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Regular regimes of the harmonic three-mass system
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The symmetric harmonic three-mass system with finite rest lengths, despite its apparent simplicity, displays
a wide array of interesting dynamics for different energy values. At low energy the system shows regular
behavior that produces a deformation-induced rotation with a constant averaged angular velocity. As the energy
is increased this behavior makes way to a chaotic regime with rotational behavior statistically resembling Lévy
walks and random walks. At high enough energies, where the rest lengths become negligible, the chaotic
signature vanishes and the system returns to regularity, with a single dominant frequency. The transition to and
from chaos, as well as the anomalous power-law statistics measured for the angular displacement of the harmonic
three-mass system are largely governed by the structure of regular solutions of this mixed Hamiltonian system.
Thus, a deeper understating of the system’s irregular behavior requires mapping out its regular solutions. In
this work we provide a comprehensive analysis of the system’s regular regimes of motion, using perturbative
methods to derive analytical expressions of the system as almost-integrable in its low- and high-energy
extremes. The compatibility of this description with the full system is shown numerically. In the low-energy
regime, the Birkhoff normal form method is utilized to circumvent the low-order 1:1 resonance of the system,
and the conditions for Kolmogorov-Arnold-Moser theory are shown to hold. The integrable approximations
provide the back-bone structure around which the behavior of the full nonlinear system is organized and provide
a pathway to understanding the origin of the power-law statistics measured in the system.
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I. INTRODUCTION

Recently, the harmonic three-mass system with finite rest
lengths (Fig. 1) was studied and its statistical behavior an-
alyzed [1]. This deceptively simple system was shown to
display a rich variety of dynamics due to geometric non-
linearities induced by the finite rest lengths of the springs,
which render the system dynamically mixed. For different
energies and initial conditions, the system exhibits constant
deformation-induced rotation with zero angular momentum
and random walk of the orientation angle, among other
phenomena. Perhaps the most surprising dynamical feature
exhibited by the system is the Lévy walk regime: for a
continuous range of energies, the orientation of the system as
a rotating triangle performs bouts of constant average velocity,
switching directions with a power-law distribution, fitting the
Lévy walk model [2–4]. The anomalous exponent attributed to
this dynamic seems to interpolate smoothly between the value
of 2, signifying coherent ballistic behavior, and 1, signifying
regular random walk statistics.

In low-dimensional systems, d � 2, the emergence
of power-law statistics is well-understood, attributed to
the breakdown of Kolmogorov-Arnold-Moser (KAM) tori
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creating partial transport barriers which can be crossed by
chaotic trajectories at a slow rate in a phenomenon com-
monly referred to as sticking or trapping [5–10]. However,
despite the robustness of this phenomenon [4,11–14], a gen-
eral framework for the origin of power-law statistics in high-
dimensional mixed Hamiltonian systems continues to elude
current understanding [5,15–17]. In the three-body harmonic
system, the coherent bouts creating the power-law statistics
strongly resemble their lower-energy regular counterparts,
indicating a partial trapping of chaotic trajectories around
regular islands for finite times. A quantitative analysis of the
dynamical mechanism behind this phenomenon would require
a deep understanding of the regular behavior of the nonlinear
system.

In this work we seek to identify and characterize the regular
solutions of the harmonic three body system, complementing
the work in Ref. [1], in the extreme low- and high-energy
regimes. By using a perturbative approach we find integrable
approximations of the Hamiltonian and characterize their
solutions. We show how presenting the dynamics of the full
system in the phase space variables induced by the integrable
approximations leads to a simplified picture that allows a
clearer interpretation of the chaotic dynamics. Section II
presents the system and its interesting dynamics, and provides
a brief summary of the results of Ref. [1], as well as some
extensions. Section III deals with the low-energy regular
motion, where energy confines springs to small oscillations.
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FIG. 1. (a) The symmetric harmonic three-mass system, with
equal spring rest lengths L, equal spring constants k and equal masses
m. �ρ1 and �ρ2 are the mass-weighted Jacobi coordinates, φ is the
angle between them and θ is the orientation variable of the triangle.
(b), (c), and (d) are the system’s normal modes and corresponding
frequencies, commonly known as the symmetric stretch, isometric
bend and asymmetric bend, respectively.

The Birkhoff normal form method is employed to obtain a
faithful description of the full system as an almost-integrable
system, and the conditions for the Kolmogorov-Arnold-Moser
(KAM) theory are shown to hold. In Sec. IV we analyze the
high-energy regular motion, where the springs’ rest lengths
become practically negligible and the system behaves like
the harmonic three-mass system with vanishing rest lengths
(which is quadratic and thus integrable). Section V contains a
short summary and a discussion of the outlook of this work.

This analysis sets the stage for a more complete under-
standing of the behavior observed for intermediate energies,
as the phase space structure in the regular regimes is some-
what retained in the anomalous regimes close enough to
the regular regimes, and a gradual breaking of this structure
results in a continuous transition to, and from, fully chaotic
behavior as the energy is raised.

II. THE HARMONIC THREE-MASS SYSTEM

The Hamiltonian of the planar, fully symmetric three-mass
system with nonzero rest lengths is

H =
3∑

i=1

p2
i

2m
+

∑
〈i j〉

k

2
(ri j − L)2, (1)

where ri = (xi, yi ), ri j = ri − r j , and ri j = |ri j | ≡ √
ri j · ri j

for i, j = 1, 2, 3. In this symmetric system, the mass m, spring
constant k, and rest length L are the only parameters and give
rise to a single natural timescale τs = √

m/k, and a single
energy scale Es = 3

2 kL2, the energy it takes to contract the
system to a point. The parameters we use in simulations and
in the following calculations are L = 2, k = 1 and m = 1,

giving the typical time τs = 1 and natural energy scale Es = 6.
Zero-energy equilibrium is achieved when the distances be-
tween the masses equal the rest lengths and the masses are at
rest.

Conservation of linear and angular momentum reduce the
12-dimensional phase space of the system to a 6-dimensional
phase space. Energy conservation further reduces the dimen-
sion of the submanifold of any given trajectory to five. As
the internal motions and center-of-mass motion of the system
decouple, it is straightforward to eliminate the four center
of mass coordinates from the Hamiltonian. The reduction
of the two angular momentum degrees of freedom requires
Routh reduction [18] due to the nonholonomic nature of the
conservation law, as described in Sec. III. As a result, even
when setting the overall angular momentum of the system to
zero, the distorting triangle may exhibit deformation-induced
rotation, appearing as a manifestation of a relevant geometric
phase [19–21]. Thus, the orientation of the triangle is a non-
trivial, history-dependent variable of the system, and serves
as a sensitive measurable for the type of dynamics the system
follows.

Indeed, the dynamics of the system is incredibly rich:
Despite the fully harmonic interactions, the nonzero rest
lengths of the springs contribute geometrical nonlinearities
to the system, as can be seen algebraically in the square-
root term of the potential energy. This renders the system
dynamically mixed, with regions of regular and chaotic dy-
namics. Reducing our scope to only zero angular momentum
configurations, we can characterize the dynamical regime by
observing the orientation dynamics. In Fig. 2, the orientation
of the triangle is shown for different regimes of motion, and
the underlying character of the six-dimensional dynamics, be
it regular, anomalous or chaotic, is apparent through this one-
dimensional measurable. We note that the numerics in Fig. 2
and throughout this work have been done using the symplectic
integrator provided in Ref. [22], using the symplectic Euler
method [23].

A random exploration of different initial conditions shows
that for a large portion of trajectories the total energy of the
system suffices to describe the statistical quality of the dynam-
ics (see Fig. 3, and [1]), despite the complex structure of the
mixed phase space. For very low-energy values 0 < E � Es

[Figs. 2(a) and 2(b)], as well as for very high-energy values
Es ≪ E [Fig. 2(f)], the system displays stable quasiperi-
odic regular trajectories with constant averaged deformation-
induced rotation rates and a vanishing Lyapunov exponent. In
the numerical exploration, we have identified an intermediate
range of energies 0.1Es � E � 2Es [Fig. 2(d)], where orien-
tation trajectories statistically resemble uncorrelated random
walks, with a squared mean angular displacement exponent of
1, and a corresponding positive Lyapunov exponent. Such an
order-chaos-order transition that is controlled mainly by the
energy of a Hamiltonian system, as exemplified in Fig. 3, was
also observed for the extensible pendulum [24].

It is in the transition between these three regimes that the
exotic dynamics of this system is apparent. For energy values
in the range 0.06Es � E � 0.1Es [Fig. 2(c)], most trajecto-
ries exhibit a positive Lyapunov exponent, signifying chaotic
dynamics. However, the corresponding squared mean angular
displacement exponent is anomalous, transitioning smoothly
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FIG. 2. Typical angular trajectories of the system for various energies. (a) with E = 0.005, and (b) with E = 0.224, both exhibit regular
behavior for practically infinite times. (a) has a single dominant frequency

√
3/2, which is the twice-degenerate frequency of the linearized

reduced system; while (b) shows two dominant frequencies close to the linear frequency resulting in a beating phenomenon. (c) has E = 0.30,
and is in the Lévy walk domain; the trajectory transitions between different seemingly regular trajectories with a power-law distribution. (d) has
E = 1.87 and exhibits regular diffusion statistics. (e) E = 770.10 retains some regularity of motion, and (f) E = 7.79 × 107 exhibits regular
motion corresponding to the linearized high-energy system obtained by setting the rest length to zero.

from the value 2, corresponding to the ballistic motion char-
acterizing the low energy, to the value 1, which characterizes
the uncorrelated random walks observed for the moderate en-
ergy values 0.1Es � E � 2Es. The trajectories in this regime
display some regularity, following a quasiperiodic trajectory
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FIG. 3. Maximal Lyapunov exponents as a function of energy on
a log scale, for various random initial conditions with zero angular
momentum. At extremely low and high energies, the system behaves
regularly and the maximal Lyapunov exponents are zero. In midrange
energies, the system has a chaotic signature with a positive maximal
Lyapunov exponent for most initial conditions. The Lyapunov expo-
nent calculation was done using the method described in Ref. [26],
using the Matlab program “Calculation Lyapunov Exponents for
ODE” version 1.0.0.0 by Vasiliy Govorukhin.

with a constant averaged rotation velocity for a finite time,
then transitioning to following a different quasiperiodic
trajectory. This “sticking dynamics” [25], which results in the
emergence of anomalous diffusion, is thus largely determined
by the regular quasiperiodic solutions of the Hamiltonian. The
transitions themselves between the seemingly quasiperiodic
trajectories, while unpredictable, are also related to the under-
lying phase space structure. Understanding the complex and
subtle nature of this dynamics requires a deep understanding
of the regular solutions of the system, and the corresponding
structure of phase space.

III. LOW-ENERGY REGIME

In the low-energy regime E � Es, trajectories exhibit a
regular quasiperiodic motion. This regular motion seems to
suggest that a perturbative approach around the system’s zero-
energy equilibrium would provide a good description of the
motion. However, as explained in Ref. [1], linearization in
the Cartesian coordinates of Eq. (1) requires breaking the
rotational symmetry of the problem by choosing a specific
equilibrium position in the plane about which the lineariza-
tion is performed. This type of linearization, appearing in
Ref. [27], conserves angular momentum only to leading order
and fails to capture the finite rotation of the triangle. Neverthe-
less, the frequencies derived from this linearization do match
the strongest frequencies observed in the simulation,

√
3/2

and
√

3.
Capturing the true dynamics of the system in the low-

energy regime requires a description of the system in its shape
subspace, as a deforming triangle instead of as three masses
moving with a pairwise potential. This procedure is performed
in Refs. [1,28–30] for different potentials and configura-
tions of three-body systems, by a variable change to three
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shape-space variables describing the shape of the triangle and
one angle determining the orientation of the triangle in the
plane. The choice of shape-space and orientation coordinates
is a gauge choice that does not impact the results. We find that
the most convenient choice for the shape variables, presented
in Ref. [29], is a Bloch sphere representation of the two rela-
tive Jacobi coordinates of the three masses, ρ1 = √m

2 (r2 − r1)

and ρ2 =
√

2m
3 (r3 − r1+r2

2 ) (see Fig. 1). This variable set is
denoted w = (w1,w2,w3), and is given by w1 = 1

2 (ρ2
1 − ρ2

2),
related to the isometric bend mode; w2 = ρ1 · ρ2, related to
the asymmetric bend mode; and w3 = ρ1 ∧ ρ2, proportional
to the oriented area of the triangle and related to the symmetric
stretch mode. The rotation variable we use is θ , describing the
angle between the line connecting m1 and m2 and the x axis.
The center-of-mass coordinates decouple from the rest of the
system and are set to zero. The system’s invariance to rotations
leads to the conservation of angular momentum J and allows
one to deduce the orientational dynamics, expressed via θ̇ ,
from the shape-space dynamics through

θ̇ = J

2w
+ w2ẇ3 − w3ẇ2

2w(w + w1)
, (2)

where w = |w|. While θ̇ is given by the explicit relation above
as a function of w and ẇ, one can show that θ cannot be
expressed as a function of w and ẇ alone, which in turn
enables the phenomenon of deformation induced rotation. The
conservation of angular momentum thus yields a nonholo-
nomic constraint for θ , and obtaining its value at a given time
requires knowledge of the full dynamics of the system up to
that time. As a result, θ becomes a sensitive measure for the
system’s dynamics and correlations.

Performing a Routh reduction of the angular momentum
[18], we set J = 0 to obtain the reduced shape-space Hamilto-
nian describing the system’s zero angular momentum motion,

Hred = w
(
p2

1 + p2
2 + p2

3

) + k

2

∑
<i j>

[ri j ( �w) − L]2, (3)

where

pi = ẇi

2w
, ri j ( �w) =

√
2(w − w · bi j )

b13 =
(

1

2
,

√
3

2
, 0

)
, b12 = (−1, 0, 0),

b23 =
(

1

2
,−

√
3

2
, 0

)
.

The real space dynamics of the system can be restored by
finding solutions to the reduced Hamiltonian Eq. (3) to find
the shape dynamics w(t ) and substituting them into Eq. (2) to
obtain the orientation evolution θ (t ). As proved in Ref. [18],
every solution of the original Hamiltonian Eq. (1) with J = 0
corresponds to a solution of the reduced Hamiltonian Eq. (3),
and vice versa, therefore it suffices to study solutions of
Eq. (3). We emphasize that the simulation results shown here
are performed on the full, Cartesian system Eq. (1) while
the perturbative analysis is performed on the reduced system
Eq. (3).

A. Perturbation theory in the reduced shape space

The reduction to shape space allows us to expand the
system not about a rest position but about its equilibrium
shape, the static equilateral triangle w0 = (0, 0, mL2

2 ), p0 =
(0, 0, 0), thus allowing finite rotations of the triangle without
breaking the small-perturbation approximation. Redefining

wi = wi
0 + εαiw̃

i, pi = εαi
−1 p̃i

for α1 = α2 = ( 2L4m3

3k )
1/4

, α3 = ( L4m3

3k )
1/4

, and expanding in
orders of ε, we obtain the Hamiltonian as a power series
of the coordinates εw̃ and ε p̃. The first nonvanishing order
is the linearized Hamiltonian, quadratic in the variables and
thus integrable as a simple sum of harmonic oscillators. In
action-angle variables it reads

Hred = ε2

2
Es

(√
3

2
(I1 + I2) +

√
3I3

)
+ O(ε3), (4)

where I j = 1
τsEs

(w̃2
j + p̃2

j ) are the (dimensionless) action vari-
ables serving as generalized momenta, and their conjugate
coordinates are the angle coordinates denoted by φi.

The nonlinearity in the system is of geometric origin rather
than constitutive, and in particular is not associated with an
externally tunable expansion parameter; each of the individual
springs is harmonic, and it is the geometric coupling of their
strains that leads to nonlinearity. As a result the nonlinear
effects increase concomitantly with the strains. The largest
possible strain for a given total energy is bounded and in-
creases with the total energy. Thus, the total energy in the
system can be used to define an auxiliary expansion param-
eter, ε(E ), satisfying ε(0) = 0 and monotonically increasing
with the energy. Details of this rescaling are presented in
Appendix A; in what follows we use ε as a dummy parameter
to simplify notation, recalling that rescaling can be easily
performed to yield a formal expansion for the perturbative
approach in low energies.

The linearized Hamiltonian Eq. (4) describes three de-
coupled harmonic oscillators corresponding to the three vi-
brational modes of the planar triatomic molecule [31]: I1

corresponds to the asymmetric stretch, I2 to the bending mode
and I3 to the symmetric stretch (see Fig. 1). We note that the
1:1 resonance between I1 and I2 is a result of the symmetry
of the system under consideration; changing, for example,
one of the masses would remove this frequency degeneracy.
Substituting the solution of Eq. (4) into the equation for θ̇1

and averaging out the fast oscillations results in the following
equation for the average angular velocity [29],

θ̇1 = ε2 3

2τs

√
I1I2 sin (φ2 − φ1). (5)

As could be inferred intuitively, overall rotation is a result
of the phase difference φ2 − φ1 between the two resonant
oscillators I1 and I2, the asymmetric stretch and the isometric
bending; the symmetric stretch oscillator I3 has no rotational
charge to first nonvanishing order around the equilibrium.

In a comparison to simulations, we find that this expression
explains the overall angular velocities well for low enough
energies, but the fit deteriorates as the energy is increased;
see Fig. 4(c). The expansion to leading order also fails to
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FIG. 4. (a), (b), and (c) show the dynamics of the truncated system H(2). (a) shows typical trajectories of H(2) projected onto the ψ1 vs.
J1/J2 plane. (b) displays the corresponding rotations of these trajectories. (c) is a long-exposure image of their dynamics of three out of the
four trajectories, with each mass colored in a different color. (d) shows a comparison of the full system’s average rotation velocity as a function
of the energy with the linear approximation and the much improved Birkhoff 2nd-order approximation given by H(2).

account for the beating phenomenon observed for some initial
conditions [Fig. 2(b)]. Seeking to improve the prediction for
the rotation velocity as well as to account for the observed
beating one can attempt canonical perturbation theory to
higher orders; however, due to the 1:1 resonance, the expan-
sion diverges already at the next nonvanishing order.

To circumvent this divergence we recast the reduced
Hamiltonian in Birkhoff normal form around its static equi-
librium, using the method described in Refs. [18,32]. This
improves the fit of the angular velocity and provides a good
description of the full dynamics observed in the regular
regime; see Fig. 5. The general procedure, presented in
Ref. [32], is an iterative scheme of wisely chosen canonical
Lie transforms that puts the system in the form of a polyno-
mial series in action coordinates, where the series commutes
with its lowest-order term. The main steps of the calcula-
tion of the normal form up to fourth order are presented in
Appendix B. In the main text we present the relevant results,
showing that the expansion to fourth order (subsections B and
C) provides an accurate description of the basic phase space
structure of the full system for low energies. Furthermore,
the expansion to second order suffices to break the normal
mode frequency degeneracy which allows the application of
Kolmogorov-Arnold-Moser (KAM) theory (subsection D).

B. Second-order Birkhoff normal form

To recast the Hamiltonian in its Birkhoff normal form to
second order, we perform a canonical change of coordinates
to a new set of variables, (J, ψ), which we will use throughout
the rest of this section: J1 = I1, J2 = I1 + I2, J3 = I3 and their
conjugate angle coordinates ψ1 = φ1 − φ2, ψ2 = φ2, ψ3 =
φ3. These variables naturally exhibit some of the interesting
behavior of the system, with J3 as the energy contained in
the area changes of the triangle, J2 as the overall energy
contained in the resonant oscillators I1 and I2, and J1 as the

energy contained only in I1, satisfying J1 � J2. ψ1 is the
phase difference between the two resonant oscillators and
describes the average rotation direction of the triangle in
the plane, with ψ1 ∈ (0, π ) and ψ1 ∈ (π, 2π ) manifesting as
counterclockwise and clockwise rotation, respectively.

In these variables, the Birkhoff normal form of the system
to second order is given by

H(2) = ε2

2
Es(H0 + ε2Z2), (6)

where

H0 =
√

3

2
J2 +

√
3J3,

Z2 = 1

64
[52J1(J2 − J1) sin2 ψ1 − J2(5J2 + 6

√
2J3)]. (7)

It is immediately apparent that the truncated system H(2) is
integrable, with H0, J2, and J3 conserved quantities. Therefore,
to visualize the dynamics of the truncated system, it suffices
to consider the two-dimensional phase plane J1

J2
− ψ1 given

values J3 � 0 and J2 > 0,1 as seen in Fig. 4. This phase plane
has the structure of a finite cylinder, with 0 � J1/J2 � 1 and
ψ1 ∈ [0, 2π ] an angle variable, and can be unfolded onto the
plane (see Fig. 4). The system has nullclines at J1/J2 = 0
and J1/J2 = 1, fixed lines at ψ1 = kπ for k ∈ N and two
distinct elliptic fixed points at (J1/J2, ψ1) = (1/2, π/2) and
(J1/J2, ψ1) = (1/2, 3π/2). Solutions of H(2) perform closed
orbits around the distinct fixed points and cannot cross the
rectangles drawn by the nullclines and the fixed lines. These

1When J2 = 0, J1 vanishes as well, corresponding to equilateral
triangles. This is an integrable family of special symmetries, with
no discernible impact on the observable phase space when J2 > 0.
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FIG. 5. (a) Phase space of H(4) compared with (b) Poincaré sections of the full system Eq. (1) at a low energy E = 0.0075. (a) is divided
into four dynamical regions: the purple region, in which trajectories encircle the fixed point J1 = J2/2, ψ1 = 3π/2, describing clockwise
rotation of the triangle; the blue region of trajectories encircling J1 = J2/2, ψ1 = π/2 describing counterclockwise rotation; the orange region
of trajectories encircling J1 = J2/4, ψ1 = 0; and the green region of trajectories migrating along the nullcline J1 = J2. (b) shows that for low
enough energies, the full system follows the regular structure of H(4) to a high level of accuracy, with six typical trajectories shown in the
purple region, five in the blue region, three in the orange region and one in the green region.

trajectories display a beating phenomenon where energy peri-
odically transfers between the resonant oscillators, with more
energy contained in I1 (I2) when J1/J2 < 1/2 (J1/J2 > 1/2).

The integrable dynamics of the truncated system lie in
the shape space of the system, and can be pulled back to
obtain the corresponding rotation of the triangle in the plane.
As seen in Fig. 4, rotation around the fixed point ψ1 = π/2
manifests as a negative angular velocity, while rotation around
the other fixed point ψ1 = 3π/2 as positive angular velocity.
Trajectories that are close to the fixed points have a smaller
beating frequency and a larger absolute angular velocity than
trajectories that pass closer to the rectangles’ borders, in
which the beating is very apparent, for the same energy.
Despite the beating, since the motion around the fixed points is
periodic, the averaged rotational velocity of a given trajectory
is constant in all cases.

C. Birkhoff normal form to higher orders

Of course, a priori there is no guarantee that the normal
form should describe or even approximate the dynamics of
the full system that we observe in simulations. The normal
form series does not necessarily converge, and the theory
is guaranteed to hold only for some neighborhood of the
static equilibrium configuration. We can check compatibility
by comparing the simulated dynamics of the full system
Eq. (1) with the predicted normal-form dynamics of H(2),
projecting the trajectories onto the unfolded J1/J2 - ψ1 plane.
As can be seen in Fig. 5(b), the two elliptic fixed points
of H(2) are clearly visible in the full system. Trajectories
of the full system that initialize close enough to the fixed
points shadow the truncated system’s trajectories, with similar
beating frequencies and a similar overall angular velocity of
the rotating triangle [Fig. 4(c)]. However, despite this high
compatibility, some prominent elements of the dynamics are

not captured by H(2). The lines ψ1 = kπ for integer k, are not
fixed for the full system; rather, simulations of the full system
show an elliptic fixed point at (J1, ψ1) = (J2/4, π ), around
which beating trajectories with zero overall angular velocity
are distinctly apparent in the simulations.

To capture these features, we now come to consider the
Birkhoff normal form to the next nonvanishing order, given
by

H(4) = ε2

2
Es(H0 + ε2Z2 + ε4Z4), (8)

where

Z4 = a0 + J1(a1 + b1 cos 2ψ1) + J2
1 (a2 + b2 cos 2ψ1)

+ J3
1 (a3 + b3 cos 2ψ1). (9)

The coefficients {ai, bi}3
i=0 are functions of J2 and J3, pre-

sented in full in Appendix B along with the full calculation.
H(4) still conserves J2 and J3, retaining the integrability of the
normal form.

The distinct elliptic fixed points of H(2) are also
fixed points in the phase space of H(4). However, the
ψ = kπ, k ∈ Z lines lose their stability; instead, two
new fixed points emerge on each line, an elliptic fixed
point at (J1, ψ1) = ( J2

4 , kπ ) and a hyperbolic fixed point
at (J1, ψ1) = ( 3J2

4 , kπ ). Also, four hyperbolic fixed points
appear on the nullcline of J1 = 0. The fixed points separate the
trajectories into two classes of trajectories, those encircling
the elliptic fixed points and those migrating along the
nullclines of J1 = 0 and J1 = J2.

Pulling back from shape space to the space of triangles
in the plane, the rotation resulting from the dynamics of
H(4) are similar to that of H(2) close enough to the fixed
points shared by the systems. However, the dynamics are
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different around the new phase space features: trajectories
going around (J2/4, kπ ) periodically rotate in both directions
in real space, with an overall vanishing averaged rotation
rate. The trajectories following the nullclines also do not
perform overall rotation. The hetroclinic trajectories between
the hyperbolic fixed points define the boundary between the
different dynamical regions. As can be seen in Fig. 5, these
dynamics are indeed compatible with the full system to a high
degree. Poincaré sections of the full dynamics projected onto
the (J1/J2, ψ1) plane reveal exactly the same fixed points as
calculated from H(4).

D. Lifting the frequency degeneracy

The harmonic three-mass system shows a strong persis-
tence of regular solutions for a large range of energies.
This suggests the applicability of the KAM theorem, which
guarantees persistence of most quasiperiodic orbits in almost-
integrable systems if the integrable part satisfies some non-
degeneracy frequency condition. Unfortunately, the harmonic
expansion (to lowest order), H0, shows a one-to-one reso-
nance, and thus cannot serve as the base of a KAM expansion.
Therefore, to express our system as an almost-integrable
system, we write the full Hamiltonian as H = H(2) + (H −
H(2) ). The Birkhoff expansion, detailed in Appendix B, shows
that the remainder in the parentheses is a power series, H −
H(2) = ∑∞

n=2 P(n)(J,ψ) where P(n) is a monomial of order n
in the action coordinates. The auxiliary expansion parameter
ε(E ), a monotonically decreasing function of the maximal
possible stretch given the energy E (see Appendix A), can
then be used to rescale the action coordinates, so that 0 � Ji �
1 for i = 1, 2, 3. Thus, the full Hamiltonian is rewritten as a
power series in ε(E ) multiplying terms of order 1. Hence, so
long as the entire remainder is small, we can treat our system
as an almost-integrable system, considering (H − H(2) ) as the
perturbation to the integrable and nondegenerate H(2).

The KAM theorem does not provide a realistic bound
on what consists a small enough perturbation for theorem
to be applicable. Nevertheless, we can check the frequency
conditions required for the theorem by performing a canonical
change of variables to action-angle variables and calculating
the frequencies:

H(2) = ε2

2
Es

[√
3

2
J2+

√
3J3− ε2

64

(
5J2

2 −6
√

2J2J3 + 13K2
1

)]
,

(10)

ω1 = ε2 13

32
K1,

ω2 =
√

3

2
− ε2

32
[(5 − 3

√
2)J2 + 13K1],

ω3 =
√

3 + ε2 3
√

2

32
J2,

(11)

where K1 = 2
√

J1(J2 − J1) sin ψ1 is the new conserved quan-
tity emerging from the integrable system. Note that it is
proportional to the linear slope prediction Eq. (5); indeed, the
sign of K1 indicates the overall direction of rotation of the
triangle; see Fig. 6(c).

The new frequencies associated with the angle coordinates
have corrections of order ε2 which depend on the action
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FIG. 6. (a) A typical orientational trajectory at energy E =
0.381. (b) Projection of the phase space dynamics onto a Poincaré
section of the (J1/J2, ψ1) plane. The power-law statistics observed
in this energy regime correspond to a sticking of the irregular tra-
jectories close to the approximated integrable system’s fixed points
for long times. This feature is typical for trajectories in this energy
region. (c) The action variable K1 emerging from H2 is shown in light
blue, with its moving average 〈K1〉 on top, averaged over 100 time
units. 〈K1〉 < −0.03 is colored in blue and corresponds to a descend-
ing rotation angle; 〈K1〉 > 0.03 is in magenta and corresponds to
an increasing rotation angle; and −0.03 < 〈K1〉 < 0.03 is in yellow
and corresponds to zero averaged rotation. K1 does not differentiate
between trajectories that encircle the J1/J2 = 0.25 (orange in (a,b))
and trajectories that travel along the J1/J2 = 1 border (green in (a,b)),
but may identify a transition between them. It is obvious from (c) that
K1 is not a conserved quantity of the full Hamiltonian, nor is it a
constant along seemingly ballistic bouts. Nonetheless, its moving
average is indicative of the different regimes.

coordinates, thus removing the degeneracy of the linearized
system. It is easy to check that both the nondegeneracy
and the isoenergetic nondegeneracy conditions stated in the
KAM theorem are satisfied for small enough values of J2,
J3. Under these conditions, the KAM theorem assures that
most integrable tori persist under small perturbations to the
Hamiltonian for any energy value that is small enough. Taking
into account H(4) as the integrable part would add corrections
of order ε4, retaining this degeneracy lifting.

The loss of integrability is expected to manifest first around
resonant tori, overtaking most of the phase space gradually
as the perturbation grows. This picture is compatible with
our numerical experiments and provides a possible expla-
nation for the good fit between the truncated and the full
system’s dynamics for low enough energies. For short times,
this shadowing of the trajectories of the truncated integrable
Hamiltonian by the full Hamiltonian trajectories remains as
the energy is further increased, as we show next.

E. The Lévy walk regime

At energies in the range 0.06Es � E � 0.1Es most trajec-
tories are no longer regular: chaotic dynamics characterized
by a positive Lyapunov exponent inhibit most of phase space.
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At the early stages of this regime, the corresponding rotational
dynamics resemble the stochastic Lévy walk model [1], with
bouts of constant angular velocity interrupted by abrupt orien-
tation reversal events. In Fig. 6 we plot the angular dynamics
in this regime, alongside a projection of phase space onto the
(J1/J2, ψ1) plane, where the system is shown to follow the in-
tegrable structure described by H(4). The projection indicates
that the observed trajectories migrate between the different
fixed points of H(4), sticking to oscillatory trajectories around
each of the stable fixed points for long times. We further
observe that the transitions between the distinct neighbor-
hoods of the fixed points occurs near the saddle points located
at J1/J2 = 3/4, ψ = πk for k ∈ Z, and the transition times
obey a power law distribution. These phenomena are robust
features of most trajectories in this regime.

At the lowest energies in which we observe Lévy walks
each bout between orientation reversal events bears great re-
semblance to the corresponding regular trajectory around the
same fixed point, to the extent that it is difficult to differentiate
between regular and Lévy walk trajectories just by examining
them for short times in between transitions. As the energy is
increased the transitions between the neighborhoods of the
fixed points become more frequent and occur over an in-
creasingly wider region. As the energy approaches 0.1Es from
below it seems that there is no longer any barrier separating
the basins of the distinct fixed points, and the bouts gradually
lose their coherence and similarity to the regular solutions.
Nonetheless, the squared angular mean displacement still
obeys fractional statistics [1].

In mixed Hamiltonian systems, fractional statistics are
ubiquitous [4,11–14]. In systems with two degrees of free-
dom, where regular tori create barriers in phase space, the
origin of these anomalous statistics is well understood. Gen-
erally, as the KAM tori break up, they leave in their wake a
hierarchical structure of smaller tori that create partial barriers
of transport. Chaotic trajectories can cross these barriers, but
this typically takes a long time, resulting in the fractional
statistics [7,17], in a phenomenon commonly referred to as
sticking or trapping [5–10]. However, a general framework for
the origin of power-law statistics in high-dimensional mixed
Hamiltonian systems continues to elude current understanding
[5,15–17]. Although the KAM tori break up in a similar
manner, they no longer separate phase space into impenetrable
regimes. Thus, chaotic trajectories can theoretically get as
close as they like to the surviving tori. In these systems,
for any perturbation strength, the phase space is connected
by a web of resonant channels known as the Arnold web
surrounding the sufficiently nonresonant KAM tori. Action
variables can drift along these channels in a process known
as Arnold diffusion and thus transition from the neighbor-
hood of one surviving torus to another. In our system, the
great resemblance of the low-energy Lévy walk trajectories
to regular solutions and the narrow channel of transfer are
reminiscent of the Arnold diffusion phenomenon. However, as
the energy rises and the transition region grows, the H4 phase
space structure loses its coherence and the power-law statistics
seem to originate from a partial trapping of trajectories around
the regular fixed points, until the regular structure seems to
completely break down at approximately 0.1Es, where corre-
lations are lost and the anomalous diffusion exponent reaches

1. A combination of the two phenomenon could explain the
surprising phenomenon of a gradual, seemingly continuous
decrease of the anomalous exponent from the ballistic to
the random walk regime as the energy grows, as observed
in Ref. [1], as opposed to the single anomalous exponent
found in Refs. [10,33]. This work provides the backbone that
would be required for a systematic study of these concepts, by
identifying the underlying almost-integrable approximation
controlling the dynamics in the transition of the full system
from regular behavior to chaos. These allow a calculation of
the KAM tori and the surrounding Arnold web. A quantitative
study of these ideas is left to future work.

IV. HIGH-ENERGY REGIME

As the energy is increased beyond 0.06Es, the regular
structure gradually disappears. In the range 0.1Es � E � 2Es,
almost all trajectories are observed to cover the entirety of
phase space, and the statistics resemble an uncorrelated ran-
dom walk [1].

However, at E ≈ 2Es a single frequency begins to domi-
nate the dynamics and the system appears to approach regu-
larity again. This apparent regularity may be easily explained
by observing that for extremely high energies, the rest length
is effectively forgotten. Thus, we may expect the system to
resemble the integrable harmonic three-mass system with zero
rest lengths [34] at high enough energies. In this regime the
reduced system Eq. (3) is less instructive, since its normal
modes do not coincide with those of the zero rest length
harmonic three-mass problem. Therefore, we compare the
observed dynamics with the dynamics of the full Cartesian
Hamiltonian Eq. (1) with zero rest lengths:

H =
3∑

i=1

p2
i

2m
+

∑
<i j>

k

2
r2

i j, (12)

which displays the twice-degenerate linear frequency
√

3 in
units of 1/τs.

As shown in Fig. 7(o), the solutions of Eq. (12) are in ex-
cellent agreement with the simulation results for high enough
energies. Similarly to the low-energy regime, the regular
solution of the high-energy regime displays a constant average
angular slope. However, unlike the solution for low energies,
this slope is comprised of steps: discrete angular increment
events in between which the angle remains approximately
constant. This feature may be explained by observing that
for high energies, at every oscillation the three-mass triangle
undergoes two orientation reversal events. Both orientation
reversal events occurring in a single oscillation increase (or
decrease, depending on initial conditions) θ (t ) by π . Hence,
the expected averaged slope has a constant value of

√
3 ≈

1.73, as observed.
The step structure is preserved at moderately high energies,

where the rest lengths are not completely negligible, and is
observed even at energies that are very close to the energy
scale, E � 2Es, see Figs. 7(l), 7(m) and 7(n). For these
moderate energies, the dominant frequency drifts away from√

3 and the spectrum fills up [Figs. 7(b), 7(c) and 7(d)], and
for low enough energies θ (t ) changes its average rotation
direction in a manner resembling the Lévy walk region. A
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FIG. 7. (a–e) Power spectrum of the x coordinate of m1 for
various typical trajectories with rising energies values from E ∼
1 to E ∼ 106. (f–j) Long-exposure images of the corresponding
trajectories. (k–o) Orientation as a function of time of the full system
(blue) and the linear prediction obtained by solving the zero-rest
length system with the same initial conditions (green). As the energy
gets larger, the high-energy limit is a better approximation to the full
system dynamics. The energy values of the different plots are (a, f, k)
E = 1.47, (b, g, l) E = 9.51, (c, h, m) E = 95.42, (d, i, n) E = 1354,
(e, j, o) E = 2.11 × 106.

statistical and perturbative analysis of the Hamiltonian in this
energy regime is left to future studies, but it is clear that a
similar approach to the perturbative techniques used in the
low-energy regime may be useful in analyzing the approach
of the system to high energies where the system behaves like
its linear approximation.

V. SUMMARY AND DISCUSSION

Despite the apparent simplicity of the harmonic three-mass
system with finite rest lengths, the system displays a rich
variety of dynamics, controlled mainly by the system’s overall
energy. For very low energies the system displays constant
angular velocity rotation with zero angular momentum, while
for moderate energies chaos ensues, indicated by a positive
Lyapunov exponent, and an orientational random walk is
measured. Gradually increasing the energy from very low to
moderate values reveals statistics of an orientational Lévy
walk, in which the exponent α continuously varies with
the energy, interpolating between the values α = 2 (ballistic
rotation) and α = 1 (random walk). Further increasing the

energy beyond the random walk region, the system gradually
“forgets” its finite rest lengths and the systems trajectories
regain regularity.

In the chaotic regimes, while the observed trajectories
share many characteristics with regular solutions of integrable
approximations of the Hamiltonian, no explicit solutions are
available. Thus, identifying the fixed points of the system’s
Hamiltonian, the structure of the regular solutions and the ge-
ometry of the phase space for the integrable approximations of
the Hamiltonian is key to understanding the exotic phenomena
that the full system displays. Furthermore, observing the rich
phenomena that the harmonic three-mass system displays re-
quires to simulate the underlying chaotic Hamiltonian system
to very long times (∼107 Lyapunov times). Such a task is
not commonly carried out, primarily because of the difficulty
in interpreting the result and identifying the real system it
describes [35]. Understanding analytically the building blocks
from which the different parts of the full trajectory is com-
posed not only allows to understand the origin of the observed
Lévy walks, but also serves to cast meaning to the observed
trajectories as typical members in a collection of statistically
similar trajectories that cover the chaotic component of phase
space. To these ends, in this work we mapped and character-
ized the fixed points and regular solutions of both the low and
high-energy integrable approximations of the Hamiltonian of
the harmonic three-mass system.

Very low-energy trajectories display a constant angular
velocity rotation with zero angular momentum that is well
captured by reducing the system to its intrinsic (shape)
space and linearizing the system about its equilibrium shape.
As the energy is increased nonlinear effects including lifting
of the frequency degeneracy and beating dramatically change
the value of the constant angular velocity. Capturing these
variations required a perturbative approach. Due to the 1:1
resonance in the system’s linearization, canonical perturbation
theory diverges, therefore we utilized the Birkhoff normal
form expansion. Expanding the Hamiltonian in Birkhoff nor-
mal forms to 4th order yielded a very good agreement with
the observed average angular velocity, and was shown to
accurately predict the phase space structure observed for the
full system. The action angle variables inherited from these
approximations capture the behavior of the system near the
onset of chaos. For higher energy, when Lévy walks become
more pronounced these action variables are no longer constant
even along seemingly ballistic bouts. Nonetheless, the pre-
dicted phase space structure still underlies the full dynamics,
and the Lévy walks can be decomposed to bouts that dwell
in the vicinity of regular trajectories rotating clockwise and
anticlockwise at a constant pace, and power-law distributed
transition between these trajectories.

As the system approaches regular random walk with α = 1
the structure of phase space predicted from the integrable
approximations ceases to describe the system. For a narrow
strip of energies in the random walk region the system appears
lacking an underlying structure. However, as the energy of the
system is further increased a new structure emerges. When
the typical mass separation significantly exceeds the rest
length, L � 〈|ri j |〉, the rest lengths are effectively lost, and
for 104Es � E the observed trajectories seem regular again,
and can be explained considering the system with vanishing
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rest lengths. This new structure begins to be apparent already
at energies Es < E as a single frequency starts to dominate
the power spectrum of the system, while still in the chaotic
regime.

For energies in the intermediate range 0.06Es � E �
0.1Es, anomalous power-law statistics of the system’s vari-
ables are measured [1]. The phase-space mechanism behind
power-law correlations and corresponding anomalous diffu-
sion of measurables in systems with a high phase space
dimension is not well-understood, and may be attributed to
Arnold diffusion, stickiness or some combination of the two
[5]. The quantitative understanding of the regular structure
achieved in this work is crucial to understand and quantify
the anomalous region, and to differentiate between the mech-
anisms responsible. In our system we observe that at the onset
of the region, trajectories spend long times circling one of
the low-energy Birkhoff expansion fixed points, resembling
their corresponding regular trajectories, before transitioning
to a different fixed point through a narrow transfer channel
around a hyperbolic fixed point. This scenario is reminiscent
of an Arnold diffusion mechanism. As the energy rises, the
KAM islands shrink and this description gradually loses its
coherence, resulting in an anomalous exponent that appears
to interpolate smoothly between ballistic and random walk
values [1]. While we presently cannot prove so, we believe
both Arnold diffusion and sticky dynamics dominate the
system’s behavior for different energies, partially explaining
the smooth interpolation between the ballistic and regular
diffusive regimes.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with S. Fish-
man and O. Alus. This work was supported by Israel Science
Foundation Grant No. 1479/16 and by the Minerva Founda-
tion Grant No. 713219. E.E. thanks the Ascher foundation for
their support.

APPENDIX A: OBTAINING A SMALL PARAMETER ε(E )

In formulating the system using perturbation theory, ε was
an auxiliary variable that only served as a dummy parameter
to ease the expansion. However, using the geometrical con-
straints of the system we can provide an estimate for ε(E ) and
use it to rescale the parameters so that they remain bounded.
This is a special feature of the spring-mass system, as opposed
to some other chaotic systems such as the three-body gravita-
tional problem: since the full Hamiltonian is positive-definite
in its parameters, the overall energy of the system limits the
kinetic energy that the masses can gain, and because of the
geometry the masses cannot drift farther away from each other
than a certain radius. This allows us to place bounds on the
action variables given an energy value E ,

0 � I1 �
4
√

2
3 E

3k
(
L − √

2
√

E
k

)2
, 0 � I2 �

4
√

2
3 E

3k
(
L − √

2
√

E
k

)2
,

0 � I3 � 4E

3
√

3k
(
L −

√
2 E

k

)2
.

We thus define ε(E ) to be the larger of the three:

ε(E )2 =
4
√

2
3 E

3k
(
L − √

2
√

E
k

)2
, (A1)

defined so that at a given energy E the action variables I j

cannot surpass ε(E )2. An estimate of the energy at which
perturbation theory is expected to break down is given by
comparing ε(E ) to 1, occurring at E ≈ 0.66. Indeed, as nu-
merics show, this value is close to the energy at which we see
an onset of chaos.

Further, by rescaling the action parameters I j = ε(E )2 Ĩ j ,
we know that their range is always 0 � Ĩ j � 1, and ε(E ) is
a monotonically increasing function of E , satisfying ε(E =
0) = 0. Therefore, for small enough energies the bulk of the
energy is contained in low orders of the ε expansion, con-
straining the remainder and providing further justification of
the applicability of perturbation theory techniques to analyze
the system as nearly integrable.

APPENDIX B: BIRKHOFF NORMAL FORM
TO 6TH ORDER

Given an m-dimensional Hamiltonian H with an elliptic
fixed point at the origin, consider the linearized Hamiltonian

about its fixed point, H0 = ∑m
i=1 ωi

p2
i +q2

i
2 . Then the Birkhoff

normal form theorem states that for any positive integer N �
0 there exists a neighborhood UN ⊂ R2n of the origin and a
canonical transformation TN : UN → R2n that brings the full
system to its Birkhoff normal form up to order N :

H (N ) := H ◦ TN = H0 + Z (N ) + R(N ), (B1)

where Z (N ) is a polynomial of degree N + 2 that Poisson com-
mutes with its leading order expansion about the fixed point,
H0, i.e., {H0, Z (N )} ≡ 0, and R(N ) is small, i.e., |R(N )(x)| �
CN |x|N+3 , ∀x ∈ UN .

A proof of this theorem is given in Ref. [32]. It is a
constructive proof with a general recipe for obtaining the
Birkhoff normal form up to any desired order N ∈ N, given
a Hamiltonian with an elliptic fixed point at the origin. Here
we present the main steps of the construction for our system.

The recipe is based on a series of Lie coordinate transforms
chosen such that the polynomial correction Z (N ) Poisson com-
mutes with H0. A Lie transform of coordinates is a canonical
change of variables induced by some generating function χ .
Assume we have a polynomial g(p, q) of order n + 2, and
a Lie transform generator χ (p, q), which is a polynomial of
order m. Consider φt

χ = [p(t ), q(t )], the propogation of the
variables p and q according to a Hamiltonian given by χ .
We seek to express the original polynomial g(p, q) estimated
at the propogated coordinates: g[p(t ), q(t )] ≡ g ◦ φt

χ . Setting
t = 1, the new polynomial can be written as a power series in
the order of the polynomials,

g ◦ φ1
χ =

∑
k�0

gk, (B2)

where

g0 := g , gk = 1

k
{χ, gk−1} , k � 1, (B3)

and the order of the polynomial gk is n + km.

032211-10



REGULAR REGIMES OF THE HARMONIC THREE-MASS … PHYSICAL REVIEW E 101, 032211 (2020)

Consider now a polynomial Hamiltonian expanded in pow-
ers of the coordinates and momenta about its elliptic fixed
point, H = ε2H0(p, q) + ∑∞

n=1 εn+2Pn(p, q), where Pn(p, q)
is a sum of monomials of order n + 2, of the form qL pn+2−L.
This Hamiltonian is already in Birkhoff normal form to zeroth
order. For any first-order polynomial χ1, the corresponding
Lie transform of H leads to the ordered form:

H ◦ φχ1 = ε2H0 + ε3(P1 + {χ1, H0})

+ ε4(P2 + {χ1, P1} + {χ1, {χ1, H0}}) + O(ε5).
(B4)

As P1 + {χ1, H0} is a polynomial of order 3, choosing χ1 such
that this term commutes with H0 will bring Eq. (B4) to its
Birkhoff normal form up to first order.

In general, obtaining an nth degree Birkhoff normal form is
done iteratively. Consider a Hamiltonian given in its Birkhoff
normal form up to order n − 1, i.e., H ◦ Tn−1 = ε2H0 +
Z (n−1) + R(n−1): Z (n−1) is a polynomial of order n − 1 that
commutes with H0, and R(n−1) is of order � n. Writing the
remainder R(n−1) as a series of monomials of increasing order,
R(n−1) = ∑∞

k=n εkRk , a Lie transform induced by a generating
polynomial χn of order n + 2 will result in the following form
for the Hamiltonian:

(H ◦ Tn−1) ◦ φχn = ε2H0 + Z (n−1)

+ εn({χn, H0} + Rn) + O(n + 1). (B5)

Then, χn is chosen such that {χn, H0} + Rn Poisson commutes
with H0; the remaining terms will be of higher orders from the
construction.

In particular, this implies that the Birkhoff normal form
to second order is obtained by choosing the fourth-degree
polynomial χ2 such that {χ2, H0} + R2 commutes with H0,
where R2 ≡ P2 + {χ1, P1} + {χ1, {χ1, H0}}. For further de-
tails, including the method used to choose the functions χk ,

see Ref. [32], which includes a result about the timescales
at which the truncated system H0 + Z (n) may be considered
instead of the full system.

Following this recipe, we obtain the following truncated
Birkhoff normal form of our system to order 4:

H(4) = ε2H0 + ε4Z2 + ε6Z4,

H0 =
√

3

2
J2 +

√
3J3,

Z2 = − 1

64
[52J1(J1 − J2) sin2 ψ1 + J2(5J2 + 6

√
2J3)]

Z4 = a0 + J1(a1 + b1 cos 2ψ1) + J2
1 (a2 + b2 cos 2ψ1)

+ J3
1 (a3 + b3 cos 2ψ1), (B6)

where J1 = I1, J2 = I1 + I2, J3 = I3, ψ1 = φ1 − φ2, ψ2 = φ2,
ψ3 = φ3, and {Ik, φk} are the action-angle variables associated
with the linearized Hamiltonian H0, Ik = 1

τsEs
(w̃2

k + p̃2
k ), and

a0 = 4606
√

2J3
2 − 12401J2

2 J3 − 38752
√

2J2J2
3 + 8736J3

3

344064
√

3
,

a1 = −J2(156017
√

2J2 + 1674J3)

344064
√

3
,

b1 = J2(837J3 − 43505
√

2J2)

172032
√

3
,

a2 = 199522
√

6J2 + 837
√

3J3

516096
,

b2 = 124514
√

6J2 − 837
√

3J3

516096
,

a3 = − 45005

28672
√

6
, b3 = −

9001
√

3
2

28672
. (B7)
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