∫ 2μ

0

�(ε)dε

eβ(ε−μ) + 1
. (B7)

Assuming N � 1, we obtain

k̄ = N
∫ 2μ

0

�(ε)dε

eβ(ε−μ) + 1
. (B8)
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Performing the integration, we find

k̄ = Nσ (γ − 1)

2 sinh[βc(γ − 1)μ]
{eβc (γ−1)μ�[−eβμ, 1, σ (γ − 1)]

− e−βc (γ−1)μ�[−e−βμ, 1, σ (γ − 1)]}, (B9)

where σ = βc/β and �(z, a, b) is the Lerch transcendent [41].
Let us consider a particular model with the chemical

potential defined as μ = Tc ln(νN/k̄), where ν is an un-
known, temperature-independent parameter. Substituting k̄ =
Nνe−βcμ in Eq. (B9) and assuming βμ � 1, we obtain

ν ≈ γ − 1

γ − 2
e−(β−βc )μ − e−2β(γ−1)μ+βcμ. (B10)

We further assume that μ(T ) → ∞ and (β − βc)μ → 0
while T → T +

c . Then from Eq. (B10) it follows that ν =
(γ − 1)/(γ − 2).

At the point T = Tc the system experiences a phase tran-
sition. Below the critical temperature, T < Tc, the graph is
completely disconnected, k̄ = 0. Near the critical point, for
T � Tc, the chemical potential behaves as μ ∼ − ln(T − Tc)
and dμ/dT ∼ −1/(T − Tc). In the limit of T → ∞, we
obtain k̄ → N/2 and

μ → Tc ln

[
2(γ − 1)

γ − 2

]
. (B11)

In summary, the average node degree is given by k̄ =
Nνe−βcμ, where

ν = γ − 1

γ − 2
. (B12)

Note that since the temperature, T , is an undetermined
parameter, one can take the value of the critical temperature
to be Tc = 1 without loss of generality. If we have empirical
information about the energy of the nodes and chemical po-
tential, then we can define the temperature for a given network
employing Eq. (B8) [or Eq. (B9)].

APPENDIX C: APPROXIMATION OF THE
CONNECTION PROBABILITY

In what follows we consider a network with a large num-
ber of nodes, N � 1. First, we would like to calculate the
connection probability between any two nodes i and j taking
elementary holonomy into account. We can already state the
form of pe

i j as

pe
i j = 1

1 + e−2βhe
i j
, (C1)

where β is an inverse “temperature.” The effective field he
i j

satisfies Eq. (24), which can be rewritten as follows:

he
i j = h0

i j − 2J

N − 1

∑
k

hi
( jk)

[
1 + tanh

(
βhe

ik

)]
, (C2)

where h0
i j = Bαi j and hi

( jk) = (1/2)(hi
jk + hi

k j ). Computation
of hi

( jk) yields

hi
( jk) = 1 − 2|ζ ji|2|ζki|2 sin2 ϕ jk

1 − 2|ζ ji||ζki| cos ϕ jk + |ζ ji|2|ζki|2 , (C3)

where ϕ jk = ϕk − ϕ j . Using the identity

1

2
(1 + cosh x cosh y) = cosh2 x

2
cosh2 y

2
+ sinh2 x

2
sinh2 y

2
,

(C4)

one can show that

hi
( jk) = 1 − 4 sinh2 θi j

2 sinh2 θik
2 sin2 ϕ jk

1 + cosh θi j cosh θik − sinh θi j sinh θik cos ϕ jk
.

(C5)

Our important assumption, essential for further estima-
tions, is that nodes are densely and uniformly distributed in
their angular coordinates. This implies that the effective field
depends only on the “radial” coordinates: he

i j = he(θi, θ j ).
Then we can replace the sum over ϕk in (C4) by an integral
in the angular coordinate to get, after some algebra,

he
i j = h0

i j − 2J

N − 1

∑
θk

Nk

[
1 − tanh2

(
θi j

2

)
tanh2

(
θik

2

)]

× [
1 + tanh

(
βhe

ik

)]
, (C6)

where θi j = θ j − θi and Nk is the number of nodes located at
the distance θk from the origin of coordinates. Further, it is
convenient to rewrite (C6) as

he
i j = h0

i j − 1

cosh2 θi j

2

2J

N − 1

∑
θk

Nk
[
1 + tanh

(
βhe

ik

)]

+ 2J

N − 1

∑
θk

Nk

[
1 −

tanh2
(

θi j

2

)
cosh2

(
θik
2

)][
1 + tanh

(
βhe

ik

)]
.

(C7)

To proceed further we use the anzatz he
i j = hi j + �hi j ,

where

hi j = h0
i j − 2J

cosh2 θi j

2

(
1 + tanh βh0

i j

)
, (C8)

and �hi j is a perturbation of the effective field. Employing
Eq. (C2) in the linear approximation we obtain

�hi j ≈ 2J

cosh2 θi j

2

(
1 + tanh βh0

i j

)

− 2J

N − 1

∑
k

hi
( jk)(1 + tanh βhik ). (C9)

Writing the connection probability as pe
i j = pi j + �pi j ,

where

pi j = 1

2
[1 + tanh(βhi j )] = 1

1 + e−2βhi j
, (C10)

we find that

�pi j = β�hi j

2 cosh2(βhi j )
. (C11)

When |�pi j |/pi j 
 1 one can neglect the perturbation
�pi j and use Eq. (C10) instead of the exact expression given
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by Eq. (C1). The computation of this quotient yields

Zi j =
∣∣∣∣�pi j

pi j

∣∣∣∣ =
∣∣∣∣ β�hi j

[1 + tanh(βhi j )] cosh2(βhi j )

∣∣∣∣
= |β�hi j[1 − tanh(βhi j )]|. (C12)

When Zi j 
 1 over a large range of variables θi j and h0
i j , we

can neglect the contributions from �hi j and use Eq. (C8) for
calculation of the effective field hi j in pi j .

APPENDIX D: THE INTERNET EMBEDDED IN
HYPERBOLIC SPACE

To adapt our model to empirical Internet data, such as BGP
and CAIDA, we consider d as the independent variable in our
calculations, thus allowing direct comparison to the results in
Ref. [9] (the authors there use x for distance rather than d).
We average the connection probability over all pairs of nodes
with fixed distance d between them, writing

p̄ = 1

Ld

∑
〈i, j〉∈�d

pe
i j = 1

2Ld

∑
〈i, j〉∈�d

[
1 + tanh

(
βhe

i j

)]
, (D1)

where �d denotes the set of all 〈i, j〉 pairs with distance d
between them and Ld is the total number of links (edges) in
�d .

We write the effective field as he
i j = h + �hi j , where

h = 1

Ld

∑
〈i, j〉∈�d

hi j, (D2)

and hi j is given by (C8). Substituting he
i j into Eq. (D1), we

find that p̄ = p + �p, where

p = 1
2 [1 + tanh(βh)] (D3)

and

�p = β�h

2 cosh2(βh)
, �h = 1

Ld

∑
〈i, j〉∈�d

�hi j . (D4)

The approximate formula for the connection probability (D3)
will be valid when |�p|/p 
 1. This validity is discussed
below in Sec. A. Further, we assume that h0

i j is a homoge-
neous field, h0

i j = h0, and we set h0 = (κ/4)(R − d ). Using
Eq. (C8), we find

hi j = h0 − 2J[1 + tanh(βh0)]
1

cosh2 θi j

2

. (D5)

Now substituting hi j into Eq. (D2), we obtain

h = h0 − 2J[1 + tanh(βh0)
]〈 1

cosh2 �θ
2

〉
, (D6)

where 〈
1

cosh2 �θ
2

〉
= 1

Ld

∑
〈i, j〉∈�d

1

cosh2 θi j

2

. (D7)

What we now need is a practical way of evaluating this
sum. We begin with the hyperbolic distance d between a pair
of nodes 〈i, j〉, as defined by Eq. (13):

cosh θ = cosh θi cosh θ j − sinh θi sinh θ j cos ϕi j, (D8)

where θ = κd . To find the dependence of the effective field
h on this distance we use Eq. (D8), treating it as a constraint,
f (θi, θ j, θ, ϕi j ) = 0, which allows us to eliminate either one
of the variables θi or θ j from consideration.

One can recast (D8) in an equivalent form, writing

cosh θ = cosh(θi + θ j ) − 2 sinh θi sinh θ j cos2 ϕi j

2
, (D9)

where θ = κd . When θi, θ j � 1, we obtain

d ≈ ri + r j + 2

κ
ln

(∣∣∣ sin
ϕi j

2

∣∣∣). (D10)

Thus, one can approximate the distance as d ≈ ri + r j (i.e.,
the sum of the radial coordinates) if, for some threshold value
ε, |W1(θ, ϕi j )| � ε 
 1, where

W1 = 2

θ
ln

(∣∣∣ sin
ϕi j

2

∣∣∣). (D11)

The graph of the function |W1(θ, ϕi j )| is depicted in Fig. 7
(left). For a given ε, the approximation d ≈ ri + r j is valid for
π − λ � |ϕi j | � π + λ, where λ = 2 arcsin e−ε/2θ [see Fig. 7
(right)]. These figures show how the approximation works
best at large distances between nodes and is also valid for
nearly any angle between them.

Now we rewrite Eq. (D8) as

cosh θ = cosh θi j + 2 sinh θi sinh θ j sin2 ϕi j

2
. (D12)

First, consider the case when θi 
 1 and θ j � 1. Then the
distance between nodes can be approximated as d ≈ r j , if
|W2(θi, θ j )| 
 1, where [see Fig. 8 (left)]

W2 = 2 sinh θi sinh θ j

cosh θi j
sin2 ϕi j

2
. (D13)

In the opposite case, when θi � 1 and θ j 
 1, we obtain
d ≈ ri. For a given ε, this approximation is valid for |ϕi j | < ν,
where

ν = 2 arcsin

√
ε cosh θ

2 sinh (θ + θ j ) sinh(θ j )
(D14)

[see Fig. 8 (right)]. Next, for θi, θ j � 1, we approximate the
distance as θ = |θi − θ j | + εi j , where εi j is given by

εi j = cosh−1

(
cosh θi j + 2 sinh θi sinh θ j sin2 ϕi j

2

)
− |θi − θ j |. (D15)

In Fig. 9 the function εi j (θi, θ j ) is depicted for |ϕi j | = π (cyan
surface) and |ϕi j | = π/8 (red surface).

Finally, according to the above analysis, the sum (D7) can
be approximated as the sum of three general cases which we
can calculate approximately:

〈
1

cosh2 �θ
2

〉
≈ 1

Ld

N0∑
〈i, j〉

1

cosh2 θ−εi j

2

+ 1

Ld

N1∑
〈i, j〉

1

cosh2 θ−θ j

2

+ 1

Ld

N2∑
〈i, j〉

2

cosh2 θ−2θ j

2

, (D16)
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FIG. 7. (a) Graph of the function W1(ϕi j, θ ), d ≈ ri + r j . W1 is small for large radii and tends to zero as the angle ϕi j between nodes
increases. (b) Graph of the function λ(θ ), ε = 0.1, π − λ � |ϕi j | � π + λ. The angle between nodes where the approximation is valid increases
with distance θ , up to nodes that are completely opposite.

where N0 is the number of pairs 〈i, j〉 in the interval θi, θ j � 1,
N1,2 is the number of pairs inside the interval θi 
 1, θ j �
1 (or θi � 1, θ j 
 1), and θi, θ j � 1, respectively. Applying
the mean value theorem, we obtain

〈
1

cosh2 �θ
2

〉
≈

2∑
a=0

δa

cosh2
(

θ−θa
2

) , (D17)

where δa = Na/L (a = 0, 1, 2), and as one can see δ0 + δ1 +
δ2 = 1. The unknown parameters, θa, determine the reference
points in the application of the mean value theorem. Taking
into account that θ = κd and setting θa = κra, we obtain

〈
1

cosh2 �θ
2

〉
≈

2∑
a=0

δa

cosh2
[

κ (d−ra )
2

] . (D18)

Thus, we find that the connection probability is given by

p = 1
2 [1 + tanh(βh)], (D19)

where

h = h0 − 2J[1 + tanh(βh0)]
2∑

a=0

δa

cosh2
[

κ (d−ra )
2

] , (D20)

and h0 = (κ/4)(R − d ). The fitting parameters δa and ra

should be fixed by comparing with available empirical data.
The connection probability (D19) can be rewritten in the

form of the Fermi-Dirac distribution:

p = 1

eβ(ε−μ) + 1
, (D21)

where μ = κR/2 is the chemical potential, and

ε = κd

2
+

2∑
a=0

4Jδa
{
1 + tanh

[
β
(

κd
4 − μ

2

)]}
cosh2

[
κ (d−ra )

2

] . (D22)

1. Validity of approximation

The approximation (D19) is valid when |�p|/p 
 1. The
computation yields

Y = |�p|
p

= β�h[1 − tanh(βh)], (D23)

where

h = h0 − 2J (1 + tanh(βh0))

〈
1

cosh2 �θ
2

〉
(D24)

FIG. 8. (a) Graph of the function W2(θi, θ j ), d ≈ |r j − ri|, |ϕi j | < π . (b) Graph of the function ν(d ), d ≈ |r j − ri|, |ϕi j | � ν. From top to
bottom: θ j = 0.2, 1, 5 (ε = 0.1).
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FIG. 9. Graph of the function εi j (θi, θ j ), θ ≈ |θ j − θi| + εi j . Up-
per outer surface (cyan): |ϕi j | = π . Lower inner surface (red): |ϕi j | =
π/8.

and

�h = 1

Ld

∑
〈i, j〉

�hi j = 1

Ld

∑
〈i, j〉

{
2J

cosh2
( θi j

2

) (1 + tanh βh0)

− 2J

N − 1

∑
k

hi
( jk)(1 + tanh βhik )

}
. (D25)

Here �hi j is taken from Eq. (C9). Next, using the relation

2J

N − 1

∑
k

hi
( jk)

= 2J

N − 1

∑
θk

Nk

{
1 − tanh2

(
θi j

2

)
tanh2

(
θik

2

)}
, (D26)

one can recast Eq. (D25) as

�h = 1

L

∑
〈i, j〉

�hi j = 2J

Ld

∑
〈i, j〉

{
1

cosh2
( θi j

2

) [1 + tanh(βh0)

− F (θi )] − Q(θi)

}
, (D27)

where

F (θi ) = 1

N − 1

∑
θk

Nk tanh2

(
θik

2

)[
1 + tanh(βhik )],

Q(θi ) = 1

N − 1

∑
θk

Nk

cosh2
(

θik
2

) [1 + tanh(βhik )]. (D28)

FIG. 10. Graph of the function Y (d ) representing the relative size
of �p and p as an indicator of approximation error. The blue curve
corresponds to Fig. 4 and the red curve corresponds to Fig. 5.

Replacing the sum by an integral, we we have

F (θi ) =
∫ θ0

0
dθρ(θ ) tanh2

(
θi − θ

2

)
×{1 + tanh[βh(d, θi − θ )]}, (D29)

Q(θi ) =
∫ θ0

0

dθρ(θ ){1 + tanh[βh(d, θi − θ )]}
cosh2

(
θi−θ

2

) , (D30)

where

ρ(θ ) = αeα(θ−θ0/2)

2 sinh(αθ0/2)
and h(d, θi − θ )

= h(d ) − 2J

cosh2
(

θi−θ
2

) {1 + tanh[βh(d )]}. (D31)

Once again applying the mean value theorem, we obtain

Y (d ) = 2βJ[1 − tanh(βh)]
2∑

a=0

δa

{
1

cosh2
( d−θa

2

)
× [1 + tanh(βh0) − F (θa)] − Q(θa)

}
. (D32)

Figure 10 depicts the function Y (d ). The choice of pa-
rameters corresponds to Figs. 4 and 5 of the main text. As
one can see, the approximation is valid for a wide range of
distances, and one can safely use Eq. (D19) for computation
of the connection probability.

APPENDIX E: METHODS

Parameters in our model are temperature T , size of the
network R, curvature K , and coupling constant J and the
fitting parameters are ra and δa (a = 0, 1, 2). Taking into
account that δ0 + δ1 + δ2 = 1, we obtain nine independent
parameters. These parameters should then be adjusted to make
the model fit the available Internet data and, as we will see in
the next section, can be reduced to six parameters if we have
empirical values for k̄, γ , and N .

In our work, we use the empirical connectance data for the
BGP and CAIDA views of the Internet and map these data
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TABLE II. The characteristics of the Internet: number of nodes (N), number of links (L), average degree (k̄), exponent of degree distribution
(γ ), and temperature (T ). Empirical data are extracted from Refs. [9,11].

Homogeneous model
(J = 0) Size (N ) Number of links (L) Average node degree (k̄) γ Temperature (T)

BGP 17, 446 40, 805 4.68 2.16 1.03602
CAIDA 23, 752 58, 416 4.92 2.1 1.06718

Complete model (J �= 0) Size (N ) Number of links (L) Average node degree (k̄) γ Temperature (T)

BGP 17, 446 40, 805 4.68 2.16 1.0365
CAIDA 23, 752 58, 416 4.92 2.1 1.06725

onto hyperbolic geometry, as described in Refs. [9,11,42] (see
Fig. 11).

1. Size and temperature of the Internet embedded
in hyperbolic space

The Internet nodes are mapped to a hyperbolic space of
curvature K < 0 by assigning to each node a random angular
coordinate ϕ and a radial coordinate r = θ/κ according to the
radial node density:

ρ(r) = αeα(r−R/2)

2 sinh(αR/2)
, 0 � r � R, (E1)

where α = κ (γ − 1)/2 and κ = √−K . As was shown above,
the connection probability is given by the Fermi-Dirac
distribution:

p = 1

eβ(ε−μ) + 1
, (E2)

where μ = κR/2 and

ε = κd

2
+

2∑
a=0

4Jδa
{
1 + tanh

[
β
(

κd
4 − μ

2

)]}
cosh2

[
κ (d−ra )

2

] . (E3)

When the coupling constant J = 0, the model describes the
homogeneous scale-free network with the link energy ε =
κd/2.

The key formulas for embedding the Internet in the hyper-
bolic space are as follows: the power-law degree distribution
in the network, P(k) ∼ (γ − 1)k−γ , and the expression for the
average degree in the whole network, k̄ = Nνe−κR/2. In our
model the control parameter is ν = (γ − 1)/(γ − 2), and the
size of the network is given by

R = 2

κ
ln

[
N

k̄

(
γ − 1

γ − 2

)]
. (E4)

To determine κ we use the expression obtained in
Refs. [10,39] for the Internet embedded in the (universal)
hyperbolic space with curvature K = −1,

R = 2 ln

[
2N

π k̄

(
γ − 1

γ − 2

)2]
. (E5)

The curvature, K = −κ2, of the target hyperbolic space is
determined now by comparing (E13) with (E5). We obtain

κ =
ln

[
N
k̄

(
γ−1
γ−2

)]
ln

[
2N
π k̄

(
γ−1
γ−2

)2] = 1 −
ln

[
2
π

(
γ−1
γ−2

)]
ln

[
2N
π k̄

(
γ−1
γ−2

)2] . (E6)

2. Internet temperature

a. Homogeneous model. To estimate the Internet tempera-
ture, first we consider a purely homogeneous network (J = 0).
Since the Internet is a scale-free sparse network, one can
use Eq. (B9) for the average node degree to determine the
temperature of the Internet

k̄ = N (γ − 1)

2 sinh[β(γ − 1)μ]
[eβ(γ−1)μ�(−eβμ, 1, γ − 1)

− e−β(γ−1)μ�(−e−βμ, 1, γ − 1)], (E7)

where the chemical potential is given by

μ = ln

[
N

k̄

(
γ − 1

γ − 2

)]
. (E8)

Substituting μ in (E7), one can rewrite it as F (N, k̄, γ , T ) =
0. For given N , k̄, and γ , solution of this equation yields T .

b. Heterogeneous model. In our complete model the cou-
pling constant J �= 0. Then, employing Eq. (B8), we obtain

k̄ = N
∫ 2R

0

�(r)dr

eβ(ε−μ) + 1
, (E9)

where �(r) and ε(r) are given by Eqs. (E1) and (E3), respec-
tively. We use this expression to calculate the temperature of
the Internet for the heterogeneous model.

In Table II we present the results of our computation
of the Internet temperature for BGP and CAIDA data. The
empirical data are extracted from Refs. [9,11]. As one can see,
temperatures are very close for both models (homogeneous
and heterogeneous).

c. Impact of parameters. Figure 12 presents our numerical
results (black curve) and compares them with the theoretical
predictions of the model presented in Refs. [9,11] (green
dashed curve) and empirical Internet data obtained for BGP
and CAIDA (red diamonds). Our findings show that a ho-
mogeneous model yields (in general) a good agreement with
available empirical data but cannot explain evident anomalies
in the connection probability that break the scale-free behav-
ior of the Internet.

We found that parameters β, R, κ control the homoge-
neous, sigmoidal shape of the curve only, whereas the ris
and δs regulate the location and depth of the local minima.
Finally, the coupling constant J controls the height of the local
maxima.

In Fig. 13 we depict the connection probability for the
homogeneous model with vanishing contribution from the
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FIG. 11. [(a) and (b)] Empirical connection probability for the Internet BGP based on data obtained in Ref. [9]. [(c) and (d)] Empirical
connection probability for the Internet Archipelago data (CAIDA) extracted from Ref. [11].

holonomy (J = 0) and compare the homogeneous model to
the heterogeneous one for different values of paramaters J , T ,
and R.

3. Community structure and small-world
properties of the Internet

a. Community structure of the Internet. Many real net-
works exhibit inhomogeneity in the link distribution, lead-
ing to the natural clustering of the network into groups or
communities. Within the same community vertex-to-vertex
connections are dense, but connections are less dense between
groups [40].

To study the contribution of holonomy to the formation of
small communities, first we compare the connection probabil-
ity for the exclusively holonomic model with the connection
probability for homogeneous and heterogeneous models and
empirical data (see Fig. 14). Additionally, we calculated the

average node degree for the exclusively holonomic model. We
found that for BGP and CAIDA experimental data, the model
yields a high level of the connection between nodes, k̄ ≈ N/2.
This is close to the value of k̄ in the limit of high tem-
peratures. However, in the complete model we have k̄ 
 N .
This means that there are many vertices with low degrees
and a small number with high degrees. Thus, our results
show that holonomy (nonlocal curvature) is responsible for
the formation of the community structure of the Internet.

b. Small-world properties of the Internet. The small-world
property of a network refers to a relatively short distance
between randomly chosen pairs of nodes. In a small-world
network the typical distance between nodes 
 (required to
connect them by passing through other nodes) increases pro-
portionally to the logarithm of the number of nodes, 
 ∝
ln N , as long as the clustering coefficient is not small [1].
For a scale-free network with power-law degree distribution,
P(k) ∼ (γ − 1)k−γ and for 2 < γ < 3, this dependence is

FIG. 12. Connection probability for the Internet empirical data (red diamonds) compared to the homogeneous model (J = 0, black curve)
and numerical results (green dashed curve) obtained in Refs. [9,11]. (a) BGP. (b) CAIDA.
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FIG. 13. Comparison of the effect of parameters J , T , and R on the fit to CAIDA data (red diamonds). From top to bottom: (a) J = 1.06,
2.44, 3.18; (b) T = 0.5, 1.024, 5; (c) R = 25.65, 30, 20.

modified as follows: The shortest path between two randomly
chosen nodes grows as


 ∝ 2

| ln(γ − 2)| ln ln N. (E10)

The presence of this behavior is known as the ultra-small-
world property of the scale-free network [43,44].

To study small-world properties of the Internet embedded
in hyperbolic space, we calculated the mean geodesic distance
between two nodes for homogeneous (J = 0) and heteroge-
neous models. The results are presented in Fig. 15. We found
that l ∝ ln N for the homogeneous model. The contribution
of the holonomy to the small-world effect is described by
the corrections ∝ ln ln N . Thus, one can say that the nonlocal
curvature (described by the elementary holonomy) is respon-
sible for formation of the ultra-small-world networks within

the Internet. Since the corrections are tiny, support for our
conjecture requires more thorough study.

To compare our findings with real networks we need to
find the lowest number of steps required to pass from one
node to other among pairs of nodes separated by the geodesic
distance l . If we let l0 denote the mean geodesic distance per
step, then the number of steps required to travel along the
shortest path between a pair of nodes is given by 
 = l/l0.
The main difficulty in the computation of 
0 is the lack of
analytical results for free-scale networks. To overcome this
obstacle, we note that for a high temperature the scale-free
network becomes highly randomized, which allows us to em-
ploy the formula for the shortest distance in random networks
given by [6]:


r = ln N

ln k̄
. (E11)

FIG. 14. Connection probability. (a) BGP: k̄ ≈ N/2 = 8723 (purely holonomic model) and k̄ = 4.68 (complete model). (b) CAIDA: k̄ ≈
N/2 = 11875 (purely holonomic model) and k̄ = 4.92 (complete model).
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FIG. 15. Internet small-world properties. (a) Homogeneous model: l = 4.12 ln N (CAIDA) and l = 3.94 ln N (BGP). (b) Heterogeneous
model: l = 4.12 ln N (CAIDA) and l = 3.94 ln N (BGP). (c) Ultrasmall world corrections: l = 4.12 ln N + 0.045 ln ln N (CAIDA) and l =
3.94 ln N + 0.05 ln ln N(BGP).

In the limit of T → ∞, every pair of nodes is connected
with probability p = 1/2, and the computation of the average
node degree yields k̄ → N/2. In the same limit we obtain

r → 
0 = ln N/ ln(N/2) and

l → l∞ = 2R∞ − 2

κ (γ − 1)
, (E12)

where

R∞ = 2

κ
ln

[
2

(
γ − 1

γ − 2

)]
. (E13)

Then the geodesic distance per step can be written as l0 =
l∞/
0. Assuming that l0 is a minimal geodesic distance per
step (a “quant” of length), we obtain a qualitative formula for
estimation of the path length,


 = l

l0
= l

l∞

0. (E14)

In Table III we compare our theoretical predictions with data
available in the literature. We consider only the networks
of large size, N > 103. As one can see, the predictions of
Eq. (E14) are in a reasonable qualitative agreement with the
average path lengths of real networks.

TABLE III. The characteristics of some real networks: number of nodes (N), average degree (k̄), average path length 
real and temperature
(T ). The columns 
rand, 
pow, and 
 show values of the average path lengths for random network (A6), power-law degree distribution and our
model (E14), respectively.

Network Size (N ) Average node degree (k̄) γ 
real 
rand 
pow 
 Temperature (T ) References

BGP 17 446 4.68 2.16 3.69 6.33 — 4.06 1.036 [42]
CAIDA 23 752 4.92 2.1 — 6.32 — 3.64 1.067 [11]
Internet, router 150 000 2.66 2.4 11 12.18 7.47 7.36 1.003 [6]
Movie actors 212 250 28.78 2.3 4.54 3.65 4.01 5.37 1.007 [6]
Coauthors, neuro 209 293 11.54 2.1 6 5 3.86 3.92 1.0008 [6]
Coauthors, math 70 975 3.9 2.5 9.5 8.2 6.53 7.28 1.0008 [6]
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