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We propose a strategy based on the site-bond percolation to minimize the propagation of Phytophthora
zoospores on plantations, consisting in introducing physical barriers between neighboring plants. Two clustering
processes are distinguished: (i) one of cells with the presence of the pathogen, detected on soil analysis, and
(ii) that of diseased plants, revealed from a visual inspection of the plantation. The former is well described by
the standard site-bond percolation. In the latter, the percolation threshold is fitted by a Tsallis distribution when
no barriers are introduced. We provide, for both cases, the formulas for the minimal barrier density to prevent
the emergence of the spanning cluster. Though this work is focused on a specific pathogen, the model presented
here can also be applied to prevent the spreading of other pathogens that disseminate, by other means, from one
plant to the neighboring ones. Finally, the application of this strategy to three types of commercially important
Mexican chili plants is also shown.
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I. INTRODUCTION

The genus Phytophthora (from Greek, meaning phyto,
“plant,” and phthora, “destroyer” [1–3]) is one of the most
aggressive phytopathogens that attack the roots of plants and
trees in every corner of the world. The diseases caused by
exposition to Phytophthora generate tremendous economical
losses in agronomy and forestry. For example, Phytophthora
capsici cause considerable damage in plantations of chili,
cucumber, zucchini, etc. [4–6]. The same occurs with tomato
and potato plantations, which are affected by Phytophthora in-
festants [7–9]. Phytophthora cinnamomi harms avocado plan-
tations [10–12] and, together with Phytophthora cambivora,
produce the ink disease, which is widely distributed in Europe
[13–15]. Phytophthora has caused significant devastation on
Galician chestnut and the Australian eucalypt, putting them
close to extinction [16–18].

From a biological perspective, Phytophthora shares mor-
phological characteristics with true fungi (Eumycota) such
as mycelial growth or the dispersion of spores of mitotic or
asexual origin. Its form of locomotion, by means of flagella
[19], is a distinctive feature that enables them to have a
great impact on the plant kingdom as phytopathogens. They
can disperse through soil moisture or water films, including
those on the surface of the plants. These motile zoospores,
emerging from mature sporangia in quantities of 20 to 40,
can swim chemotactically toward the plants [19–21]. When
they reach the surface of the roots they lose their flagella,
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encyst in the host, and form a germination tube through which
they penetrate the surface of the plant [22,23]. Moreover,
many species of Phytophthora can persist as saprophytes if
the environmental conditions are not appropriate but become
parasitic in the presence of susceptible hosts [21]. Due to
the physiology of the oomycetes most fungicides have no
effect on them [1,24,25]. Therefore, research on nonchemical
strategies that minimize or eliminate the propagation of the
pathogen is necessary.

It has been noted that for some type of plants not all
individuals manifest the disease after the exposition to a
specific pathogen. We take advantage of this fact to define the
pathogen susceptibility (χ ) of a plant type as the fraction of
individuals that get the disease. It can be interpreted as the
probability that a sample of the plant gets sick after being
exposed to the pathogen and can be measured in a laboratory
or a greenhouse under controlled conditions or by direct
observation in the plantation.

On the other hand, one of the models widely used to de-
scribe physical processes is the site-bond percolation, which
has been applied to study the spread of diseases [26–29].
It is a generalization of the site and bond percolation that
consists in determining both site and bond occupation proba-
bilities needed to the emergence of a spanning cluster of sites
connected by bonds. In this context, two nearest-neighboring
sites do not belong to the same cluster if there is not a
bond connecting them. In this work, occupied sites in the
percolation system represent susceptible plants through which
the propagation process can occur, and bonds represent the
direction of propagation of the pathogen.
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It is worth mentioning that zoospores move directly to
neighboring plants. Placing physical barriers between them
(that is, perpendicularly to the direction of propagation) can
help to decrease the opportunity for root to root pathogen
transmission. For instance, the Australian government recom-
mends using physical root barriers such as impermeable mem-
branes made of high-density polyethylene [30–33], which
have been used in agriculture and horticulture. Trenches filled
with compost (a mixture of manure and crop residues) in addi-
tion with biological control agents (for example, Trichoderma
spp. or Bacillus spp.) could be used as a good barrier against
soil-borne pathogens like oomycetes and fungi [34–36]. With
the use of barriers it could be possible to fragment the span-
ning cluster of susceptible plants, preventing the propagation
of the pathogen. Thus, if the pathogen susceptibility of the
plant is known, then one can try to determine the minimal den-
sity of barriers (pw) that stops the propagation of the pathogen.
However, this density does not necessarily correspond to the
bond percolation threshold.

Although this paper is motivated by the important prob-
lem caused by the propagation of Phytophthora, which is
still unsolved nowadays, the strategy presented here can be
adapted to mitigate the spread of other diseases. There exist
other phytopathogens relevant to agronomy that disseminate
over neighboring plants (for example by walking [37], rain
splashing [38–40] or swimming [41]) like red spider mites,
leaf rust and Pythium (with similar propagation mechanisms
as Phytophthora), among others. In practice one only needs to
find a suitable physical barrier that efficiently avoids nearest-
neighbor propagation of the specific phytopathogen.

In Sec. II, we introduce the site-bond percolation model
for the pathogen-plant interaction and the role of the barriers.
Section III describes the simulation method used in this work
and provides the simulation rules for the clustering process. It
also shows an example of the simulation process and describes
the data analysis method. In Sec. IV, we report the critical
curves as a function of the initial percentage of inoculated soil
for the barrier-free case. These curves indicate the maximum
value of the pathogen susceptibility that guarantees a spanning
cluster of diseased plants is not formed even if the soil
is completely infested with the pathogen. Additionally, we
provide the empirical formulas to determine the density of
barriers that prevents the emergence of the spanning cluster
when the susceptibility exceeds the aforementioned critical
value. In Sec. V, we show the application of this method to
three varieties of Mexican chili plants with high commer-
cial value. Finally, Sec. VI presents the conclusions of this
work.

II. MODEL

The plantation is modeled as a simple two-dimensional
lattice (square, triangular, and honeycomb) wherein each site
represents a plant. The lattice spacing is chosen as the maxi-
mum displacement length that the pathogen can travel before
entering a state of dormancy or before dying due to starvation.
This condition ensures the pathogen can only move to the
nearest-neighbor cells as depicted in Fig. 1. We assume a
site with an active pathogen will propagate the disease to all
nearest-neighbor sites.

FIG. 1. Possible barrier locations (solid lines), directions of mi-
croorganism propagation (dotted lines), and modification of the
nearest-neighbor meaning induced by inoculated cells with a resis-
tant plant in square [(a) and (d)], triangular [(b) and (e)], and hon-
eycomb [(c) and (f)] lattices. Bottom figures show susceptible plants
(green triangle) with a neighboring resistant plant in an inoculated
cell (red triangle). As a consequence of the microorganism propa-
gation (red arrows), the nearest-neighbor definition (black arrows) is
modified since the site with the susceptible plant can now be linked
to farther sites (blue arrows).

Here the pathogen susceptibility plays an important role
since resistant plants can act as a natural barrier for susceptible
plants by locally containing the propagation process, i.e., a
resistant plant does not disseminate the disease. In our model
resistant plants are uniformly distributed on the system since it
is not possible to determine in advance which seeds will grow
into resistant or susceptible plants. In this way the pathogen
susceptibility plays the role of the occupation probability in
the traditional treatment of percolation theory.

Another essential variable that needs to be considered is
the initial fraction of inoculated cells at the beginning of the
propagation process which is denoted by I . In our model these
cells are distributed uniformly over the lattice. This parameter
is relevant to amalgamate adjacent-disjoint clusters promoting
a favorable environment for the formation of a spanning
cluster of diseased plants or of cells with the presence of the
pathogen [42]. Additionally, we put barriers that are randomly
distributed in the lattice. These are placed perpendicularly to
the direction of propagation of the pathogen (see Fig. 1), and
its primary function is to prevent the pathogen from reaching
neighbor sites. Note that all possible barriers that can be
placed form the dual lattice to that formed by all possible
directions of propagation of the pathogen. Then the question
we want to answer is as follows: What is the minimal barrier
density, in terms of χ and I , that guarantees a spanning cluster
will not appear?

We distinguish two different clustering processes: (i) the
formation of clusters of cells with the presence of the
pathogen and (ii) the formation of clusters of diseased plants.
Although both processes are consequence of the propagation
of the pathogen they depend in different ways on the intrinsic
properties of the plants. In practice one would observe the first
process if a pathogen soil test is performed while a visual
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inspection of the damage on the plantation would reveal the
second process. In the following we refer to them as soil and
plant cases, respectively, and the corresponding variables will
be labeled with a superscript.

In the soil case, for a lattice with N sites, the mean number
of available plants 〈N〉av to the propagation process is 〈N〉av =
Nχ . Since the susceptibility of the plant and the inoculation
state of the cell are independent variables, it is necessary to
take into account the mean number of inoculated cells 〈N〉in

with a resistant plant. This condition adds 〈N〉in = N (1 − χ )I
extra available cells. Thus, the total mean number of cells
where the propagation process can occur is 〈N〉tot = 〈N〉av +
〈N〉in. Therefore, the propagation takes place in a percolat-
ing system with an effective occupation probability psoil

eff =
I + (1 − I )χ . In this case, the spanning cluster emerges if
psoil

eff � pcs, where pcs is the critical probability in the purely
site percolation. Thus the desired percolation threshold is
psoil

eff = pcs.
The introduction of barriers in the soil case makes the sys-

tem suitable to be modeled with the site-bond percolation. The
critical curves as a function of the occupation probabilities
of sites (ps) and bonds (pb) has been empirically fitted using
[43] pb = B/(ps + A), where A = (pcb − pcs)/(1 − pcb), B =
pcb(1 − pcs)/(1 − pcb), and pcb is the critical probability in
the purely bond percolation. Moreover, since barriers are
located in the dual lattice, the density of barriers and the bond
occupation probability are related by pb + psoil

w = 1, that is,
the joint set of barriers and bonds it is exactly Nb (see Sec.
III). So we finally find that the critical curves for the soil case
can be written as

psoil
w = 1 − pcb(1 − pcs)

(1 − pcb)(I + (1 − I )χ ) + pcb − pcs
. (1)

On the other hand, for the plant case, inoculated cells with
a resistant plant do not belong to the cluster of diseased plants.
However, these cells play an essential role since adjacent-
disjoint clusters can be amalgamated through them. This
fact modifies the nearest-neighbor meaning since it is then
possible to link two susceptible plants separated by a distance
greater than the lattice spacing (see Fig. 1), then the pos-
sibility to amalgamate adjacent-disjoint clusters is increased
[42].

The main difference between the soil and plant cases is just
this amalgamating role played by inoculated cells with a resis-
tant plant at the beginning of the propagation process. In the
soil case, these cells are considered as occupied sites, while in
the plant case, they do not belong to any cluster; however, they
can transmit the disease over neighboring susceptible plants.
Schematically, this latter situation looks like a healthy plant
with sick neighbors.

III. SIMULATION METHOD

We implemented a modified version of the Newman-Ziff
algorithm reported in Refs. [44,45] to determine the percola-
tion threshold.

Since the susceptibility condition of each plant and the
cells’ inoculation state are independent of each other they are
stored in separate matrices in the simulation. These matrices,
that we call X and I, respectively, are initially null. They

are then filled according to the predefined values of
χ and I . For the case with no barriers, however, only the
knowledge of the inoculated cells is required to determine the
percolation thresholds.

For simplicity we describe the implementation of the algo-
rithm for a square lattice. However, this algorithm can also be
used for other lattices simply changing the implementation of
the nearest-neighbor definition.

Each cell of the L × L matrices X and I is labeled with a
progressive number M = iL + j, for the cell at row i and col-
umn j. The set of cells’ labels is then N = {0, 1, 2, . . . , L2 −
1}. On the other side, the possible propagation directions
for all cells form a network with 2L(L − 1) bonds since the
system is considered as free of periodic boundary conditions.
As we did with the cells, each bond is labeled with progressive
numbers that form the set Nb = {0, 1, 2, . . . , 2L(L − 1) − 1}.

An initial number of inoculated cells nI is drawn from the
binomial distribution B(L2, I ) and then nI labels are randomly
taken from the set N . The corresponding cells are the sites
from which the infection process will propagate. These cells
are marked by changing their state from 0 to 1. The initial
distribution of susceptible plants, that is, plants that will get
the disease if they are exposed to the pathogen, is obtained in
a similar way. Note that only the initial conditions are set so
far and the propagation process has not been started so that no
cells are linked yet.

To add bonds between cells the Nb labels are randomly
permuted and then the corresponding bonds are added one
at a time until a spanning cluster is formed. It should be
recalled that bonds determine the direction of propagation in
this model.

To decide which bonds will connect the sites we impose
rules based on the way the pathogen transports itself from
site to site. Since the zoospores are capable of detecting the
presence of neighboring plants, they will swim toward them as
soon as they emerge from the sporangia. If a zoospore reaches
a resistant plant, then it will either enter a latency state or die
from inanition so that it will not be able to further propagate
the disease. If, on the other hand, the zoospore arrives at a
susceptible plant, then it will attack the plant and produce new
sporangia. They, in turn, will produce new zoospores that will
eventually swim toward neighboring plants. Thus the rules can
be stated as follows.

A bond will connect two nearest-neighbor sites if:
(1) Soil case:

(a) Any of the sites was inoculated during the initial
configuration.

(b) Both sites have susceptible plants.
(2) Plant case:

(a) Any of the sites was inoculated during the initial
configuration and the other has a susceptible plant.

(b) Both sites have susceptible plants.
This way bonds are added one by one, and sites are

connected according to the rules above, until a cluster that
connects one side of the lattice to the opposite one, the
so-called spanning cluster, appears. The union-find algorithm
is used to connect sites. Since not every site pair can interact
not every bond can connect adjacent sites. In order to identify
the spanning cluster, before starting the simulation process,
susceptible plants in the last and first rows are united with
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(a) (b)

FIG. 2. Examples of possible initial configurations of a system
of size L = 10. (a) Distribution of cells with susceptible (filled
triangles) and resistant (empty triangles) plants. (b) Distribution of
inoculated cells.

auxiliary labels -1 and -2, respectively. Then, the simulation
process is stopped when the labels {-1,-2} change to the same
value.

The essential difference between the two cases is the role
played by the inoculated cells with a resistant plant. In the soil
case they become occupied sites while in the plant case they
may merge disjoint clusters.

To visualize the difference between both cases consider an
L = 10 system with χ = 0.5 and I = 0.4. Figure 2 shows
one possible initial configuration of susceptible plants and
inoculated cells before the propagation process starts.

In a system of size L = 10 there are 180 bonds. A possible
random permutation of their labels is listed below:

{118, 63, 26, 119, 160, 22, 64, 142, 156, 126, 8, 152, 73,
127, 32, 78, 81, 170, 36, 92, 89, 123, 57, 68, 12, 33, 24, 129,
158, 46, 169, 82, 48, 147, 69, 38, 18, 56, 168, 178, 179, 164,
114, 6, 79, 42, 86, 41, 13, 52, 165, 115, 43, 85, 172, 116, 133,
11, 27, 139, 29, 15, 0, 138, 122, 40, 7, 148, 74, 71, 113, 177,
111, 135, 37, 51, 67, 9, 121, 98, 99, 35, 49, 108, 151, 53, 173,
39, 1, 5, 2, 153, 45, 146, 76, 59, 145, 143, 163, 96, 16, 104,
101, 61, 144, 28, 102, 17, 88, 31, 3, 141, 109, 77, 65, 80, 166,
106, 167, 117, 70, 130, 21, 83, 140, 20, 157, 10, 136, 161,
137, 107, 100, 150, 110, 91, 132, 128, 112, 93, 44, 149, 19,
94, 131, 154, 155, 30, 62, 171, 23, 34, 55, 4, 54, 176, 58, 75,
174, 50, 60, 125, 47, 25, 103, 134, 120, 159, 90, 84, 14, 87,
175, 124, 95, 105, 66, 72, 97, 162}.

The bonds are added in this order until a spanning cluster
appears. The entries of one of the cells a given bond can con-
nect are given by i = �h/(2L − 1)� and j = h mod (2L −
1), where h is the bond’s label and �x� denotes the integer
part of x. Note that the orientation of the bond is identified
as horizontal if j < L − 2 or vertical otherwise. In addition,
the value of j should be corrected for vertical bonds by
subtracting L − 1. Then the cells with entries i, j and i, j + 1
are taken if the bond is horizontal; while the cells at i, j
and i + 1, j are taken if the bond is vertical. Finally, if the
pair taken fulfills the rules given previously, then they are
connected using the union-find algorithm.

Figure 3 shows the networks formed by connected bonds
in both cases. While in the soil case 121 bonds were added
before the spanning cluster appeared, in the plant case were

(a) (b)

FIG. 3. Spanning clusters formed in the (a) soil and (b) plant
cases for the initial conditions of Fig. 2 and the list of bonds given in
the text. Only the bonds that connect sites are shown (black lines). In
the case (b), bonds connecting a resistant plant in an inoculated site
to a susceptible plant are represented with dashed lines. Yellow lines
show the modification of the nearest-neighbor definition.

needed 160 bonds. Note that, although each network has its
own topology, in the plant case the fundamental role for the
formation of a spanning cluster is played by the modification
of the nearest-neighbor definition [yellow lines in Fig. 3(b)]
introduced by the interactions between susceptible plants and
inoculated cells with a resistant plant on it [dashed lines in
Fig. 3(b)]. This clearly shows the consequence of this type of
interactions, namely their capacity to merge disjoint clusters
of susceptible plants.

Data analysis

Using this method, we determined the probability Pn that a
spanning cluster appears after adding n bonds (or sites) [46]
as an average over 104 runs for each pair (χ, I ). Starting in
χ = 1 and I = 1 we decreased their values independently in
steps of �χ = �I = 0.05. Then the percolation probability is
computed as P(p) = ∑

n B(N, n, p)Pn, where B(N, n, p) is the
binomial distribution [44,45], N is the total number of sites or
bonds in the lattice, and p is the occupation probability of sites
or bonds correspondingly. Last, the percolation threshold is
determined by solving the equation P(pc) = 0.5 [47]. To this
end, the percolation probability is computed from 〈nc〉/L2 −
0.15 to 〈nc〉/L2 + 0.15 in steps of �p = 0.01. Then P(p) =
0.5[1 + tanh((p − pc)/�L )] is fitted to the estimated data.
Here pc is the estimation of the percolation threshold and �L

is the width of the sigmoid transition [47].
To take finite-size effects into account we also performed

simulations using the system size L = 32, 64, 128, and 256.
Thus the percolation threshold in the thermodynamic limit is
estimated by the extrapolation of the scaling relation pc −
pc(L) ∝ L−1/ν , where ν is the exponent corresponding to the
correlation length [48]. It is well known that the transition
width �L scales as a function of the system size L as �L ∝
L−1/ν [49]. From the fit of the percolation probability data,
we found that ν = 4/3, which is in good agreement with the
results reported in the literature for the percolation theory in
2D. Finally, the critical density of barriers is calculated as
pw = 1 − p∗

cb, where p∗
cb is the bond percolation threshold as

a function of χ and I .
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FIG. 4. (a) Critical curves for cluster formation over infested
soil (hollow figures) and infected plants (solid figures) on triangular
(triangles), square (squares), and honeycomb (circles) lattices with
no barriers. Theoretical curves for the soil case (dashed lines) and
the fit to the data for the plant case (continuous lines) are also shown.
(b) Simulation (figures) and theoretical (lines) critical curves in the
soil case for square (squares), triangular (triangles), and honeycomb
(circles) lattices for several values of I: 0.0 (black), 0.1 (purple), 0.2
(green), 0.3 (cyan), 0.4 (blue), and 0.5 (red).

IV. RESULTS

Simulation results for the critical curves of both soil and
plant cases with no barriers are shown in Fig. 4(a). Notably,
our results for χ soil

c are very well described by the parametriza-
tion psoil

eff = I + (1 − I )χ = pcs. Notice that the critical curves
for χ

plant
c deviate from those for χ soil

c for I > 0.15. This is due
to nonsusceptible plants lying in inoculated cells which do
not belong to the clusters and can serve as a bridge between
their adjacent sites. We found that χ

plant
c can be well fitted by

the Tsallis distribution pcs/(1 + aI/n)n, with a = 0.91 ± 0.03
and 1.40 ± 0.06 and n = 2.0 ± 0.4 and 1.1 ± 0.1 for the
square and triangular lattices, respectively. For the honeycomb
lattice n takes a large value so we used pcs exp(−aI ) with
a = 0.63 ± 0.01. This behavior can be understood as the
collective contribution of the interaction between susceptible
plants and infected cells with a resistant plant. Note that
the probability of observing this pair become higher as χ

decreases and I increases, and thus, the percolating system
looks like a lattice formed by regular sites and sites involving
complex nearest neighbors. The main result of this analysis is
the existence of a minimal susceptibility that guarantees the
nonemergence of a spanning cluster of diseased plants even if
all cells are inoculated, that is, the value of χ

plant
c for I = 1.

However, if χ > χ soil
c or χ > χ

plant
c , then it is necessary to

use the barrier strategy to reduce the connectedness of the
lattice. In Fig. 4(b), we show the simulation results for the soil
case. Notice that they are well described by Eq. (1), which
corresponds to the description of the typical critical curves in
the site-bond percolation with an occupation probability psoil

eff .
This is because in this case the infected cells are taken into
account in the cluster formation process even if the plant does
not become sick.

On the other hand we found, for the plants case, that the
relation among χ , χ

plant
c , and pplant

w is given by the power
law (χ − χ

plant
c ) = α(pplant

w χ/χ
plant
c )β when I is fixed, as it is

-2

-1

0

1

-2 -1 0 1

(a)

(ln
(  χ

-  χ
cpl

an
t )-

ln
( α

))
/ β

ln(pw
plant χ/ χc

plant)

-2 -1 0 1

(b)

ln(pw
plantχ/χc

plant)

-2 -1 0 1

(c)

ln(pw
plant χ/ χc

plant)

FIG. 5. Power-law relation among χ , χ plant
c , and pplant

w in the plant
case when I is fixed for (a) square, (b) triangular, and (c) honeycomb
lattices. Black solid line is the identity function. The color scale
indicates the value of I from I = 0 (green) up to I = 1 (blue) in steps
of �I = 0.05.

shown in Fig. 5. It should be noted that both α and β depend
on I . Particularly, β takes values between 0.95 and 1.18 for
all lattices. Then, the critical curves for the plants case are
given by

pplant
w = χ

plant
c

χ

(
χ − χ

plant
c

α

)1/β

, (2)

which matches very well the simulation data for the square,
triangular, and honeycomb lattices as shown in Fig. 6 for
different values of I . Table I shows the values of the pa-
rameters α and β (for different values of I) given by the fit
to simulation data for the square, triangular, and honeycomb
lattices. Moreover, in the case χ = 1, pplant

w = 1 − pcb as
expected since, under this condition, the system corresponds
to the traditional bond percolation model.

V. APPLICATION TO CHILI PLANTATIONS

Application of Eq. (2) requires the knowledge of the plant’s
pathogen susceptibility. This quantity has been measured ex-
perimentally as described in Ref. [42]. In general terms their
method consists in sowing plants in previously sterilized soil
and innoculating a fraction of the substrate with oomycetes.
The pathogen is then allowed to propagate through the plan-
tation and the presence of the pathogen is assessed for each
plant. The ratio of the number of live infected plants to the
total number of infected plants gives the surviving rate P .
The pathogen susceptibility of the plant is then calculated as
χ = 1 − P .

The reported values of the pathogen susceptibility for the
varieties arbol, poblano, and serrano plants of chilis (which
are of high commercial value in Mexico) are 1.00, 0.89,
and 0.60, respectively. Putting these values into Eq. (2) we
obtained the curves for pplant

w as a function of I shown in Fig. 7
for a square lattice. Note that as the value of χ approaches
1, like for the arbol and poblano chilis, the barrier density
approaches the bond percolation threshold (pcb = 0.5) since
in these particular cases the percolating system is very similar
to the bond percolation model. On the other side, as χ
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FIG. 6. Comparison between simulation results (figures) for pplant
w as a function of the susceptibility and the curve proposed in Eq. (2) (solid

lines) for (a) square, (b) triangular, and (c) honeycomb lattices. The color scale indicates the value of I from I = 0 (green) up to I = 1 (blue)
in steps of �I = 0.05.

approaches the site percolation threshold, like for the serrano
chili, the range of possible values for pplant

w becomes larger;
however, pplant

w (I = 1) ≈ 0.41 is less than 0.5. In practice, this
means an 18% less barriers are needed to prevent the disease
propagation.

Also as χ becomes less and less than pcs, the value of pplant
w

decreases until it vanishes. This point, when pplant
w (I = 1) = 0,

corresponds to the intersection of the critical χ
plant
c curve with

the vertical line I = 1 (see Fig. 4). This is just the greatest
value of a plant’s susceptibility that makes the barrier strategy
unnecessary.

TABLE I. Fit parameters for the square (�), triangular (	), and
honeycomb (©) lattices. Error estimates in the last significant figure
are indicated in parentheses.

I α� β� α	 β	 α© β©

0.00 0.4870(9) 1.065(3) 0.3685(5) 1.132(5) 0.621(5) 1.031(8)
0.05 0.4922(8) 1.050(3) 0.3689(5) 1.099(5) 0.637(2) 1.032(3)
0.10 0.4956(6) 1.029(2) 0.3673(4) 1.077(3) 0.636(2) 1.001(3)
0.15 0.4982(5) 1.013(2) 0.3646(4) 1.051(3) 0.657(3) 1.003(5)
0.20 0.5000(4) 1.005(2) 0.3598(4) 1.032(3) 0.669(3) 0.996(5)
0.25 0.4994(2) 0.994(1) 0.3530(2) 1.029(1) 0.674(2) 0.974(4)
0.30 0.4977(3) 0.990(1) 0.3445(1) 1.024(1) 0.685(2) 0.974(3)
0.35 0.4941(4) 0.989(2) 0.334(1) 1.023(6) 0.698(3) 0.980(5)
0.40 0.4892(3) 0.991(2) 0.3253(2) 1.022(1) 0.696(2) 0.954(3)
0.45 0.4821(3) 0.996(2) 0.3145(2) 1.025(1) 0.711(2) 0.979(4)
0.50 0.4741(2) 1.003(1) 0.3036(3) 1.033(2) 0.713(1) 0.982(2)
0.55 0.4653(2) 1.013(1) 0.2925(4) 1.047(2) 0.715(2) 0.987(4)
0.60 0.4551(2) 1.025(1) 0.2825(3) 1.052(2) 0.720(1) 1.005(3)
0.65 0.4450(1) 1.036(1) 0.2721(3) 1.066(2) 0.717(2) 1.016(4)
0.70 0.4342(3) 1.050(2) 0.2622(4) 1.080(2) 0.708(3) 1.014(8)
0.75 0.4235(5) 1.070(3) 0.2531(4) 1.094(2) 0.705(3) 1.037(7)
0.80 0.4120(6) 1.082(4) 0.2442(4) 1.107(2) 0.699(4) 1.057(9)
0.85 0.4017(8) 1.104(5) 0.2361(5) 1.122(3) 0.687(5) 1.06(1)
0.90 0.391(1) 1.123(7) 0.2285(5) 1.137(2) 0.676(5) 1.08(2)
0.95 0.380(1) 1.142(8) 0.2216(6) 1.152(3) 0.669(5) 1.11(2)
1.00 0.371(1) 1.163(9) 0.2148(7) 1.165(4) 0.654(6) 1.12(2)

VI. CONCLUSIONS

In summary, we have presented a strategy based on the
site-bond percolation model to prevent the propagation of
Phytophthora over a plantation. This strategy consists of plac-
ing barriers between adjacent cells, whose density depends on
χ and I . Two different clustering processes were analyzed:
(i) clusters of cells with the presence of the pathogen and (ii)
clusters of diseased plants. The former is related to a soil test
and the latter to a direct visual inspection of the damage on the
plantation. It was found that both processes are indistinguish-
able, and therefore described by the same critical curve, for
I < 0.15. On the contrary, for I > 0.15 this behavior does not
hold and different approaches for each process are necessary.
Differences in the critical density of barriers between the
soil and plant cases are a consequence of the hybridization
process of the lattice, which leads to a major deviation when
I increases and χ decreases (see Fig. 6). The soil case is
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FIG. 7. (a) Critical values pplant
w for arbol (A), poblano (P), and

serrano (S) chili plants sowed with a square lattice arrangement.
Vertical lines indicate their susceptibilities: 1.00 (A), 0.89 (P), and
0.60 (S). The solid curves are the same as in Fig. 6. χ plant

c (I = 1) =
0.28883 ± 0.00007 is the maximum value of a plant’s susceptibility
that inhibits the formation of a cluster of diseased plants, even in the
extreme case where the patogen is present all over the plantation.
(b) Values of pplant

w given by Eq. (2) and data from Table I for the
arbol (purple), poblano (black), and serrano (red) chili plants on a
square lattice.
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described by the site-bond percolation model with an ef-
fective occupation probability given by psoil

eff = I + (1 − I )χ .
Then the critical curves are as usual [see Eq. (1)] because the
clustering process of the infected cells does not distinguish the
sickness states of the plant.

In the plant case, the critical curves predict the existence of
a minimal susceptibility χ

plant
c that guarantees a spanning clus-

ter of infected plants will not appear, that is, if χ < χ
plant
c even

when pw = 0 and I = 1. Values for the minimal susceptibility
in square, triangular, and honeycomb lattices were found to
be 0.28883 ± 0.00007, 0.2141 ± 0.0003, and 0.364 ± 0.003,
respectively. Particularly, for the square lattice, this value is in
agreement with the critical probability of lattices with more
complex neighborhoods [50,51].

Based on the obtained results, we would advise farmers and
agronomists either to sow types of plants having a pathogen
susceptibility lower than χ

plant
c or to apply the barriers strategy

with a barrier density given by Eq. (2). A very important
advantage of this strategy is that it does not require to remove
plants therefore avoiding deforestation.

This strategy could be verified under controlled conditions,
for example, in greenhouses, tree nurseries, and hydroponics,

where Phytophthora and other phytopathogens cause great
devastation. On the other hand, its application on a real-life
situation requires us to take into account other ecological and
environmental variables, such as plant-plant or (beneficial)
microorganism-plant interactions, irrigation system, spatial
distribution of plants, the care provided by the farmer or the
possibility of having more than one type of pathogen in the
same parcel of soil.

Finally, Eq. (2) for I = 0 could be used as an alternative
parametrization of the critical curves in the site-bond perco-
lation model even for lattices defined in dimensions higher
than two.
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