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Laminar chaos in experiments and nonlinear delayed Langevin equations:
A time series analysis toolbox for the detection of laminar chaos
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Recently, it was shown that certain systems with large time-varying delay exhibit different types of chaos,
which are related to two types of time-varying delay: conservative and dissipative delays. The known high-
dimensional turbulent chaos is characterized by strong fluctuations. In contrast, the recently discovered low-
dimensional laminar chaos is characterized by nearly constant laminar phases with periodic durations and a
chaotic variation of the intensity from phase to phase. In this paper we extend our results from our preceding
publication [Hart, Roy, Müller-Bender, Otto, and Radons, Phys. Rev. Lett. 123, 154101 (2019)], where it is
demonstrated that laminar chaos is a robust phenomenon, which can be observed in experimental systems. We
provide a time series analysis toolbox for the detection of robust features of laminar chaos. We benchmark
our toolbox by experimental time series and time series of a model system which is described by a nonlinear
Langevin equation with time-varying delay. The benchmark is done for different noise strengths for both the
experimental system and the model system, where laminar chaos can be detected, even if it is hard to distinguish
from turbulent chaos by a visual analysis of the trajectory.
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I. INTRODUCTION

In nature or in physical experiments, noise is always
present and its influence has to be taken into account for
a realistic description of these processes. If a theoretically
proposed phenomenon is not robust against noise, in the
sense that certain characteristics can not be measured in the
presence of noise, it is unlikely to observe this phenomenon in
nature or to verify the phenomenon experimentally. Systems
that involve transport processes over finite distances by finite
velocities are characterized by time delays. This is the case,
for example, in engineering processes [1] such as turning [2,3]
and milling [4], life sciences [5], and climate science [6–8].
Time delays are also present in population dynamics where
the individual organisms need to reach a maturity threshold in
order to get the ability to reproduce [9]. The high-dimensional
nature and the large variety of dynamical behaviors of systems
with delays is exploited in several applications such as the
efficient implementation of reservoir computing via time-
delay systems [10–13]. An overview of recent developments
in the field of nonlinear time-delay systems can be found in the
theme issue introduced in Ref. [14] and an extensive review
of chaos in systems with time delay is given in Ref. [15]. Due
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to the importance of these concepts, it seems consequent that
the influence of noise on systems with time delay has also
drawn attention in the literature, where analyses of stochastic
linear [16–19] and nonlinear systems [20–27] with delay can
be found.

Due to environmental fluctuations, time delays are
typically not constant, but rather time-varying. If a
system involves transport processes with time-varying ve-
locity or time-varying transport distance, the delay is time
varying [28,29]. Although models with time-varying delay are
often more realistic, there are only a few papers on such sys-
tems with and without noise. A fast time-varying delay can be
approximated by a distributed delay as introduced in Ref. [30]
and applied in Refs. [30–36]. It is known that a time-varying
delay can enrich the dynamics of systems compared to sys-
tems with constant delay [37–41]. A time-varying delay has
an influence on chaos and synchronization, which is discussed
in Refs. [42–45] together with possible applications to chaos
communication. For applications in control theory, it is of
interest that a time-varying delay can stabilize systems [2,46–
48]. The stability of systems with stochastically varying delay
is analyzed in Ref. [49].

In this paper and in our preceding publication [50], we
extend our results in Refs. [29,51], where we have introduced
a different type of chaos, which can be observed only in
systems with certain time-varying delays. This type of chaos
is called laminar chaos and is characterized by nearly constant
laminar phases of periodic duration, where the intensity levels
of the laminar phases vary chaotically. It may be possible
to exploit the sequence of nearly constant intensity levels to
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store information or perform computations, where approaches
similar to the chaos based logic and computation introduced
in Refs. [52–56] may be developed. However, this and similar
applications require that the sequence of intensity levels is ro-
bust against noise, which is hitherto unclear. We demonstrate
that laminar chaos is a robust phenomenon, which can be
observed experimentally and survives the presence of noise.
In order to do this, we have implemented an optoelectronic
system with time-varying delay that shows laminar chaos and
substantiate our results by modeling the system by a nonlinear
delayed Langevin equation with time-varying delay. By the
experimental and theoretical analysis we justify that laminar
chaos has characteristic properties that survive for even com-
parably large noise strengths and we provide a toolbox for the
detection of these features in experimental time series, where
the underlying system needs not to be known.

In Sec. II we give a short review of the results in Ref. [51].
We introduce the concept of conservative and dissipative
delays, which are classes of time-varying delays that lead
to certain dynamical properties of the involved systems, and
explain laminar chaos. In Sec. III we explain the experimental
realization of laminar chaos by an optoelectronic setup sim-
ilar to the one in Ref. [57]. Results of the experiments are
presented, where we demonstrate that laminar chaos is robust
against experimental and measurement noise. In Sec. IV we
derive a general model for our experimental system, which is
the basis of the following theoretical analysis of laminar chaos
in the presence of noise. A theoretical analysis of the robust
features of laminar chaos in the presence of noise is done in
Sec. V. There we show how laminar chaos can be identified
in experimental time series and present robust features, which
can be detected even in the presence of strong noise, where
the time series can not be identified as laminar chaos visually.

II. REVIEW OF LAMINAR CHAOS

In Ref. [51] a different type of chaos, called laminar chaos,
was found in systems described by the delay differential
equation (DDE)

1

T
ż(t ) + z(t ) = μ f (z(R(t ))), (1)

where R(t ) = t − τ (t ) is the retarded argument and τ (t ) is
a periodically time-varying delay with period one. In the
following we give a short review of the theory behind the dy-
namics of systems with time-varying delay and laminar chaos.
In Refs. [58–60] it was demonstrated for invertible R(t ), i.e.,
we have τ̇ (t ) < 1 for almost all t , that there are two classes of
periodically time-varying delays. We call them conservative
delays and dissipative delays, where the terms, respectively,
refer to marginally stable quasiperiodic dynamics or stable
periodic dynamics of the access map

t = R(t ′) (2)

taken modulo the period of the delay. Systems with a so-
called conservative delay are equivalent to systems with con-
stant delay. This means that there exists a suitable nonlinear
timescale transformation, which transforms Eq. (1) to a DDE
with constant delay and preserves dynamical quantities such
as Lyapunov exponents. In contrast, systems with dissipative

delay are not equivalent to constant delay systems and the
characteristics of the dynamics differ from the characteristics
known for systems with constant delay. For instance, there
are qualitative differences in the asymptotic scaling behav-
ior of the Lyapunov spectrum [58–60] and in the localiza-
tion properties of the Lyapunov vectors [59]. Aside from
laminar chaos, systems with dissipative delay show further
types of dynamics that are not possible for systems with
constant delay such as generalized laminar chaos and time-
multiplexed dynamics as demonstrated in Ref. [29]. If the
time-varying delay of a system is caused by a transport pro-
cess over a constant distance by a variable velocity, the time-
varying delay is always conservative [28]. On the other hand,
if the distance is also time-varying, both classes, conservative
and dissipative delays, can be observed [29].

From this point we follow the analysis in Ref. [51] and
consider Eq. (1) with large T . A large parameter T is equiva-
lent to a large time-varying delay, which can be shown easily
by a linear timescale transformation as done in Sec. IV. For
T → ∞, the left hand side of Eq. (1) vanishes and we obtain
the limit map

zn+1(t ) = μ f (zn(R(t ))). (3)

The zn(t ) = z(t ) with t ∈ In = (tn−1, tn] are segments of the
solution z(t ), where the boundaries tn of the so-called state
intervals In are determined by the access map (2), i.e., tn−1 =
R(tn). With a given z0(t ), t ∈ I0 the solution z(t ) can be
generated by successive iteration of Eq. (3). This is similar
to the method of steps [61], which can be applied in the case
T < ∞. As in the case of a constant delay [62], for T < ∞,
one step of the method of steps can be decomposed into
one iteration of the limit map and subsequent smoothing or
low-pass filtering. This can be seen directly in Eq. (1) since the
left hand side defines a low-pass filter with cutoff frequency
fcutoff = T/(2π ) and the remaining terms determine the limit
map. Equation (3) can be also interpreted as the iteration of
the graph (t, zn(t )) by the two-dimensional map

t ′ = R−1(t ), (4a)

z′ = μ f (z), (4b)

which consists of two one-dimensional maps: the map z′ =
μ f (z) and the inverse of the access map, given by Eq. (2).
So, it is clear that, in particular for large T , these maps
play a crucial role for the dynamics of the system defined
by DDE (1). In the following we consider a chaotic map
z′ = μ f (z).

For conservative delays τ (t ) the access map taken modulo
the period of the delay and its inverse, which is given by
Eq. (4a) taken modulo the period of the delay, is topologi-
cal conjugate to a pure rotation [58], i.e., it is a conserva-
tive system that shows quasiperiodic dynamics. This means,
roughly speaking, that the map defined by Eq. (4a) and the
time-varying delay τ (t ) has no influence on the dynamics of
the limit map except for a quasiperiodic frequency modula-
tion [29]. Due to the stretching and folding by the map z′ =
F (z) = μ f (z), the limit map dynamics is characterized by os-
cillations, whereby the characteristic frequency of a solution
segment zn(t ) grows with n, i.e, it grows with each iteration
of the limit map. For finite T the frequency is bounded by
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the smoothing, i.e., by the low-pass filter, leading to a type of
chaos that is already known for systems with constant delay.
We call this type of chaos turbulent chaos based on the term
optical turbulence, which was introduced in Ref. [63]. An
exemplary trajectory of DDE (1) that shows turbulent chaos
is plotted in Fig. 5(d). Turbulent chaos is characterized by a
large attractor dimension since the dimension grows typically
linearly with T [62,64].

For dissipative delays, the access map modulo the period
of the delay has stable fixed points or periodic orbits, i.e., it
is a dissipative system. Points that are evolved by its inverse
Eq. (4a) accumulate at the repulsive periodic points t∗

k (k ∈ Z)
of the access map, which are solutions of Rq(t∗

k ) + p = t∗
k ,

with (Rq)′(t∗
k ) > 0, where ρ = − p

q is the rotation number
(cf. Ref. [65]) of Eq. (4a). It follows that points (tn, zn) that
are evolved under the iterations of the two-dimensional map
defined by Eqs. (4a) and (4b) accumulate at vertical lines with
t = t∗

k(n), i.e., (tn, zn) → (t∗
k(n), zn). Consequently, the strong

oscillations that are caused by the map z′ = μ f (z) during the
iteration of the limit map accumulate at these points. For finite
T , these oscillations are smoothed and, in the case of laminar
chaos, they form the possibly irregular transitions between
the laminar phases. A trajectory that shows laminar chaos
is visualized in Fig. 5(a). In Ref. [51] it was shown that a
necessary condition for laminar chaos can be derived from the
derivative of the limit map and is given by

λ[F ] + λ[R] < 0, (5)

where λ[F ] and λ[R] are the Lyapunov exponents of the
map z′ = μ f (z) and the access map t ′ = R(t ), respectively.
This criterion is sufficient for T = ∞ and is visualized in
Fig. 1. If Eq. (5) is fulfilled, the oscillations caused by the
map z′ = μ f (z) are compensated by the contraction of the
access map, and the laminar phases can develop between
the repulsive periodic points t∗

k of the access map. Since the
repulsive periodic points t∗

k separate p basins of attraction of
periodic points inside each state interval In, each of the latter
contains p laminar phases (see Refs. [29,51] for details). Since
the access map is invertible, the intensity levels of the laminar
phases inside the state interval In are successively mapped
to the intensity levels in In+1 by z′ = μ f (z). Laminar chaos
is characterized by comparably low attractor dimension since
the state zn(t ) is merely determined by the intensity levels of
the laminar phases. If Eq. (5) is not fulfilled, one can observe
generalized laminar chaos, which is also a low-dimensional
phenomenon compared to turbulent chaos [29].

III. EXPERIMENTAL REALIZATION OF VARIABLE
DELAY SYSTEMS AND LAMINAR CHAOS

In this section, we describe how Eq. (1) with time-varying
delay can be implemented in an optoelectronic setup and that
laminar chaos can be observed in such systems. This demon-
strates that laminar chaos is a robust phenomenon which can
be observed in experiments.

In Fig. 2(a) the essential ingredients that need to be im-
plemented to observe laminar chaos experimentally are visu-
alized: a band-limited system with a nonlinear time-delayed
feedback with time-varying delay. This means that the output
of the system at time t depends on the past output of the

FIG. 1. Visualization of the criterion (5) for laminar chaos by
a heat map of the Lyapunov exponent of the access map, which
corresponds to the sinusoidal delay τ (t ) = τ0 + A sin(2π t )/(2π ).
The contour lines correspond to a constant Lyapunov exponent (from
bottom to top λ[R] = −0.1, −0.3, −0.5, . . . ). For Eq. (1) with μ =
2.2, f (z) = sin2(z + φ0 ), and φ0 = π

4 the criterion (5) is fulfilled
above the dashed red line, which corresponds to the contour line
λ[R] = −λ[F ] ≈ −0.31. The vertical lines represent regions of τ0

where the criterion (5) is fulfilled for a fixed delay amplitude A =
0.9.

system at time t − τ (t ), which is fed back into the system
after a nonlinear function f is applied, and the system reacts to
the feedback with a finite relaxation time. Our optoelectronic
setup is illustrated in Fig. 2(b). The nonlinearity f (z) of
the feedback is implemented by an integrated Mach-Zehnder

z(t)

I(z)

clk

sin2(z+ϕ)

laser intensity
modulatordiode

DC Port RF Port

ampli�er

ADC

FPGAvariable

shift register

MUXDAC

...

low pass
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LUT
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τ(t)

b)

nonlinearity
time-varying

delay
z(t)

� lter
low pass

τ(t)F(·)

(a)

(b)

FIG. 2. (a) Block diagram of Eq. (1). This block diagram shows
the essential ingredients for laminar chaos: a feedback loop with a
band-limiting element (low-pass filter), a nonlinearity, and a time-
varying time delay. An additional condition is given by Eq. (5),
which is visualized in Fig. 1. (b) An illustration of the optoelectronic
oscillator we used to observe laminar chaos. Red lines indicate the
optical path, black lines indicate the electronic path, and green lines
indicate signal processing on the FPGA.
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FIG. 3. (a) Bifurcation diagram and (b) Lyapunov exponent λ[F ]
of the map z′ = μ f (z) = μ sin2(z + φ0), where φ0 = π

4 , versus the
bifurcation parameter μ. A positive and negative Lyapunov exponent
λ[F ] for a given μ is indicated by the usage of red and black color,
respectively. The observations of laminar chaos presented in this
paper were done with μ = 2.2, which is indicated by the vertical
dashed lines. In this case λ[F ] ≈ 0.31 [horizontal dashed line in (b)].

intensity modulator and is given by

f (z) = sin2(z + φ0). (6)

In this case, the tunable parameter φ0 gives the bias point of
the interferometer. The optical output of the modulator is con-
verted to an electrical signal by a photoreceiver. This electrical
signal is detected by an analog-to-digital converter (ADC),
then low-pass filtered and delayed in a field-programmable
gate array (FPGA). The FPGA has the capability of imple-
menting a time-varying time delay via a tapped shift register
and multiplexer (MUX). The delayed and filtered electrical
signal is output by a digital-to-analog converter (DAC). The
feedback loop is closed by applying the amplified DAC output
to the RF port of the modulator. The parameter μ in Eq. (1) is
determined by the round trip gain of the feedback loop.

As shown in the previous section, the behavior of the map
z′ = μ f (z) must be chaotic for laminar chaos to be observed.
In Fig. 3 a bifurcation diagram and the Lyapunov exponents
of the corresponding map z′ = μ f (z) under variation of μ are
shown, where we chose φ0 = π

4 . For all work described here,

TABLE I. Parameters of the experimental system and parameters
that are normalized with respect to the delay period: delay period Tτ ,
delay amplitude A, mean delay τ0, cutoff frequency of the low-pass
filter fcutoff, bifurcation parameter μ, sampling frequency νs.

Parameter Normalized value Experimental value

Tτ 1 0.01 s
A 0.9 0.009 s
τ0 1.5, 1.54 0.0150 s, 0.0154 s
fcutoff 31.831 3183 Hz
(T = 200)
μ 2.2 2.2
νs 1000 100 kHz

we choose μ = 2.2, which corresponds to a chaotic region
with λ[F ] ≈ 0.31.

While the FPGA gives us great flexibility in the choice of
the form of the time-varying delay τ (t ), for all work presented
here we consider a sinusoidal time-varying delay

τ (t ) = τ0 + A

2π
sin(2π t ), (7)

where τ0 is the mean delay and A is the delay amplitude, which
are both measured in units of the delay period. The FPGA
is clocked at a frequency νs = 100 kHz and the delay period
Tτ = 10 ms, so that the period of the delay is divided into
1000 time steps. Additionally, the cutoff frequency of the low-
pass filter fcutoff = 3183 Hz, so that vs � fcutoff. Therefore,
the time discretization is sufficiently fine that this discrete time
system is well modeled by Eqs. (1) and (7). For a detailed
presentation of a discrete time model of our optoelectronic
oscillator and a discussion of the effects of the digitization
of the delay, see Appendix A. A summary of the parameter
values used in our experiment is given in Table I.

To analyze the robustness of laminar chaos to different
amount of noise, we have implemented the possibility to add
noise to the experiment in a controlled way. Specifically, at
each time step we add numerically generated Gaussian white
noise with zero mean and standard deviation ζ to the normal-
ized intensity I measured by the ADC. As we demonstrate in
Appendix A, ζ = 0.001 is a good estimate for the inherent
noise strength in our setup.

Figure 4 shows exemplary trajectories, which were ex-
perimentally generated using the parameters in Table I for
different values of the strength ζ of the external noise.

IV. A GENERAL MODEL FOR LAMINAR CHAOS
IN SYSTEMS WITH NOISE

To understand the influence of noise on laminar chaos in
our experiment and more general systems, and to benchmark
the toolbox for the detection of laminar chaos that is provided
in Sec. V, we derive and analyze in this section a nonlinear
Langevin equation as a theoretical model. Laminar chaos
was originally found in the first order DDE (1), but our
experimental system is a second order system, due to the
second order Butterworth filter that is used in our setup (cf.
Appendix A). To obtain a general model, we consider systems
of arbitrary order D. Taking into account the inherent noise
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FIG. 4. Experimental time series, where T = 200, f (z) =
sin2(t + φ0), μ = 2.2, φ0 = π

4 , and τ (t ) = τ0 + 0.9 sin(2π t )/(2π )
for different values of the mean delay τ0 and for different values
of the strength ζ of the external noise. The trajectories (a)–(c) cor-
respond to a dissipative delay (τ0 = 1.5) and show laminar chaos,
whereas the trajectories (d) and (e) correspond to a conservative
delay (τ0 = 1.54) and show turbulent chaos.

of experiments by an additive noise term, we consider the
general Dth order stochastic DDE

D[x](t̃ ) =
D∑

d=0

ad x(d )(t̃ ) = μ̃ f (x(R̃(t̃ ))) + σ̃ ξ̃ (t̃ ) = I (t̃ ),

(8)

where R̃(t̃ ) = t̃ − τ̃ (t̃ ), τ̃ (t̃ + Tτ ) = τ̃ (t̃ ), x(d )(t̃ ) denotes the
dth derivative of x(t̃ ), and ξ̃ (t̃ ) is Gaussian white noise
with 〈ξ̃ (t̃ )〉 = 0 and 〈ξ̃ (t̃ )ξ̃ (t̃ ′)〉 = δ(t̃ − t̃ ′). The essential in-
gredients for laminar chaos visualized in Fig. 2(a), namely,
the band-limiting element and the nonlinear feedback with
variable delay, are represented by the terms D[x](t̃ ) and
μ̃ f (x(R̃(t̃ ))), respectively. In detail, a solution x(t̃ ) of Eq. (8)
can be interpreted as a filtered version of the input signal
I (t̃ ), i.e., x(t̃ ) is generated by applying the inverse D−1 of
the differential operator to I (t̃ ). For suitable parameters [for
example, D = 1, a0 = a1 = 1 as in Eq. (1)], the operator
D−1 is a smoothing operator and acts as a low-pass filter.
This means that D−1[I](t̃ ) = I (t̃ ) if I (t̃ ) is constant, allowing
laminar phases to develop if certain conditions are fulfilled.
The general analysis of the question which parameters lead
to smoothing operators that allow the development of laminar
chaos goes beyond the scope of this paper and will be dis-
cussed elsewhere. However, it is clear that a bounded input
I (t̃ ) leads to a bounded output x(t̃ ) only if the characteristic
roots of D[x](t̃ ) = 0, which are the poles of the transfer
function of the filter, have a negative or vanishing real part.

Tu
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FIG. 5. Trajectories generated from Eq. (11), where T =
200, f (z) = sin2(t + φ0 ), μ = 2.2, φ0 = π

4 , and τ (t ) = τ0 +
0.9 sin(2π t )/(2π ) for different values of the mean delay τ0 and the
noise strength σ . The trajectories (a)–(c) correspond to a dissipative
delay (τ0 = 1.5) and show laminar chaos, whereas the trajectories
(d) and (e) correspond to a conservative delay (τ0 = 1.54) and show
turbulent chaos.

By introducing a dimensionless time t via t̃ = Tτ t and the
new variable z(t̃/Tτ ) = x(t̃ ), and with ξ̃ (t Tτ ) = ξ (t )/

√
Tτ we

obtain

D∑
d=0

ad

T d
τ

z(d )(t ) = μ̃ f (z(R(t ))) + σ̃√
Tτ

ξ (t ), (9)

where R(t ) = R̃(tTτ )/Tτ = R(t + 1) − 1 such that τ (t + 1) =
τ (t ). For Tτ � τ (t ), which corresponds to a large delay
compared to the internal timescale of the system, we neglect
terms with higher order in T −1

τ and obtain

1

Tτ

a1ż(t ) + a0z(t ) = μ̃ f (z(R(t ))) + σ̃√
Tτ

ξ (t ). (10)

Dividing by a0 and substituting T = (a0/a1)Tτ , μ = μ̃/a0,
σ = σ̃ /

√
a0a1 leads to the dimensionless DDE

1

T
ż(t ) + z(t ) = μ f (z(R(t ))) + σ√

T
ξ (t ). (11)

By the assumption that a0 and a1 have the same sign, we
ensure T > 0. This means that the ODE part of Eq. (11),
which is given by its left hand side, is stable.

We see that in the large delay limit the Dth order DDE (8)
can be suitably approximated by the first order DDE (11),
which is used for the further theoretical analysis. Exemplary
trajectories of Eq. (11) are shown in Fig. 5.
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V. HOW TO DETECT LAMINAR CHAOS

In this section we describe distinctive features of laminar
chaos that are robust against experimental noise and measure-
ment noise. We provide a toolbox for the detection of these
features, which allows the identification of laminar chaos
in experimental data. If a trajectory shows laminar chaos,
the toolbox provides valuable information about the consid-
ered system, such as the nonlinearity μ f (z) of the delayed
feedback, the delay period Tτ , and the rotation number ρ

of the access map that is associated with the time-varying
delay. The following distinctive features are considered: the
roughly periodic structure of the derivative of the trajectories
due to the periodic sequence of durations of the laminar
phases and the one-dimensional map that connects the inten-
sity levels of the laminar phases. The characterization of a
signal showing laminar chaos can be divided into two steps.
First, one has to verify the existence of laminar phases, where
the duration of the phases follows a periodic sequence with
the same period Tτ as the delay. A method for doing this,
which also enables the detection of the position of the laminar
phases, is introduced in Sec. V A. The second step of the
verification is performed in Sec. V B, where it is verified that
the intensity levels are connected by a one-dimensional map.

In Sec. V C we consider the autocorrelation function and
a related correlation length, which can be useful to scan for
parameters that correspond to laminar chaos, if it is known
that the considered system can show laminar chaos for certain
parameters.

A. Detection of the laminar phases

If the trajectory shows laminar chaos, its derivative shows
the following behavior. Without noise, which means σ = 0,
the derivative is roughly zero between the bursts, i.e., it is
characterized by phases with approximately zero amplitude,
which are periodically interrupted by short large amplitude
bursts. In the presence of noise we consider the approximated
derivative

�h[z](t ) = z(t + h) − z(t )

h
(12)

instead of the derivative since the latter is not well defined.
In this case, the approximated derivative is characterized by
phases of small amplitude which are periodically interrupted
by short large amplitude bursts. The periodic part of the
derivative of the trajectory leads to a large peak in the power
spectrum at the frequency of the delay ντ as highlighted by
the black arrow in Fig. 6(a), where the power spectrum of
the approximated derivative �h[z](t ) is plotted. For turbulent
chaos, the power spectrum also shows a large peak at the
delay frequency ντ since, in this case, the time-varying delay
leads to a quasiperiodic modulation of the signal with two
frequencies, where the delay frequency is one of them (cf.
nonresonant Doppler effect in Ref. [29]).

ν

ν

ν
ν

FIG. 6. Estimation of the delay period: (a) low frequency region
of the power spectrum of the approximated derivatives (h ≈ 0.033)
of trajectories of Eq. (11), where T = 200, f (z) = sin2(t + φ0),
μ = 2.2, φ0 = π

4 , and τ (t ) = τ0 + 0.9 sin(2π t )/(2π ), which show
laminar chaos (τ0 = 1.5, σ = 0.02) and turbulent chaos (τ0 = 1.54,
σ = 0.1). The arrow points to the peak, which corresponds to the
delay period and can be easily identified. The spectra are computed
by averaging 10 spectra, which are in turn computed from distinct
windows of the length of 105 delay periods. (b) Power spectra
of the approximated derivatives (h = 0.001 Tτ ) of the experimental
trajectories that are partially shown in Fig. 4, where the frequency
is given in multiples of the delay frequency ντ = T −1

τ . Some of the
peaks at the multiples of the delay frequency ντ (vertical lines) are
clearly visible. However, if the delay frequency ντ is not known,
longer time series are needed to distinguish the peaks at the multiples
of ντ from the background as it is possible for the spectra in (a).
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(a) Simulation

(b) Experiment

FIG. 7. Detection of the laminar phases: temporal distribution
of the variance σ 2

d (in units of T ) of the approximated derivatives
(h ≈ 0.0033) of (a) laminar chaotic trajectories of Eq. (11) with the
same parameters as in Fig. 5 and (b) experimental trajectories for
different external noise strengths ζ . σ 2

d is defined by Eq. (13) and is
a measure for the fluctuation strength of the trajectory at a specific
time relative to the internal clock induced by the time-varying delay.
The laminar phases are located in the neighborhood of the attractive
fixed points of the reduced access map [dashed lines in (a)] and
the burstlike transitions between the laminar phases are located at
the repulsive fixed points of the access map (solid lines). In this
case, the denominator of the rotation number of the access map is
given by q = 2, which leads to two laminar phases per period. The
temporal distribution of the variance σ 2

d in (b) for the experimental
time series was shifted, such that the numerically computed local
minimum that corresponds to the longest laminar phase is located
at t = 0. The dashed lines indicate the local minima, which where
determined numerically.

To determine the position of the laminar phases of a
laminar chaotic trajectory z(t ), we consider the temporal
distribution of the variance σ 2

d [z](t ) of �h[z](t ), which is
defined by

σ 2
d [z](t ) = lim

N→∞
1

N

N−1∑
n=0

[�h[z](t + n)]2− [μd [z](t )]2, (13)

(a) Simulation

(b) Experiment

FIG. 8. (a) Reconstruction of the nonlinearity (solid black line)
of Eq. (11) from a trajectory that shows laminar chaos by plotting
the intensity level of the (n + p′)th laminar phase zn+p′ against the
intensity level of the nth laminar phase zn. In the case of laminar
chaos, there are infinitely many positive p′ ∈ N such that the points
(zn, zn+p′ ) resemble a line. For the smallest of these numbers p′ = p
this line is the nonlinearity μ f (z) (plotted here). We used the same
parameters as in Fig. 5. (b) Reconstruction of the nonlinearity for
experimental trajectories, which where realized with external noise
of different strength ζ . The black line represents the fit μ̂ f̂ (y) of the
reconstructed nonlinearity for ζ = 0, where μ̂ ≈ 2.229 ± 0.002 and
f̂ (y) = sin2(y + φ̂0 ) + ĉ0, where φ̂0 ≈ 0.8074 ± 0.0004 and ĉ0 ≈
−0.103 ± 0.002. The error estimates represent the confidence inter-
vals returned by NonlinearModelFit in Mathematica 11.3 (twice
the standard error). The clipping below yn = 0 and yn+p = 0 is due
to the fact that the system is an optical system, where the amplitude
of the trajectories corresponds to the light intensity, which can not be
lower than zero.

where

μd [z](t ) = lim
N→∞

1

N

N−1∑
n=0

�h[z](t + n), (14)

and �h[z](t ) is defined by Eq. (12). So the average is taken
over equidistant times t ′ starting with t ′ = t , where the dis-
tance between them is the period of the time-varying delay,
which equals one, since the time t is measured in delay
periods. If the delay period Tτ is unknown for an experimental
time series, it can be determined by analyzing the power
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spectrum as shown in Fig. 6. The quantity σ 2
d [z](t ) is very

sensitive to errors of the delay period since large multiples
of the delay period occur due to the sampling of the trajec-
tory at multiples of the delay period. So, the delay period
must be determined very accurately to compute a reasonable
approximation of σ 2

d [z](t ). However, this sensitivity can be
exploited to determine the delay period very accurately as
shown in Appendix B. In Fig. 7, σ 2

d is shown for exemplary
trajectories, which show laminar chaos and are generated for
different noise strengths. If a trajectory is characterized by
periodically alternating high and low frequency phases and
the period equals the delay period as in the case of laminar
chaos, σ 2

d alternates periodically between high and low values,
which correspond to the high and low frequency phases of
the trajectory. For increasing noise strength σ , the fluctuation
strength in the low amplitude phases increases, such that the
periodic structure is still present but gets blurred as visualized
in Fig. 7. The local minima of σ 2

d can be used to determine the
position of the laminar phases of laminar chaotic trajectories.
The denominator q of the rotation number of the access map
equals the number of laminar phases per period and, thus, it
can be also determined by this method.

B. Reconstruction of the nonlinearity

To check whether the intensity levels of the detected lam-
inar phases are connected by a one-dimensional map, we
plot the intensity level of the (n + p′)th laminar phase zn+p′

against the intensity level of nth laminar phase zn, where
p′ ∈ N and p′ > 0. For our analysis, the intensity levels of
the laminar phases are the values of the trajectory at the
local minima of the temporal distribution of the variance σ 2

d ,
which is visualized in Fig. 7. In the case of laminar chaos, for
the correct p′ = p the points (zn, zn+k p) resemble the graph
(z, (μ f )k (z)). So p′ was chosen correctly, if p′ is the smallest
number such that the points (zn, zn+p′ ) resemble a line, as
shown in Fig. 8. If p′ is wrongly chosen, then the points
(zn, zn+p′ ) fill a set S , which is the union of Cartesian products
of pairs of the chaotic bands of the map, since in this case zn+p′

and zn are independent. The set S is two dimensional except
for cases where the dimension of the attractor is smaller than
one, which requires λ[F ] � 0. The number p denotes the
numerator of the rotation number ρ = − p

q of the access map.
Thus, the latter can also be reconstructed from laminar chaotic
trajectories. If no such p can be found, the reconstruction of
the nonlinearity fails as demonstrated in Appendix C and the
trajectory can not be characterized as laminar chaos.

C. How to scan parameters for laminar chaos

Laminar chaos is characterized by two timescales, one of
the order of 1

T (small for large T ) and one of the order of
the duration of the laminar phases ( 1

q , independent of T ).
This means that points that are close in time are strongly
correlated even if the system is able to relax very fast with the
relaxation rate T , i.e., it is able to admit high frequencies. If
we analyze the output of a system that can show only laminar
chaos or turbulent chaos, this fact can be used to distinguish
between the two by the autocorrelation of the time series. The

autocorrelation function is defined by

C(θ ) = lim
t→∞

〈z(t ′)z(t ′ + θ )〉t − 〈(z(t ′))〉2
t

〈(z(t ′))2〉t − 〈(z(t ′))〉2
t

, (15)

where the time average is given by

〈·〉t = 1

t

∫ t

0
· dt ′. (16)

The autocorrelation functions of trajectories of Eq. (11)
with the same parameters as in Fig. 5 are shown in Fig. 9(a).
Increasing the noise strength σ leads to a faster decay of cor-
relations since the laminar phases are more and more distorted
as it is visible in Fig. 5. However, even for comparably large
noise strengths the decay of C(θ ) is slower than for turbulent
chaos. For the latter in Fig. 9(a) the influence of the noise is
not visible since correlations decay already very fast in the ab-
sence of noise, indicating the high-dimensional nature of the
related chaotic dynamics. These results can be experimentally
reproduced as shown in Fig. 9(b), where the autocorrelation
function C(θ ) was computed from experimental time series
for the same parameters as in Fig. 4.

As a numerical indicator for laminar or turbulent chaos we
consider the full width at half-maximum θ1/2 of C(θ ). For
turbulent chaos with only one chaotic band, θ1/2 is of the
order of 1

T and, contrarily, for laminar chaos θ1/2 is at least
of the order of 1/q, which is of the order of the duration
of the laminar phases and, thus, it is much larger than 1/T .
Consequently, a good threshold for θ1/2 above which the
trajectory can be classified as laminar chaos should be of the
order of 1

T or larger. In Fig. 10 θ1/2 is plotted as a function
of the mean delay τ0, where all other parameters are kept
constant. Particularly, we choose a delay amplitude A = 0.9,
which corresponds to the dashed vertical line in Fig. 1. If
the parameter T is unknown but considered to be large, it
can be measured. For example, one can prepare the system
with a constant initial function, which leads (for large T ) to
the relaxation to an almost constant state in the following
time interval. The related relaxation time in the corresponding
dimensionless system is 1

T .
So, we have seen that the FWHM of the autocorrelation

function is a simple criterion to distinguish laminar and tur-
bulent chaos. In general and especially when the generating
system is completely unknown, the FWHM of the autocorre-
lation function alone is not sufficient to detect laminar chaos
but it can serve as a first indicator. If the considered system
shows chaos that is characterized by multiple chaotic bands,
laminar and turbulent chaos are much harder to distinguish
by using the autocorrelation only. In this case, the trajec-
tory alternates periodically between the chaotic bands, which
leads to a large contribution to the autocorrelation for both
types of chaos. To use the autocorrelation as an indicator
anyway, this contribution must be removed, which can be
achieved, for example, by preprocessing the trajectories such
that the periodic alternation between the chaotic bands is
subtracted.

As illustrated in Fig. 9, the autocorrelation function C(θ )
is a nearly piecewise linear function for vanishing noise
strengths σ and ζ . To give an explanation for this, we derive
an expression for C(θ ) in the absence of noise, which is exact
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(b) Experiment

(a) Simulation

FIG. 9. (a) Autocorrelation C(θ ) of trajectories of Eq. (11) with
the same parameters as in Fig. 5. The time average in Eq. (15)
was taken over 10 000 delay periods. As a possible quantity for the
distinction between laminar and turbulent chaos, the half of the full
width at half-maximum is indicated by the vertical dashed lines.
For σ = 0 the autocorrelation of the laminar chaotic trajectory is
approximately piecewise linear as indicated by Eq. (17) (unevenly
dashed black line). Here we have q = 2, leading to an autocorrelation
function with two linear segments with nonzero slope. The values
of θ where the slope changes correspond to the widths of the
two laminar phases per delay period, which are obtained for the
chosen set of parameters. (b) Autocorrelation C(θ ) of experimental
trajectories, which where realized with external noise of different
strengths ζ . The time average in Eq. (15) was taken over at least
5000 delay periods. Since noise is always inherent to experimental
systems in the absence of external noise (ζ = 0), the autocorrelation
C(θ ) in this case also slightly deviates from the theoretical behavior
given by Eq. (17) (unevenly dashed black line).

in the limit T → ∞. To obtain an expression for C(θ ) that
is independent of the nonlinearity of the feedback μ f (z),
we bound the modulus of the time variable θ by the delay
period, i.e., |θ | ∈ [0, 1], and assume that p > q. The integers
p and q are the numerator and the denominator of the rotation
number ρ = − p

q of the access map given by Eq. (2). The
integers p and q are also the numbers of laminar phases
per state interval In and per delay period, respectively. We
denote the encountered durations of the laminar phases by

FIG. 10. How to find delay parameters that correspond to laminar
chaos: full width at half-maximum (FWHM) θ1/2 of the autocor-
relation C(θ ) of trajectories of Eq. (11), f (z) = sin2(t + φ0), μ =
2.2, φ0 = π

4 , and τ (t ) = τ0 + 0.9 sin(2π t )/(2π ) under variation of
τ0 for different noise strengths σ , with T = 200 (solid) and T =
1000 (dashed). For laminar chaos the FWHM is large, whereas for
turbulent chaos the FWHM is small. The boundaries of the regions of
τ0 where the criterion (5) for laminar chaos is fulfilled are represented
by the vertical lines. The slight deviation between the latter and the
boundaries represented by the jumps of the FWHM for σ = 0 is
caused by the finite T < ∞ and vanishes for T → ∞.

d j and put them in ascending order, i.e., d1 < d2 < · · · < dq,
to get a simple expression for C(θ ). The dj are measured
in delay periods, with the result that

∑q
j=1 d j = 1 since we

have q durations dj per delay period. If the dynamics of
the DDE system is characterized by only one chaotic band,
we obtain for the kth linear segment of the autocorrelation
function

C(θ ) =
q∑

j=k

(d j − |θ |), with |θ | ∈ [dk−1, dk] (17)

where k ∈ {1, 2, . . . q}, d0 = 0, and C(θ ) = 0, if |θ | ∈ [dq, 1].
Here we use the fact that, given a fixed θ , the time average
for the covariance of z(t ′) and z(t ′ + θ ) consists of two parts.
The first part is obtained by averaging only over values of
t ′ for which t ′ and t ′ + θ do not belong to the same laminar
phase. The laminar phases inside a time interval of length of
one delay period are pairwise independent for p > q. This
is because the laminar phases inside the state interval are
pairwise independent for p > 1 as pointed out in Ref. [29],
and for p > q the state interval is longer than the delay period.
As a result, the first part vanishes. The remaining part equals
the variance of z(t ) since t ′ and t ′ + θ belong to the same
laminar phase, z(t ) consists of exactly constant laminar phases
in the limit T → ∞, and thus z(t ′) = z(t ′ + θ ). Consequently,
the laminar phase of length dj contributes to C(θ ) only
if |θ | � d j and the contribution is given by d j − |θ |. For
θ ∈ [dk−1, dk] the laminar phases of length dk, dk+1, . . . , dq

contribute, which results in Eq. (17). For p � q the autocorre-
lation function is also piecewise linear but the slope of the
linear segments differs from Eq. (17) since certain laminar
phases inside a time interval of length of one delay period are
connected by the map z′ = μ f (z). This leads to an additional
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contribution to the part of the covariance of z(t ′) and z(t ′ +
θ ), where t ′ and t ′ + θ do not belong to the same laminar
phase.

For the examples in Fig. 9 that show laminar chaos, we
have chosen parameters such that we have q = 2. In this case,
Eq. (17) results in

C(θ ) =

⎧⎪⎨
⎪⎩

∑2
j=1(d j − |θ |) = 1 − 2|θ |, if |θ | ∈ [0, d1]∑2
j=2(d j − |θ |) = d2 − |θ |, if |θ | ∈ [d1, d2]

0, if |θ | ∈ [d2, 1].

(18)

This means that in the ideal case without noise and in the limit
T → ∞ the autocorrelation consists of two linear segments
with nonzero slope for θ ∈ [0, 1]. In the presence of noise,
the shape of C(θ ) is smoothed with the results that the
piecewise linear character gets lost. Due to the inherent noise
of the experiment, even in the absence of external noise (ζ =
0) the autocorrelation deviates from Eq. (17).

VI. CONCLUSION

We have demonstrated that laminar chaos is a robust phe-
nomenon, which can be observed in experimental systems.
Based on the analysis of the dynamics of an optoelectronic
setup and the corresponding model given by a Dth order
nonlinear delayed Langevin equation, we have demonstrated
that laminar chaos is characterized by robust features, which
survive the presence of noise. This means that these features
can be detected in noisy experimental time series without
any knowledge about the system that has generated these
time series. In fact, during the detection procedure several
details of the generating system, such as the nonlinearity of
the feedback and certain dynamical quantities of the access
map, can be determined. We have shown that a time series
showing laminar chaos is characterized by a periodic sequence
of regions that are characterized by low and high amplitude
fluctuations. By the temporal distribution of the variance of
the approximated derivatives, which is given by Eq. (13), we
provide a tool to detect the low and high frequency regions,
which can also be exploited for an accurate determination of
the period of the delay, which is in general unknown. For
laminar chaos, in the absence of noise, the intensity levels
of the laminar phases are connected by a one-dimensional
map, which is given by the nonlinearity of the feedback. This
feature survives the presence of noise in the sense that the
intensity levels of the regions with low fluctuation amplitude
can be used to reconstruct the nonlinearity of the feedback
from time series that show laminar chaos. In contrast, if the
reconstruction fails, laminar chaos can be excluded and the
trajectory shows, for example, turbulent chaos. This classifi-
cation is possible even in the case of comparably large noise
strengths, where laminar chaos is visually indistinguishable
from turbulent chaos.

Our experimental setup is a band limited system with non-
linear time-delayed feedback, where the delay is time-varying.
The delay and the low-pass filter are implemented digitally by
an FPGA, whereas the nonlinear feedback generated by the
optical part of the system evolves in continuous time. Thus,
we have demonstrated that hybrid systems also can show

laminar chaos. Moreover, due to the fact that our experimental
system is band limited by a second order Butterworth filter
and with the theoretical analysis in Sec. IV it is now clear that
laminar chaos is not restricted to first order systems.

Our results support the statements in Refs. [29,51], where
we have conjectured that the intensity levels of the laminar
phases can be used to encode information for computational
or cryptographic purposes. For example, due to the robustness
of the mapping between the intensity levels of the lami-
nar phases, a chaos based logic based on the ideas behind
Refs. [53–55] may be implemented easily by a system that
exhibits laminar chaos.

During the review process Ref. [66] was published, where
laminar chaos was found in a nonlinear electronic circuit with
delay clock modulation. This further verifies our result that
laminar chaos is a robust phenomenon and it demonstrates that
laminar chaos can be observed in a variety of systems.
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APPENDIX A: EXPERIMENTAL SYSTEM DESCRIPTION
AND NOISE STRENGTH ESTIMATION

As stated in Sec. III, the FPGA is clocked and operates
in discrete time. When the sampling rate of the FPGA is
sufficiently faster than the cutoff frequency of the low-pass
filter and the frequency of the periodically varying time delay,
the system can be accurately approximated by Eq. (1). In some
cases, such as when studying the impact of the discrete time
on laminar chaos, it may be useful to have a discrete-time
model of the system. We provide such a model in this section.
The equation for the digital low-pass filter, which generates a
smoothed version of the normalized intensity I , is given by

y[m] = −a1y[m − 1] − a2y[m − 2] + μ{b0I[m]

+ b1I[m − 1] + b2I[m − 2]}, (A1)

where a1 = −1.718 690 74, a2 = 0.753 646 92, b0 =
0.008 739 05, b1 = 0.017 478 09, and b2 = 0.008 739 05.
It represents a discrete time approximation of a second
order Butterworth filter with gain μ and cutoff frequency
fcutoff = T/(2π ) ≈ 31.831, which can be derived from the
transfer function via the bilinear transform [67]. The signal I
that is fed into the low-pass filter is the normalized output of
the Mach-Zehnder intensity modulator, that is,

I[m] = f (y[m − τs[m]]). (A2)

The input of the Mach-Zehnder intensity modulator at time t
is given by the output y of the filter at time t − τ (t ), where the
FPGA realizes a discrete time version of the delay, which is
given by

τs[m] =
⌊

ms τ

(
m

ms

)⌋
, (A3)
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where ms = νs
ντ

is the number of sampling steps per delay
period, νs is the sampling frequency of the FPGA, and τ (t ) is
the time-varying delay, where t is measured in delay periods,
and thus we have τ (t + 1) = τ (t ). For our system we consider
a sinusoidal time-varying delay

τ (t ) = τ0 + A

2π
sin(2π t ), (A4)

where τ0 is the mean delay and A is the delay amplitude,
which are both measured in delay periods. The trajectory y(t )
in continuous time t , where t is measured in delay periods, is
connected to the trajectory y[m] in discrete time by

y(t + t0) = y[�t ms
], (A5)

where t0 is the initial time of the continuous trajectory y(t ),
such that y(t0) = y[0]. Consequently, our system in principal
has to be modeled by a system with discrete time since
the low-pass filter and the time-varying delay are realized
digitally by the FPGA. However, since the digital low-pass
filter is a good approximation for an analog one, our system
can be well described by a DDE with piecewise constant
retarded argument R(t ).

It is known that the discretization of the retarded ar-
gument R(t ) can increase the complexity of the dynam-
ics [68–71]. The digitally implemented time-varying delay
can lead to different dynamics as one expects in the case of a
continuous delay since in this case the access map R(t ) is
spatially discretized. It is known that the spatial discretization
of a dynamical system may drastically change the dynamics of
the system, such as chaotic dynamics in the continuous system
changes into periodic dynamics in the spatially discretized
system [72–75]. It is also known for spatially discretized
maps that spurious stable fixed points or periodic orbits occur,
which are close to the stable and unstable fixed points or
periodic points of the continuous map [76,77]. Since the inten-
sity of the output of the interferometer can be measured only
with a finite precision, the optical system itself can also be
considered as a spatially discretized system. However, in our
case discretization steps of the intensity are small compared to
the intensity variation, such that this effect can be neglected.

For the whole paper we have chosen parameters such
that νs � fcutoff and have chosen a sampling rate νs that is
commensurate with the delay frequency. Roughly speaking,
the system is unable to follow the discontinuities of the delay
since the characteristic frequency of the system is limited by
the low-pass filter to a value much lower than the sampling
rate. In detail, Eq. (A1), where fcutoff/νs ≈ 0.032 � 1, can be
viewed as an autoregressive moving average of the delayed
feedback I[m], such that fast variations of I (m) due to the
discontinuities of the delay are smoothed. Consequently, our
system can be modeled well by a DDE with continuously
varying delay.

In Sec. III, we added controlled noise to our optoelectronic
oscillator to experimentally study the robustness of laminar
chaos to different noise levels. At each time step, we add noise
to the normalized intensity measured by the ADC, such that
Eq. (A2) becomes

I[m] = f (y[m − τs[m]]) + ζ ξm, (A6)

where ζ is the strength of the external noise and ξm is discrete
Gaussian white noise with zero mean and 〈ξmξm′ 〉 = δm,m′ ,

-3

-2

-2

(a)

(b)

FIG. 11. (a) RMS error between the experimentally measured
synchronization error and simulated synchronization errors with
different noise strengths ζ . (b) Comparison of experimental and
simulated synchronization errors without noise and with ζ = 0.001.

where δm,m′ is the Kronecker delta. The white noise is gen-
erated by function randn from the NumPy library.

Equations (A1), (A3), and (A6) can also serve as a model
of the experimental system with inherent noise with ζ =
0.001. We now describe how we obtained this value for the
noise strength.

We use the exact same apparatus used for our observations
of laminar chaos; however, we reconfigure the FPGA as
described in [57], so that the system behaves as two coupled
truly identical optoelectronic maps. This system can be mod-
eled as

y0[m + 1] = β
(

f (y0[m]) + ζ ξ 0
m

) + a
(

f (y1[m]) + ζ ξ 1
m

)
y1[m + 1] = β

(
f (y1[m]) + ζ ξ 1

m

) + a
(

f (y0[m]) + ζ ξ 0
m

)
,

(A7)

where f (y) = sin2(y + φ0) and ξ i
m is Gaussian white noise

with zero mean and 〈ξ i
mξ i

m′ 〉 = δm,m′ . We note that we have
grouped all sources of noise together and model them by
applying additive Gaussian noise with standard deviation ζ

to each normalized intensity Ii at each time step.
In order to determine the experimental noise strength,

we fix β = 3.5 and δ = π
4 , and sweep a from 0 to 8. We

also simulate Eq. (A7) with different noise strengths ζ . The
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root-mean square (RMS) synchronization error for the two
oscillators is defined as

θRMS(a; ζ = ζ ′) =
√

〈(y0[n] − y1[n])2〉〈
y2

0[n]
〉 + 〈

y2
1[n]

〉 , (A8)

where 〈·〉 refers to an average over all time and θRMS is
written as a function of the coupling strength a and a fixed
noise strength ζ = ζ ′. A typical plot of the RMS synchro-
nization error as a function of coupling strength is shown in
Fig. 11(b).

We then compute the RMS of the difference between
θRMS(a; ζ = ζintrinsic ) from the experiment and θRMS(a; ζ =
ζ ′) from simulations, where now the RMS averaging is done
over all coupling strengths a ∈ [0, 8]. The result is shown in
Fig. 11(a) and shows a clear minimum at ζ = 0.001. The syn-
chronization error from the simulation with ζ = 0.001 shows
good agreement with the experimentally measured result, as
shown in Fig. 11(b), confirming that we can accurately model
the noise in our system. Since this system uses the exact same
apparatus as the experiment in which we observe laminar
chaos, we can apply the same noise model.

APPENDIX B: DETERMINATION OF THE DELAY PERIOD
IN EXPERIMENTAL TIME SERIES

The estimation of the temporal distribution of the variances
given by Eq. (13) is very sensitive to errors of the period of
the delay Tτ , especially for averages over a long time series.
Let us consider an experimental trajectory x(t̃ ) and assume
that we have determined the estimate T̂τ of the delay period
Tτ . The contribution of the error |T̂τ − Tτ | of Tτ to the error
of σ 2

d grows with the length N of the time series in delay
periods. This can be exploited for a precise measurement
of the delay period Tτ , where the precision grows with the
length of the time series. It follows directly from Eq. (13)
that the error of σ 2

d reaches the order of σ 2
d if the error of

Tτ reaches or exceeds the order of Tτ

N . If the error of Tτ is
much larger than Tτ

N , the estimate of σ 2
d gets close to the

constant variance σ̄ 2
d of the time series for all t . This can be

explained by the fact that the time-varying delay in general
leads to a quasiperiodic or periodic frequency modulation of
the trajectories, where one of the periods is the delay period
Tτ [29]. The quasiperiodic or periodic frequency modulation
leads to a quasiperiodic or periodic variation of the amplitude
of the approximated derivatives of the trajectories. Since the
estimated delay period T̂τ is almost surely incommensurate to
the periods of this amplitude modulation, the variance of the
approximated derivatives σ 2

d sampled with sampling time T̂τ

is independent of the initial time t of the time average and
equals σ̄ 2

d if the trajectory length is infinite.
If the correct sampling time Tτ is chosen for the time

average, σ 2
d is localized on the time line for laminar and

turbulent chaos as shown in Figs. 7 and 13, respectively. For
laminar chaos, σ 2

d is localized at the transitions between the
laminar phases and, for turbulent chaos, σ 2

d is localized at the
high frequency regions that appear with period Tτ . Thus, the
following method for the precise determination of the delay
period can be provided. We consider the following quantity of
σ 2

d , which is known as inverse participation ratio (IPR) in the

FIG. 12. Determination of the delay period by computing the
inverse participation ratio (IPR) of the temporal distribution of vari-
ances σ 2

d . Here, the IPR of σ 2
d in dependence of the relative deviation

of the estimated delay period from the exact delay period is shown.
The IPR exhibits a sharp peak at the exact delay period, whereas for
larger deviations the IPR is close to one, which indicates a constant
temporal distribution of variances σ 2

d . The peak width is bounded
by the inverse of the length of the time series (in delay periods) N−1,
which is indicated by the solid vertical lines that are located at ±N−1,
where N = 1000.

theory of localization [78]:

IPR
[
σ 2

d [z]
] =

∫ 1
0

∣∣σ 2
d [z](t )

∣∣4
dt( ∫ 1

0

∣∣σ 2
d [z](t )

∣∣2
dt

)2 , (B1)

and equals one for constant σ 2
d and infinity, if σ 2

d consists of
delta functions. To validate the accuracy of T̂τ , we compute
the IPR of σ 2

d with z(t ) = x(t T̂τ ). The inverse participation
ratio of σ 2

d depending on T̂τ for the experimental trajectories
in Sec. III is visualized in Fig. 12. It exhibits a sharp peak at
the delay period Tτ . Since the error of Tτ becomes relevant
if it is of the order of Tτ

N , the error of the delay period that
is determined by this method decreases with increasing N .
In other words, the width of the peak of the IPR decreases
with increasing N , which leads to increasing precision in the
estimation of Tτ .

APPENDIX C: RECONSTRUCTION OF THE
NONLINEARITY FAILS FOR TURBULENT CHAOS

In Sec. V we have demonstrated that laminar chaos can be
detected by searching for its robust features. It is characterized
by a sequence of laminar phases with periodic alternating
duration, which lead to local minima in the temporal distri-
bution of the variance of the approximated derivatives of the
trajectories σ 2

d , which is defined by Eq. (13). These laminar
phases are connected by a one-dimensional map. The latter is
a key feature of laminar chaos, which must be detected for a
reliable decision, whether a trajectory shows laminar chaos,
or not.

To emphasize this fact, we demonstrate that turbulent
chaos may also lead to local minima of σ 2

d . These local
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(a) Simulation

(b) Experiment

FIG. 13. Temporal distribution of the variance σ 2
d (in units of T )

of the approximated derivatives (h ≈ 0.0034) of (a) laminar chaotic
trajectories of Eq. (11) with the same parameters as in Fig. 5 and
(b) experimental trajectories for different strengths ζ of the external
noise. σ 2

d is defined by Eq. (13) and is a measure for the fluctuation
strength of the trajectory at a specific time relative to the internal
clock induced by the time-varying delay. The temporal distribution
of the variance σ 2

d in (b) for the experimental time series was shifted,
such that one of the numerically computed local minima is located
at t = 0. The dashed lines in (a) and (b) indicate the local minima,
which where determined numerically after denoising σ 2

d by applying
a Gaussian filter with a standard deviation of 50 h.

minima become clearly visible in the case where the delay
is conservative but close to a dissipative delay with a low
denominator q of the rotation number ρ = − p

q . Here “close”
means that the delay parameters are close to parameters that
correspond to such a dissipative delay. As demonstrated in
Ref. [29], a variable delay leads to a frequency modulation
of the trajectory similar to the known Doppler effect. In the
case of variable delay systems such as Eqs. (1) and (8),
the signal that is modulated by the Doppler effect is fed
back into the system. For dissipative delay, this feedback is
resonant, which means that low and high frequency phases
appear periodically after q round trips inside the feedback
loop due to the mode-locking behavior of the reduced access
map, where q is the denominator of the associated rotation

(b) Experiment

(a) Simulation

FIG. 14. Attempt to reconstruct the nonlinearity from trajectories
that show turbulent chaos for different noise strength, where we
considered (a) trajectories of Eq. (11) with the same parameters as
in Fig. 5 and (b) experimental trajectories with the same parameters
as in Fig. 4. For numerical (experimental) data, in (a) [(b)] the value
zn+p′ (yn+p′ ) is plotted against zn (yn), where in this case p′ = 3
and the zn = z(t†

n ) are the values of the trajectories at the periodic
sequence of local minima t†

n of the temporal distribution of the
variance σ 2

d , where only the q = 2 lowest local minima inside one
delay period are considered. The points (zn, zn+p′ ) and (yn, yn+p′ ),
respectively, do not resemble a line for all positive p′ ∈ N, which
leads to a clear distinction from laminar chaos in contrast to the
temporal distribution of the variance σ 2

d . Nevertheless, for p′ = 3
signatures of the nonlinearities μ f and μ̂ f̂ (black solid lines) are
also visible in (a) and (b), respectively, where μ̂ f̂ is given by the fit
to the experimental data in Fig. 8. This is due to the fact that in our
example the conservative delay is close to a dissipative delay, where
the access map has the rotation number ρ = − p

q = − 3
2 (see text).

For this example, an infinite number of points (zn, zn+p′ ) or (yn, yn+p′ )
would fill a square-shaped set.

number. The low (high) frequency regions are located in the
neighborhood of the attractive (repulsive) periodic points of
the access map. For a conservative delay that is close to
a dissipative delay with the rotation number ρ = − p

q , the
reduced access map has no q-periodic points but there are
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points that remain close after q iterations, which is similar
to type-I intermittency (cf. Ref. [79]), where nearly periodic
motion is interrupted by chaotic bursts. Consequently, low
frequency regions appear approximately after q round trips
inside the feedback loop, which leads to the q minima of σ 2

d
with large depth. Nevertheless, the values zn of the trajectory
at the local minima of σ 2

d , which for laminar chaos would be
considered as intensity levels of the laminar phases, are not
connected by a one-dimensional map. This means that there is
no positive p′ ∈ N such that the points (zn, zn+p′ ) resemble a
line. In Fig. 13 the temporal distribution of the variance σ 2

d (in
units of T ) of the approximated derivatives is visualized for (a)
trajectories that were computed numerically from Eq. (11) and
for (b) experimental trajectories. In both cases, the analysis is
done for different noise realizations for a conservative delay
that is close to a dissipative delay with ρ = − 3

2 . Aside from
the minima with a low depth, two minima with comparably
large depth are clearly visible.

In the following, we consider the periodically contin-
ued sequence of the locations of the q minima with large
depth, which are indicated by the vertical dashed lines in
Fig. 13. We use them as potential positions t†

n of the lami-
nar phases and try to reconstruct the nonlinearity from the
numerical and experimental time series following the pro-
cedure in Sec. V B. In Fig. 14 the attempt to reconstruct
the nonlinearity for numerical and experimental realizations
with different noise strengths is visualized. Since the points
(zn, zn+p′ ) [or (yn, yn+p′ ), for the experimental data], where
the zn = z(t†

n ) are the values of the trajectory at the poten-
tial positions t†

n of the laminar phases, do not resemble a
line, the dynamics can be clearly distinguished from laminar
chaos. However, if p′ is chosen equal to the numerator p of
the rotation number ρ = − p

q of the close dissipative delay,

signatures of the nonlinearities appear in the sense that the
density of the points (zn, zn+p′ ) is large in the vicinity of the
graph of the nonlinearity μ f (z). This can be explained as
follows.

Due to the nonresonant Doppler effect (cf. Ref. [29]), the
quasiperiodic dynamics of the access map leads to a quasiperi-
odic variation of the characteristic time that is associated to
the chaotic fluctuations of z(t ). The characteristic time passes
through both of the following cases for certain values of T as
explained below. If the characteristic time reaches or exceeds
the order of �t†

n := |t†
n − R(t†

n+p)| in the vicinity of t†
n , the

dynamics can be described approximately by the limit map,
i.e., we have z(t†

n+p) ≈ μ f (z(t†
n )), and thus (zn, zn+p) is close

to the graph of the nonlinearity μ f (z). If, in contrast, the
characteristic time is much lower than �t†

n in the vicinity of t†
n ,

then z(t†
n ) and z(R(t†

n+p)) are nearly independent, such that, in
general, (zn, zn+p) is not close to the graph of the nonlinearity
μ f (z). For T → ∞, the characteristic time vanishes since
the function values of the solution z(t ) become pairwise
independent inside the state interval and, thus, only the latter
case is possible. Then, in the absence of noise, the points
(zn, zn+p) fill a two-dimensional set S , which is the union of
Cartesian products of pairs of the chaotic bands of the map
that is defined by the nonlinearity μ f (z). If T is large but
small enough such that the characteristic time can reach the
order of �t†

n , both cases are possible. The points (zn, zn+p)
for which the characteristic time reaches the order of �t†

n
accumulate at the graph of the nonlinearity μ f (z), whereas
the remaining points (zn, zn+p) fill a two-dimensional set and
roughly resemble the two-dimensional set S as shown in
Fig. 14, where the map defined by the nonlinearity μ f (z) has
one chaotic band. This is contradicting the features of laminar
chaos.
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