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Following the paper exploring the Anderson localization of monochromatically perturbed kicked quantum
maps [Phys. Rev. E 97, 012210 (2018)], the delocalization-localization transition phenomena in polychro-
matically perturbed quantum maps (QM) is investigated focusing particularly on the dependency of critical
phenomena on the number M of the harmonic perturbations, where M + 1 = d corresponds to the spatial
dimension of the ordinary disordered lattice. The standard map and the Anderson map are treated and compared.
As the basis of analysis, we apply the self-consistent theory (SCT) of the localization for our systems, taking
a plausible hypothesis on the mean-free-path parameter which worked successfully in the analyses of the
monochromatically perturbed QMs. We compare in detail the numerical results with the predictions of the SCT
by largely increasing M. The numerically obtained index of critical subdiffusion tα (t :time) agrees well with the
prediction of one-parameter scaling theory α = 2/(M + 1), but the numerically obtained critical exponent of
localization length significantly deviates from the SCT prediction. Deviation from the SCT prediction is drastic
for the critical perturbation strength of the transition: If M is fixed, then the SCT presents plausible prediction for
the parameter dependence of the critical value, but its value is 1/(M − 1) times smaller than the SCT prediction,
which implies existence of a strong cooperativity of the harmonic perturbations with the main mode.
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I. INTRODUCTION

It is a basic nature of the freely propagating quantum
particle that it localizes by inserting random impurities [1,2]
and its normal conduction, which is an irreversible quantum
Brownian motion, is realized after destroying the localization
by some additional operations. The ordinary way to free from
localization is to increase the spatial dimension of the system
and weaken the randomness. Another way is to introduce
dynamical perturbations such as harmonic vibrations due to
the lattice vibration. The destruction of localization by the
latter way is called dynamical delocalization. The purpose
of the present paper is to elucidate the critical phenomena
of the dynamical localization-delocalization transition (LDT)
numerically and theoretically, following Refs. [3,4]. Recently
the localization and delocalization of wave-packet propaga-
tion has been investigated experimentally and theoretically. In
particular, the quantum standard map (SM) systems, which
theoretically shown to exhibit dynamical localization [5], has
been studied extensively. If SM is coupled with dynamical
harmonic perturbations composed of M incommensurate fre-
quencies, then it can formally be transformed into a d (=
M + 1)-dimensional lattice system with quasiperiodic poten-
tial [6–11]. Then it can be expected that the harmonically
perturbed SM will undergo an Anderson transition of the
d (= M + 1)-dimensional random quantum lattice.

Indeed, Lopez et al. implemented the perturbed SM as a
cold atom on the optical lattice and succeeded in observing
the Anderson transition [12,13]. They obtained the critical
diffusion exponents and the critical localization exponents

experimentally, which agreed with numerical and theoretical
results for M = 2. They also observed an exponentially ex-
tended localization for M = 1 [14].

We can then expect that even the localization phenomenon
on low-dimensional disordered quantum lattice can be also
delocalized by applying harmonic perturbations with a finite
number of incommensurate frequency components [15,16].
The increment of the number M of the frequencies will
make the delocalization easier, thereby realizing the onset of
diffusion which is a typical irreversible motion simulating the
normal conduction of electron. To examine the above con-
jecture, we proposed a quantum map defined on a disordered
lattice, which we call the Anderson map (AM) [17]. It evolves
in a discretized time and becomes the one-dimensional (1D)
disordered system in a continuous time limit.

The SM of M = 1 corresponds to the asymmetric two-
dimensional disordered system, and the localization length is
exponentially enhanced but the LDT does not occur, which
has been confirmed experimentally and numerically [14]. In
the previous paper [4] we also numerically and theoretically
studied the localization characteristics of AM of M = 1 in
comparison with that of the SM of M = 1, and all the numer-
ical results were well explained in terms of the self-consistent
theory (SCT) of the localization [18]. The AM of M = 1 has a
paradoxical character that the localization length increases as
the disorder strength W of potential exceeds a threshold value
W ∗, which was successfully predicted by the SCT.

On the other hand, we presented a preliminary paper [3]
in which we showed that the AM with M � 2 undergoes
the LDT as is the case of the SM with M � 2 and further
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the results based on the one-parameter scaling hypothesis
can explain the critical diffusion exponent for a wide range
of M [3].

The present paper provides a complete numerical and
theoretical analysis of the localization-delocalization charac-
teristics of AM in comparison with SM for a wide range of
control parameters, particularly, with changing M largely.

In Sec. II, we introduce polychromatically perturbed quan-
tum SM and AM. First, in Sec. III we begin with reviewing the
results reported in Refs. [3] and [4] about the M dependency
of the critical subdiffusion exponent and the critical localiza-
tion exponent, including some new results. We are particularly
interested in the dependencies of the critical perturbation
strength of the harmonic perturbation (we denote it by εc

hereafter) on the control parameters of the system and the
predictability of the SCT for them. We show in Sec. IV the
theoretical prediction based on SCT for critical perturbation
strength εc of the LDT for SM and AM and compare them
with the numerical results. Except for M, the SCT success-
fully predicts the dependency of εc on the control parame-
ters. However, the SCT fails to predict the M dependence.
Numerically, it turns out that εc � 1/(M − 1) for both AM
and SM, but the SCT predicts that it is a constant. In Sec. V,
we summarize and discuss the result. The derivation of some
equations and some details of the numerically decided critical
exponent of the localization are given in the Appendixes.

II. MODELS AND THEIR DYNAMICS

We consider dynamics of the following quantum map
systems represented by the Hamiltonian:

Htot ( p̂, q̂, t ) = T ( p̂) + V (q̂, {ω jt})δt , (1)

where δt = ∑∞
k=−∞ δ(t − k�). In this paper we set the period

of the kicks � = 1. T ( p̂) is the kinetic energy term, and
the potential energy term V (q̂, t ) including time dependent
perturbation f (t ) is given as

V (q̂, {ω jt}) = V (q̂)[1 + f ({ω jt})] (2)

= V (q̂)

⎡
⎣1 + ε√

M

M∑
j

cos(ω jt )

⎤
⎦, (3)

where M and ε are number of the frequency component
and the strength of the perturbation, respectively. Note that
the strength of the perturbation is divided by

√
M so as to

make the total power of the long-time average independent
of M, i.e., f ({ωit})2 = ε2/2, and the frequencies {ω j}( j =
1, . . . , M ) are taken as mutually incommensurate number of
O(1). Here p̂ and q̂ are momentum and position operators,
respectively.

In the present paper, we use the SM, which is given by

T ( p̂) = p2

2
, V (q̂) = v(q̂). (4)

In addition, we deal with AM, which is given by

T ( p̂) = 2 cos( p̂/h̄), V (q̂) = W v(q̂), (5)

where

v(q̂) =
{

K cos q̂ (for SM)∑
n∈Z δ(q − n)vn|n〉〈n| (for AM)

. (6)

In the case of SM the global propagation occurs in the mo-
mentum space p spanned by the momentum eigenstates |p〉 =
|Ph̄〉 (P ∈ Z), being transferred by the potential operator v(q̂).
On the other hand, in the case of AM v(q̂) plays the role of the
on-site potential operator taking random value vn uniformly
distributed over the range [−1, 1] and W denotes the disorder
strength. The global propagation occurs in the position space
q, which are spanned by the position eigenstates |n〉 (n ∈ Z)
[19]. The AM is a quantum map with discretized time but it
approaches to the time-continuous Anderson model defined
on the random lattice for W 	 1.

We can regard the harmonic perturbations as the dynamical
degrees of freedom. To show this we introduce the classically
canonical action-angle operators (Ĵ j = −ih̄ ∂ j

∂φ j
, φ j ) represent-

ing the harmonic perturbation as a linear mode (we call it the
“harmonic mode” hereafter) and extend the Hamiltonian (1)
so as to include the harmonic modes,

Haut ( p̂, q̂, {Ĵ j}, {φ̂ j}) = T ( p̂) + V (q̂, φ̂, {φ̂ j})δt +
M∑

j=1

ω j Ĵ j,

(7)

where

V (q̂, {φ̂ j}) = V (q̂)[1 + f ({φ̂ j})],

= V (q̂)

⎡
⎣1 + ε√

M

M∑
j

cos φ j

⎤
⎦. (8)

One can easily check that by Maryland transform the eigen-
value problem of the quantum map system interacting with
M-harmonic modes can be transformed into d (= M + 1)-
dimensional lattice problem with quasiperiodic and/or ran-
dom on-site potentials [4,20] (see Appendix A). In this view,
to increase the number of the harmonic modes is to increase
the dimension of the system, which enables the LDT.

From the dynamical point of view, the harmonic modes
perturbs the main mode to cause the diffusive motion
and induce the LDT. On the other hand, by the backac-
tion of the perturbation to the main mode, the harmonic
mode is excited to propagate along the ladder of ac-
tion eigenstates satisfying Ĵ j |mj〉 = mj h̄|mj〉 (mj ∈ Z). Let
ŷ j = Ĵ j/h̄ = ∑

mi∈Z mi|mi〉〈mi| be the operator indicating
the excitation number in the action space, and then the
Heisenberg equation of motion dŷ j/dt h̄ = (i/h̄2)[Haut, Ĵ j] =
−1/h̄∂V (q̂, {φ j})/∂φ j gives the step-by-step evolution rule
for the Heisenberg operators:

ŷ j (t ) − ŷ j (0) = ε√
M

t∑
s=0

CjĜ(s) sin(ω js + φ j0), (9)

where φ j0 is the initial phase. Here

Ĝ(t ) = 1

h̄
v[q̂(t )] (10)
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and

Cj =
{

1 (for SM)

W (for AM)
. (11)

The potential v[q̂(t )] works as a force inducing a propagation
along the action ladder.

To treat the transport in the main mode of SM and AM in
a unified manner, we define the excitation number operator
in the momentum space x̂ = p̂/h̄ = ∑

P P|Ph̄〉〈Ph̄| (P ∈ Z)
for SM and in the real space x̂ = ∑

n n|n〉〈n| (n ∈ Z) for AM,
where |Ph̄〉 and |n〉 are the momentum and the real position
eigenstates, respectively. Then the step-by-step evolution rule
for the Heisenberg operator is

x̂(t ) − x̂(0) =
t∑

s=0

F̂ (s), (12)

where the force F̂ is

F̂ (t ) =
{

K
h̄ sin q̂(t ) (for SM)

− 2
h̄ sin[ p̂(t )/h̄] (for AM)

. (13)

In the next section, with the basic formal representations pre-
sented above, we first discuss the localization of unperturbed
SM and AM and further the transition to the delocalized states.

III. CRITICAL SUBDIFFUSION OF LDT IN THE
POLYCHROMATICALLY PERTURBED QUANTUM MAPS

In this section we show the results related to the critical
subdiffusion, which is a remarkable feature of the critical
state of the LDT, by organizing the known results reported
in Refs. [3,4] and the new ones.

A. Localization in the unperturbed and monochromatically
perturbed quantum maps (M = 0, 1)

We use an initial quantum state |	(t = 0)〉 and the x
representation 〈x|	(t = 0)〉 = δx,N/2 and characterize quan-
titatively the spread of the wave packet by the mean-square
displacement (MSD),

m2(t ) = 〈	(t = 0)|[x̂(t ) − x̂(0)]2|	(t = 0)〉
≡ 〈[x̂(t ) − x̂(0)]2〉, (14)

where the x̂ is p̂ for SM and the x̂ is q̂ for AM, respectively.
Using Eq. (12), it immediately follows that the MSD is rep-
resented by the summation over the time-dependent diffusion
constant,

D(0)
0 (s : t ) =

t∑
s′=s

〈F̂ (s)F̂ (s′)〉 + c.c., (15)

dependent on both the final step t and the intermediate step
s(� t ) as

m2(t ) =
∑
s�t

D(0)
0 (s : t ). (16)

In the unperturbed 1D quantum maps with ε = 0, the time-
dependent diffusion constant D(0)

0 (s : t ) converges to a pos-
itive finite value in the limit t → ∞, if the step s is small
enough. We denote the limit simply by D(0)

0 hereafter. [More

exactly, D(0)
0 := D(0)

0 (0 : ∞).] But the limit D(0)
0 (s : t = ∞)

in general goes to zero as s exceeds a certain characteristic
time t0. Then the localization length 
0 is estimated as 
2

0 =
m2(∞) ∼ D(0)

0 t0 from Eq. (16). In the localized phase, in
the spatial region of localization length 
0 all the localized
eigenfunctions of number 
0 supported by the region undergo
very strong level repulsion. The interval between the nearest-
neighboring eigenangles should be ∼1/
0, which means that
its inverse (∼
0) characterizes the localization time t0, beyond
which the diffusive behavior is taken the place of by the
oscillatory behavior characterized by the level intervals. Then
the relation means that


2
0 ∼ D(0)

0 
0, (17)

and therefore

D(0)
0 ∼ 
0 ∼ t0. (18)

The localization length as well as the localization time are de-
cided by the initial stage diffusion constant. One can confirm
that the SCT discussed later also supports the above relation
if it is applied to the isolated (i.e., ε = 0) one-dimensional
system. In the case of isolated SM, D(0)

0 equals the classical
chaotic diffusion constant [21]:

D(0)
0 ∼ 
0 ∼ Dcls/h̄2 → K2/h̄2(K2 � 1). (19)

On the other hand, in the case of the isolated AM, the well-
known result 
0 ∼ 1/W 2 for the continuous-time Anderson
model holds [22]. However, this result holds correct only for
W less than the characteristic value decided by

W ∗ ∼ 2π h̄, (20)

beyond which 
0 terminates to decrease and approaches to a
constant ∼1/W ∗2 [4]. This is a remarkable feature of the AM
different from the continuous-time Anderson model. Then, we
have

D(0)
0 ∼ 
0 ∼

{
1/W 2 (W 	 W ∗)

1/W ∗2 (W � W ∗)
. (21)

A basic hypothesis assumed here is that the temporal lo-
calization process of isolated system starts with a transient
diffusion process with the diffusion constant D(0)

0 . As will
be discussed later this hypothesis does not work in a certain
case of AM, but we first use this hypothesis in the next
section. As is shown in Appendix A, the eigenvalue problem
of our systems, which are represented as M + 1 degrees of
freedom system in the extended scheme of Eq. (7), is formally
transformed into d (= M + 1)-dimensional lattice problem
with quasiperiodic and/or random on-site potentials by the
so-called Maryland transform. As demonstrated in Ref. [3]
the delocalization transition does not occur for M = 1, i.e.,
for the effective dimension d = 2, although the localization
length grows exponentially as 
0 ∝ econstε . We thus consider
the case M(= d − 1) � 2, for which the LDT may take place
according to the ordinary scenario of Anderson transition.

B. M dependence of subdiffusion in SM and AM (M � 2)

As partially shown in Ref. [4], the perturbation strength ε

exceeds the critical value εc and the LDT occurs if M � 2. In
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FIG. 1. The double-logarithmic plots of (a) m2(t ) and (b) the scaled �(ε, t ) as a function of time for some values of the perturbation
strength ε increasing from ε = 0.005 (bottom) to ε = 0.080 (top), where the diffusion exponent α is determined by the least-squares fit for
the m2(t ) with the critical case, in the polychromatically perturbed SM of M = 3 with K = 3.1, h̄ = 2π × 311/213(≡ h̄0) in order to satisfy
the periodic boundary conditions imposed on the momentum and the coordinate spaces. (c) The same m2(t ) and (d) the scaled �(ε, t ) for
some values of ε increasing from ε = 0.0002 (bottom) to ε = 0.0220 (top) in the polychromatically perturbed SM of M = 7. In the case
of M = 3, εSM

c � 0.0086, m2 ∼ tα , with α � 0.46. In the case of M = 7, εSM
c � 0.0029, m2 ∼ tα with α � 0.25. The data near the critical

value εc are shown in bold black lines. The blue dashed curves show the results for ε < εc in the panels. In the following we representation
h̄ = h̄0, 2h̄0, 3h̄0, . . . as an unit h̄0.

the LDT an anomalous diffusion

m2 ∼ tα (0 < α < 1), (22)

with the characteristic exponent α is observed at the critical
perturbation strength ε = εc.

The presence of subdiffusion is confirmed in the pre-
liminary Ref. [4], and a more detailed study of the critical
subdiffusion for control parameters covering a much wider
regime is executed. It is convenient to define the scaled MSD
�(t ) divided by the critical subdiffusive factor in order to
investigate the critical behavior close to LDT:

�(t ) = m2(t )

tα
. (23)

This scaled MSD is also used in finite-time scaling to deter-
mine the critical exponent of LDT (see Appendix C).

We first show the case of SM. Figures 1(a) and 1(c) show
the time dependence of MSD m2(t ) in the cases of M = 3
and M = 7, respectively, for various values of ε increasing
across the critical value εc. Figures 1(b) and 1(d) show the
scaled MSD �(t ) corresponding to Figs. 1(a) and 1(c). It
can be seen that a transition from the localized state to the
delocalized state occurs going through a stable subdiffusion
state as ε increases. The scaled MSD �(t ) also shows a
very characteristic holding-fan pattern whose behavior leads
to a remarkable scaled behavior with respect to the critical
parameter |ε − εc|.

Figure 2(a) shows the critical subdiffusions at the critical
point ε = εc when the color number M is changed. It is
evident that the diffusion index α at the critical point εc

decreases as M increases, and the numerical results tell that
it can be approximated very well by the rule

α � 2

M + 1
, (24)

regardless of the values of the control parameters such as
K and h̄. The result is also consistent with the well-known
guess based on the one-parameter scaling theory (OPST) of

the localization, which are summarized in Appendix B. The
critical value εc decreases with M as well as α, which will be
discussed in detail in next section.

Next we show the corresponding observations for AM.
Figure 3 shows the dynamic behavior of AM near the LDT.
According to Eq. (21), the disorder strength W of AM has
the characteristic value W ∗ beyond which localization char-
acteristics change. At fixed M = 3, the time dependence of
m2(t ) and �(t ) for W = 0.5 (<W ∗) and W = 2.0 (>W ∗) are
shown in Figs. 3(a)–3(d), respectively, for various values of ε

increased across the critical value ε = εc of LDT. It follows
that the LDT occurs regardless of the value of W . The result
for M = 7 is also displayed in Figs. 3(e) and 3(f). As with
the SM, we can see the existence of the LDT and the critical
subdiffusion with increasing ε. The critical subdiffusion index
α of AM also obeys the “universal rule” [Eq. (24)] and
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FIG. 2. The double-logarithmic plots of m2(t ) as a function of
time near the critical pints εc in (a) the polychromatically perturbed
SM (M = 2, 3, 5, 7 from top) with K = 3.1, h̄ = h̄0, and (b) AM
(M = 2, 3, 5, 7 from top) with W = 2.0. In the perturbed SM and
AM, the system and ensemble sizes are N = 215 ∼ 217 and ∼10–100,
respectively, throughout this paper.
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FIG. 3. The double-logarithmic plots of (a) m2(t ) and (b) the scaled �(ε, t ) as a function of time for some values of the perturbation
strength ε increasing from ε = 0.007 (bottom) to ε = 0.060 (top), where the diffusion exponent α is determined by the least-squares fit
for the m2(t ) with the critical case in the trichromatically perturbed AM of M = 3 with W = 0.5. (c) The same m2(t ) and (d) the scaled
�(ε, t ) for some values of ε increasing from ε = 0.006 (bottom) to ε = 0.0160 (top) in the trichromatically perturbed AM of M = 3 with
W = 2.0. (e) The same m2(t ) and (f) the scaled �(ε, t ) for some values of ε increasing from ε = 0.0016 (bottom) to ε = 0.0045 (top) in the
trichromatically perturbed AM of M = 7 with W = 2.0. In the case M = 3 with W = 0.5, εAM

c � 0.038, α � 0.5. In the case M = 3 with
W = 2.0, εAM

c � 0.011, α � 0.5. In the case M = 7 with W = 2.0, εAM
c � 0.0034, α � 0.25. We take h̄ = 0.125 as the Planck constant for the

perturbed AM. Using h̄ = 1 commonly used does not qualitatively affect our numerical results. The data near the critical value εc are shown
in bold black lines. The blue dashed curves show the results for ε < εc in the panels.

moreover the critical value εc depends on M in the same way
as the SM. However, the dependence of εc on the randomness
parameter W changes at W = W ∗. These properties will be
discussed later in detail.

In the following, the characteristics of LDT are studied
changing the values of control parameters in a wide range. In
SM, we study the change in critical behavior for parameter
K that controls classical chaos, and Planck constant h̄ that
controls quantum property, whereas AM uses parameter W
that controls randomness. In AM, the size of h̄ is kept at O(1).
The parameters K , h̄, and W are important because they decide
the localization length 
0 by Eqs. (19) and (21).

However, in the present study the dependency of LDT on
the number of the harmonic degrees of freedom M is of partic-
ular interest. Indeed, the change of M is reflected significantly
in the characteristics of critical subdiffusion index by Eq. (24),
which should also be reflected in εc.

We are also interested in critical exponents characterizing
the divergence of localization length close to the critical
point, but it has been discussed in Ref. [4]. Some extensive
arguments for this topic are presented in Appendix C.

IV. CRITICAL COUPLING STRENGTH OF LDT IN THE
POLYCHROMATICALLY PERTURBED QUANTUM MAPS

We focus our attention to the critical value εc of LDT,
which is investigated numerically and compared with theo-
retical prediction based on the SCT. This is the main part of
the present paper.

A. A prediction based on self-consistent theory

The critical perturbation strength εc is a quite important pa-
rameter featuring the LDT. The one-parameter scaling theory,
which is very powerful for the prediction of critical exponents,
is not applicable to evaluate the critical point. We use here the
SCT for predicting the characteristics of εc.

Let j = 0 be assigned to the main degrees of freedom of
SM and AM and j = 1, . . . , M to the M harmonic modes. We
regard our systems as (M + 1) degrees of freedom according
to Eqs. (A4) and (A8), which can be identified with a d (=
M + 1)-dimensional lattice with random and/or quasiperiodic
on-site potential as is shown in Appendix A. Then we can
apply the scheme of SCT for the d-dimensional disordered
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lattice system to our system. Let the frequency-dependent
diffusion constant of the j mode be Dj (ω). The ratio of Dj (ω)
to the bare diffusion constant D(0)

j is reduced from 1 by the
correction due to the coherent backward scattering, satisfying
the relation

Dj (ω)

D(0)
j

= 1 − C
Dj (ω)

D(0)
j

∫ qc
0

· · ·
∫ qc

d−1
d−1∏
k=0

dqk

× 1

−iω + ∑d−1
k=0 Dk (ω)q2

k

, (25)

where C is a constant value independent of the parameters.
Note that the integral over qk has a cutoff qc

k , which plays a
crucial role [4]. If we set

Dj (ω)

−iω
= ξ j (ω)2, (26)

then limω→0 ξ j (ω) = 
 j becomes the localization length. In
the limit of ε = 0, the propagation along the mode j termi-
nates at the localization length 
 j . We suppose that the inverse
of 
 j decides the cut-off wave number qc

k , i.e.,

qc
j ∼ 
−1

j , (27)

which correctly predicts numerical results of the localization
process in the case of M � 2 [4]. As the localization length
of the main mode j = 0 we take 
0 of Eqs. (19) and (21), and
then Eq. (18) holds and 
0 = D(0)

0 . The diffusion along the
harmonic mode j occurs according to Eq. (9), being driven by
the force Ĝ(t ). Similarly to Eq. (16), the MSD of the harmonic
mode j grows as

〈[ŷ(t ) − ŷ(0)]2〉 =
∑
s�t

D(0)
j (s : t ), (28)

where

D(0)
j (s : t ) = C2

j

ε2

2M

t∑
s′=s

〈Ĝ(s′)Ĝ(s)〉 cos[ω j (s
′ − s)] + c.c.,

(29)

where the average over the initial phase φ j0 is done.
In the case of SM, the force driving the diffusion of the

main mode F̂ (t ) ∝ sin q̂ [Eq. (16)] has the same correla-
tion property as that of the harmonic mode Ĝ(t ) ∝ cos q̂.
For AM, we also use the same assumption that the driving
force for the harmonic mode (Ĝ(t ) = ∑

n vn|n〉〈n|/h̄ [|vn| ∼
O(1)]) and that for the main mode [F̂ (t ) = 2 sin( p̂/h̄)/h̄ =∑

n(|n〉〈n + 1| − |n + 1〉〈n|)/(ih̄)] has the same correlation
property. Then, following the idea of deriving Eq. (17), the
diffusion of the harmonic mode terminates at the localization
time t0 = 
0 of the main mode and so the localization length
of the mode j is


2
j = D(0)

j 
0 (30)

by using the initial stage diffusion constant D(0)
j := D(0)

j (s =
0, t = ∞) of the j mode. Let us define κ j (ω) := ξ j (ω)


 j
, which

is the ratio of the enhanced localization length to the localiza-
tion length. Then in the self-consistent equation (25) the only
j-dependent parameter is Dj (ω)/D(0)

j , which is rewritten by

using Eqs. (25) and (30) as

Dj (ω)

D(0)
j

= −iωκ j (ω)2
0.

In order that all the equations for j = 0, 1, . . . , d − 2, d −
1(= M ) in Eq. (25) are consistent, κ j (ω) should be equal and
independent of j. By rescaling q′

k = qkξk (ω), the integral of
Eq. (25) can be approximated as the d-dimensional spherical
integral over the radius κk = κ0. If κ (ω) is much greater
than unity assuming that ε is close to the critical point, then
Eq. (25) is integrated as

Dj (ω)

D(0)
j

= 1 − CSd

(d − 2)
∏d−1

k=1 
k

, (31)

where Sd denotes the surface area of the (d + 1)-dimensional
sphere of radius unity:

Sd = 2πd/2

�
(

d
2

) . (32)

According to Eq. (28) the diffusion constant D(0)
j of the

j( �= 0) mode is the product of the factor ε2

2M C2
j and the time

integral of the correlation function of Ĝ, which is the same
as that of the driving force F̂ of the main mode, as discussed
above. Therefore, the diffusion constant of the j( �= 0) mode
is related to that of the main mode as

D(0)
j = ε2

2M
C2

j D(0)
0 . (33)

Note that D(0)
0 is the diffusion constant of isolated main mode

independent of ε and M.
The critical coupling strength εc which makes the left-hand

side of Eq. (31) zero is given as the condition for the harmonic
mode j �= 0 as follows:


 j =
[

CSM+1

(M − 1)

]1/M

. (34)

From Eqs. (30) and (33) 
 j is proportional to ε
0, and the
critical coupling strength is

εc = cM


0Cj
, (35)

where the parameter M is contained in cM = [CSM+1/(M −
1)]1/M

√
2M. If M � 1, then the factor 1/

√
M in cM cancels

with M1/2 coming from the (M + 1)-dimensional spherical
surface area SM , and the εc converges to a finite value.
Finiteness of the critical value in the limit of d � 1 is not
changed by a modified SCT approach [23]. This prediction
will be compared with the numerical results.

In the case of SM the critical coupling strength is given
from Eq. (19):

εSM
c ∼ 1/
0 ∼ h̄2/Dcls ∼

(
K

h̄

)−2

(K � 1), (36)

whereas, in the case of AM, following Eq. (21), the critical
value changes its dependency on W at W = W ∗:

εAM
c ∼ 1/(
0Cj ) ∼

{
W (W < W ∗)
W ∗2

W (W > W ∗)
. (37)

032210-6



CRITICAL PHENOMENA OF DYNAMICAL DELOCALIZATION … PHYSICAL REVIEW E 101, 032210 (2020)

0.001

0.01

0.1

ε cS
M

0.1 1h

 M=2
 M=3
 M=5
 M=7

 

(a)  slope 2

0.01

0.1

ε cS
M

10K

 M=2, h 0 
 M=5, h 0 
 M=7, h 0
 M=2, h 0/2

 

(b)

 slope -2

FIG. 4. (a) The critical perturbation strength εSM
c as a function

of h̄ for the polychromatically perturbed SM (M = 2, 3, 5) with
K = 3.1. (b) The critical perturbation strength εSM

c as a function of
K for the polychromatically perturbed SM (M = 2, 5, 7) with h̄ =
2π311/213, and M = 2, h̄ = 2π311/214. εSM

c ∝ h̄−2 and εSM
c ∝ K2

are shown in black broken lines in panels (a) and (b), respectively.
Note that the axes are in the logarithmic scale.

All the above results are the predictions of the SCT.

B. Numerical characteristics of the critical
value for fixed color number

We summarize in this section the results obtained by
numerical simulations and compare them with the predictions
of the SCT. The dependency of εc on the control parameters
except for M is discussed in this section.

1. The SM

We first show the critical coupling strength εSM
c for SM.

Figure 4(a) depicts h̄ dependence of εSM
c . Irrespective of the

color number M and K , the critical strength follows evidently
the rule εSM

c ∝ h̄2.

εSM
c ∼

(
K

h̄

)−2

. (38)

On the other hand, Fig. 4(b) shows the dependence on K with
M and h̄ being fixed. It is strongly suggested that for K � 1
the critical coupling strength obeys the rule εSM

c ∝ K−2 for the
fixed parameters M and h̄ whose values are changed over a
wide range. Thus we may conclude that the result of the SCT
(36) can describe the characteristics of the critical coupling
strength as long as two parameters K and h̄ are concerned.

In the case of M � 1 where the system is localized and
there is no LTD, the characteristics of localization is decided
by K2/h̄2, which just means the localization length. It is quite
reasonable that the threshold of LDT is decided as 1/
0.

In the SCT we suppose a cut-off wave number qc ∼ 1/
 j .
An another hypothesis is to take the inverse of the mean
free path qc ∼ h̄/K [24]. This choice, however, results in the
prediction εSM

c ∝ K/h̄ for M � 1, which contradicts with the
numerical results.

2. The AM

In the case of AM, the critical value εAM
c depends on W as

shown by Fig. 5(a) for various values of M. The dependence

0.01

0.1

ε cA
M

0.1 1W

Localization

Delocalization

W*

slope -1
M=3

M=4

M=2

M=5

FIG. 5. The critical perturbation strength εAM
c as a function of

W for the polychromatically perturbed AM (M = 2, 3, 4, 5). εAM
c ∝

W −1 and W = W ∗ are shown in by dotted black and thick black lines,
respectively. Note that the axes are in the logarithmic scale.

of εAM
c on W changes at W = W ∗, which is consistent with the

prediction of the SCT given by Eq. (37). In particular in the
regime W > W ∗ it is evident that the numerical result follows
the result of SCT,

εAM
c ∼ 1

W
(W > W ∗). (39)

On the contrary, in the opposite regime W < W ∗ the nu-
merical results strongly suggest that

εAM
c � const (W < W ∗), (40)

which do not agree with the prediction of the SCT. Such a
tendency persists as W decreases further, and it seems that
εAM

c approaches a constant depending on M as W → 0.

3. More about AM: The ballistic transient

The reason the prediction of SCT fails for the AM is tightly
connected with a peculiar characteristic of the dynamics in the
weak W limit of AM. The basic hypothesis used for deriving
Eq. (40) is the the motion of the main mode transiently
exhibits the fully normal diffusion and the harmonic mode
follow the same transient diffusion process. This hypothesis
is not, however, correct in the weak limit of W , because
a ballistic motion dominate the transient behavior until the
scattering occurs at the mean-free-path length 
0 and makes
the motion stochastic. Indeed, in Fig. 6 we can show explic-
itly how the critical subdiffusion emerges after the ballistic
transient behavior.

Let us consider the motion of the harmonic mode when
the main mode visits lattice site in a ballistic way until the
scattering at the mean free path 
0 happens. The position of
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FIG. 6. The double-logarithmic plots of m2(t ) exhibiting the critical subdiffusion at εAM
c are shown for (a) M = 2 and (b) M = 4. Various

values of W in the regimes W < W ∗ and W > W ∗ are examined. In the regime W > W ∗ all the curves overlap. But, as W → 0, εAM
c takes

the same value and the ballistic transient motion of slope 2 become more evident. One can see that in the opposite case W � W ∗ the normal
diffusion of slope 1 first emerges before the subdiffusion sets in.

the harmonic mode occurs as

ŷ j (t ) =
∑
s<t

G j (s)

=
∑
s<t

(∑
n

εW√
M

vn|n〉〈n|
)

sin ω j s. (41)

This equation tells that the particle moving at the velocity
VB among the lattice sites |n〉 causes a randomly switching
source proportional to W vn, which leads to diffusion of the j
oscillator. Then the diffusive motion is expressed by the MSD

〈[ŷ j (t ) − ŷ j (0)]2〉 = ε2W 2

M
VBt, (42)

and so the diffusion constant D(0)
j = ε2W 2

M VB. This motion,
however, terminates the main-mode reaches 
0 at the time
t0 = 
0/VB, and 
 j should be


 j =
√

D(0)
j t0 = ε

√
W 2
0√
M

. (43)

It is independent of W , since 
0 ∼ W −2. Substituting Eq. (43)
into Eq. (34), the critical perturbation strength does no longer
depends on W , which is consistent with the numerical com-
putation. In the case of SM, we considered an ideal regime
such that the diffusion process in the classical limit is observed
without the coherent dynamical process corresponding to the
ballistic motion of AM. However, even in the case of SM,
if the coherent motion is significant in the classical chaotic
diffusion, we need a modification presented above.

C. M dependence of the critical value εc

In the previous subsection the SCT works well for pre-
dicting the characteristics of the critical coupling strength
εc except for the M dependence. However, as is seen in

Figs. 4 and 5, εc definitely decreases with increase in M and
contradicts the prediction of the SCT.

With other control parameters such as K and h̄ for SM and
W for AM being fixed, all the numerical results are well fitted
by the empirical rule for both SM and AM:

εc ∝ 1

(M − 1)
, (44)

as demonstrated in Fig. 7. Note that divergence at M = 1
agrees with the absence of LDT in monochromatically per-
turbed SM and AM. (The log-log plot of εc vs. M does not
form fine straight curves like those displayed in Fig. 7.) The
approach of ε to zero for M → ∞ means that the localization
is destroyed to turn into a normal diffusion by the noise with
an arbitrary small amplitude.

Having the rule of Eq. (44) in mind, we reorganize our
numerical results by plotting (M − 1)εc vs. other parameters.
We replot the data in Figs. 4(a) and 4(b) by assigning the
vertical axis to εc(M − 1) and the horizontal axis to K/h̄. All
the data points are on a unified single master curve, which
implies the rule

εSM
c ∝ K2

h̄2(M − 1)
(45)

exists. A slight discrepancy exists between upper side data
and the lower side data. Its origin will be the fact that the
data of the upper side belongs to smaller K regime for which
significant deviation from the relation 
0 ∝ K2/h̄2 occurs (see
the caption to Fig. 8).

The same plot for the AM on the ((M − 1)ε,W ) plane is
shown in Fig. 9, which manifests that almost all the data are
on a single master curve irrespective of W < W ∗ or W > W ∗,
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FIG. 7. (a) The critical perturbation strength εSM
c as a function of (M − 1) for the perturbed SM with K = 3.1 and K = 5. h̄ = h̄0, h̄ = 2h̄0,

or h̄ = 4h̄0. (b) The critical perturbation strength εAM
c as a function of (M − 1) for the perturbed AM with W = 0.5, 0.8, 2.0. Note that the

axes are in the logarithmic scale. The line with slope −1 is shown as a reference.

which implies the rule

εAM
c ∝

⎧⎨
⎩

1
M−1 (W < W ∗)

1
W (M−1) (W > W ∗)

. (46)

0.01

0.1

1

(M
-1

)ε
cS

M

1 10
K/h 

Localization

Delocalization

 slope -2 

FIG. 8. The phase diagrams and the critical values (M − 1)εSM
C

in the plane ((M − 1)ε, K/h̄) for the SM. Data with various values of
M, K , and h̄ are plotted. The data plotted by empty circles, squares,
and crosses, which are on a common line in the lower side, are the
data in Fig. 4(a). They have the same K = 3.1, which is not K � 1,
and so the common line slightly shifts from the curves of other data.
The line with slope −2 is shown as a reference.

The behavior of the subdiffusion index α = 2/(M + 1), which
cannot be explained by SCT of the localization, seems to
coordinate with the approach of εc to 0 with increasing M.
The SCT overestimates εc. Indeed, the second term in the
right-hand side of Eq. (25), which evaluates the reduction
of the diffusion constant from the ideal diffusion rate by
the backscattering effect, seems to overestimated. Roughly
speaking, this integral yields the surface area SM+1 ∼ M−M/2,
which cancels with the normalization factor 1/

√
M and takes

off the M dependence from εc. If the surface factor is replaced

0.01

0.1

 (
M

-1
)ε

cA
M

0.1 1W

W*

 M=2
 M=3
 M=4 
 M=5

 
 

 Delocalization 

Localization 

FIG. 9. The phase diagrams in a plane ((M − 1)ε,W ) for
the polychromatically perturbed AM (M = 2, 3, 4, 5). W = W ∗ is
shown by dotted black line. Note that the axes are in the real scale.

032210-9



HIROAKI S. YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 101, 032210 (2020)

by a further smaller one,

S′
M = 1

M!
SM , (47)

then the SCT succeeds in predicting all the characteristics of
the critical coupling strength. This replacement means that the
M-harmonic degrees of freedom is indistinguishable, but we
could not explain the origin of the above reduction.

V. SUMMARY AND DISCUSSION

We investigated the LDT of the SM and the AM, which are
dynamically perturbed by polychromatically periodic oscilla-
tions for the initially localized quantum wave packet.

In the SM and AM, for number of colors M more than two,
the LDT always takes place with an increase in the perturba-
tion strength ε, and the critical exponents at the critical point
decrease with M. In particular, the critical diffusion exponent
decreases as α � 2/(M + 1) in accordance with the predic-
tion of OPST. In the present paper, we paid particular attention
to the dependence of the critical perturbation strength εc on the
control parameters. If the number of color M is fixed, then the
control parameter dependencies are well predicted by the SCT
of the localization for both SM and AM if basic hypothesis are
properly modified. On the other hand, the SCT predicts that εc

does not depend on M, while numerical results reveal that εc

reduces drastically as εc ∝ 1/(M − 1) with an increase of M.
The LDT leading to the normal diffusion is a decoherence

transition, which is basically originated by the entanglement
among wave functions spanning the (M + 1)-dimensional
Hilbert space. Such an entanglement induces the drastic de-
crease of α and εc with increase of M. If M + 1 can be
identified with the spatial dimension d , as is suggested by
the Maryland transform, then can we expect such a steep
dependence of critical properties on d for Anderson transition
in d-dimensional disordered lattice? This is a quite interesting
question [25].

Due to such a decrease of threshold εc, the polychromic
perturbation is identified with a white noise in the limit M →
∞, and it can destroy the localization at an arbitrary small
amplitude.

It is also a quite interesting problem how such character-
istic critical behaviors are observed for the dynamical delo-
calization of the time-continuous system [16], which shares
much common nature with the present AM in the limit W →
0. In particular, whether the limiting behavior εc → const
in the regime of W 	 1 is intrinsic and is not due to the
discreteness of time evolution is an important problem [26].
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APPENDIX A: MARYLAND TRANSFORM AND
TIGHT-BINDING REPRESENTATION

We consider an eigenvalue equation

Ûaut|u〉 = e−iγ |u〉 (A1)

for the time-evolution operator of the Hamiltonian (7),

Ûaut = e−iÂe−iB̂e−iĈ, (A2)

where γ and |u〉 are the quasieigenvalue and quasieigenstate.
For the SM,

e−iÂ = e− i
h̄ [T ( p̂)+∑M

j ω j Ĵ j ],

e−iB̂ = e− i
h̄

εV̂ (q)√
M

∑M
j cos φ j ,

e−iĈ = e− i
h̄ V (q̂).

(A3)

For the eigenvalue equation we take the representation using
eigenstate |m〉(m ∈ Z) of momentum p̂ and the action eigen-
state {|m1〉, . . . , |mM〉}(mi ∈ Z) of the M number of J oscilla-
tors as u(m, m1, . . . , mM ) = (〈m| ⊗ 〈m1, . . . , mM |)|u〉. Then
by applying the Maryland transform, the eigenvalue equation
can be mapped into the following (M + 1)-dimensional tight-
binding system with aperiodic and singular on-site potential:

tan

[
h̄2m2/2 + h̄

∑M
j mjω j

2h̄
− γ

2

]
u(m, m1, . . . , mM ) +

∑
m′,m′

1,...,m
′
M

〈m, m1, . . . , mM |t̂SM|m′, m′
1, . . . , m′

M〉u(m′, m′
1, . . . , m′

M ) = 0,

(A4)

where the transfer matrix element is

〈m, m1, . . . , mM |t̂SM|m′, m′
1, . . . , m′

M〉

= 1

(2π )M+1

∫ 2π

0
· · ·

∫ 2π

0
dqdφ1 . . . dφMe−i(m−m′ )qei

∑M
j (mj−m′

j )φ j tan

[
K cos q

(
1 + ε√

M

∑M
j cos φ j

)
2h̄

]
. (A5)

On the other hand, for the polychromatically perturbed AM, using

e−iÂ = e− i
h̄ (W v(q̂)+∑M

j ωi Ĵ j ),

e−iB̂ = e− i
h̄ v(q̂) εW√

M

∑M
j cos φ j ,

e−iĈ = e− i
h̄ 2 cos( p̂/h̄),

(A6)
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we can also obtain the following (M + 1)-dimensional tight-binding expression:

tan

[
W vn + h̄

∑M
j mjω j

2h̄
− γ

2

]
u(n, m1, . . . , mM ) +

∑
n′,m′

1,...,m
′
M

〈n, m1, . . . , mM |t̂AM|n′, m′
1, . . . , m′

M〉u(n′, m′
1, . . . . , m′

M ) = 0, (A7)

where the transfer matrix element is

〈n, m1, . . . , mM |t̂AM|n′, m′
1, . . . , m′

M〉 = 〈n, m1, . . . , mM | i
e−i εW√

M
vn (

∑M
i cos φi )/h̄ − ei2 cos( p̂/h̄)/h̄

e−i εW√
M

vn (
∑M

i cos φi )/h̄ + ei2 cos( p̂/h̄)/h̄
| n′, m′

1, . . . , m′
M〉. (A8)

The n denotes one-dimensional disorder site of the AM. In
this representation, the effect of the disorder strength W of the
diagonal term saturates at W ∗(= 2π h̄) and increasing beyond
W ∗ does not affect the diagonal disorder. Also, it can be
seen that the effect of the perturbation is embedded in the
off-diagonal term representing hopping in the form of εW
for W > W ∗. For this reason, the critical perturbation strength
indicates the W dependence in Eq. (39) when W > W ∗.

It follows that the (M + 1)-dimensional tight-binding mod-
els of the SM and AM have singularity of the on-site energy
caused by tangent function and long-range hopping caused
by kick. However, in the case of ε �= 0, the evaluation of
matrix elements is not easy since the stochastic quantity vn

is contained in addition to both operators q̂ and p̂.

APPENDIX B: ONE-PARAMETER SCALING THEORY
AND DIFFUSION EXPONENT

In the long-time limit (t → ∞), we can predict asymptotic
behavior of MSD as

m2(t ) ∼
{
ξ 2 (ε < εc)
Dt (ε > εc)

, (B1)

for the localized (ε < εc) and delocalized regime (ε > εc),
respectively. Here D and ξ denote the diffusion coefficient
and localization length, respectively. In the vicinity of LDT
ε � εc, with two critical exponents ν and s, we assume

D ∼ (ε − εc)s (ε > εc),

ξ ∼ (εc − ε)−ν (ε < εc, ).
(B2)

The exponents satisfy Wegner relation

s = (d − 2)ν, (B3)

where d is spatial dimension [27].
We can use the following scaling hypothesis:

m2(t ) = a2F1(Lt/a, ξ/a), (B4)

with two-variable scaling function F1(x1, x2). Here an unique
characteristic length Lt associated with dynamics as

Lt ∼ tσ , (B5)

where σ is a dynamical exponent. If we set a = ξ , then m2

scales like

m2(t ) = ξ 2F1(tσ /ξ, 1), (B6)

= t2σ F2[tσ/ν (ε − εc)], (B7)

where F2(x) is a one-variable scaling function. A relation

2σ + σ s

ν
= 1, (B8)

must be satisfied to recover the condition (B2). Using Wegner
relation it follows that

σ = 1

d
. (B9)

Therefore, at the critical point ε = εc of LDT, the MSD shows
subdiffusion

m2(t ) ∼ tα (B10)
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FIG. 10. The results of the critical scaling analysis for trichro-
matically perturbed SM (M = 3) with K = 3.1 and h̄ = h̄0. (a) The
scaled variable �s(ε, t ) as a function of x = |εSM

c − ε|tα/2ν . The
results for some values of ε in the Fig. 1(b) are plotted in the
figure. The delocalized(localized) regime is upper(lower) branch.
(b) The scaled MSD �s(ε, t ) with α � 0.46 as a function of ε for
some pick-up times. The crossing point is εSM

c � 0.13. (c) C1(t ) as
a function of t . The critical exponent ν � 0.95 is determined by a
scaling relation Eq. (C6) by the least-squares fit.
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FIG. 11. The results of the critical scaling analysis for polychro-
matically perturbed SM (M = 7) with K = 3.1 and h̄ = h̄0. (a) The
scaled variable �s(ε, t ) as a function of x = |εSM

c − ε|tα/2ν . The
results for some values of ε in the Fig. 1(d) are plotted in the figure.
The delocalized (localized) regime is upper (lower) branch. (b) The
scaled MSD �s(ε, t ) with α � 0.25 as a function of ε for some
pick up time tm. The crossing point is εSM

c � 0.018. (c) C1(t ) as
a function of t . The critical exponent ν � 0.35 is determined by a
scaling relation Eq. (C6) by the least-squares fit.

with the diffusion exponent

α = 2

d
= 2

M + 1
. (B11)

APPENDIX C: CRITICAL LOCALIZATION EXPONENTS
OF LDT IN THE POLYCHROMATICALLY

PERTURBED QUANTUM MAPS

In this Appendix, the finite-time scaling analysis of the
LDT by using MSD m2(t ) and the M dependence of the
critical exponent in the perturbed SM and AM are shown.
Numerically, it is more important to remove the fluctuation
by the ensemble average over initial condition for SM and
over the sample average of the random potential for AM than
the system size. However, note that pursuing ν by numerical
calculations with high accuracy is not the purpose of this
paper.

First, let us consider the following quantity:

�s(ε, t ) = �(ε, t )

�(εc, t )
− 1 (C1)

as a scaling variable. For ε > εc, the �s increases and the
wave packet delocalizes with time. On the contrary, for ε <

εc, �s decreases with time and the wave packet turns to the
localization. Around the LDT point of the perturbed cases by
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FIG. 12. The results of the critical scaling analysis for dichro-
matically perturbed AM (M = 2) with W = 2.0 (>W ∗). (a) The
same scaled MSD �s(ε, t ) as a function of x = ξ0|εAM

c − ε|−νtα/2ν ,
where ξ0 is the localization length in the unperturbed case. The
results for some values of ε in the Fig. 3(d) are plotted in the figure.
The delocalized (localized) regime is upper (lower) branch. (b) The
scaled �s(ε, t ) with α = 0.65 as a function of ε for some pick-up
times. The crossing point is εAM

c � 0.0225. (c) s(t ) as a function of
t . The critical exponent ν � 1.48 is determined by a scaling relation
Eq. (C8) by the least-squares fit.

M modes, the localization length ξ is supposed to diverge

ξ ∼ |εc − ε|−ν (C2)

as ε → εc for the localized regime ε � εc. ν of LDT is the
critical localization exponent characterizing divergence of the
localization length and depends on the number of modes M,
but after that, the subscript M is abbreviated for simplicity of
the notation.

For �s(t ), it is assumed that in the vicinity of this LDT
OPST is established as the parameter is the localization length
ξ (ε). Then �s(t ) can be expressed as

�s(ε, t ) = F (x), (C3)

where

x = (εc − ε)tα/2ν . (C4)

F (x) is a differentiable scaling function and α is the diffusion
index. Therefore, F (x) is expand around the critical point as
follows:

F (x) = F (0) + C1(t )(εc − ε) + C2(t )(εc − ε)2 + . . . , (C5)

and

C1(t ) ∝ tα/2ν . (C6)
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FIG. 13. The results of the critical scaling analysis for trichro-
matically perturbed AM (M = 3) with W = 0.5(<W ∗). (a) The same
scaled MSD �s(ε, t ) as a function of x = ξ0|εAM

c − ε|−νtα/2ν , where
ξ0 is the localization length in the unperturbed case. The results
for some values of ε in the Fig. 3(b) are plotted in the figure.
The delocalized (localized) regime is upper (lower) branch. (b) The
scaled MSD �s(ε, t ) with α = 0.51 as a function of ε for some
pick-up times. The crossing point is εAM

c � 0.036. (c) s(t ) as a
function of t . The critical exponent ν � 1.18 is determined by the
least-squares fit of (b).

As a result, the critical exponent ν of LDT can be determined
using data obtained by numerical calculation and the above
relation. If we use the ν and α, we can ride �s for various ε

on a smooth function by shifting the time axis to x. This is
consistent with formation of the scaling hypothesis.

Figure 10 shows the scaling curve constructed by the
time-dependent data at various ε near εc in SM of M = 3
with K = 3.1, h̄ = h̄0. Figure 10(b) is a plot of �s(ε, t ) as
a function of ε at several times t , and this crosses at the
critical point εc. Also, Fig. 10(c) shows C1(t ) as a function
of t , and the critical exponent ν is determined by best fitting
the slope, and the scaling curve F (x) is displayed in 10(a)
using the critical values. It is well scaled and demonstrates the
validity of OPST. Further, Fig. 11 displays the result of the
finite-time scaling analysis for polychromatically perturbed
SM (M = 7) with K = 3.1 and h̄ = h̄0. For any number of
colors M, the LDT is well scaled against perturbation strength
changes, suggesting that LDT can be described fairly well
within the OPST framework.

In Fig. 12, we show result of finite-time scaling analysis
for AM of M = 2 with W = 2.0(>W ∗). The method used
here is the same as that used in Ref. [4] for AM of M = 5
with W = 0.5(<W ∗). We choose the following quantity as a
scaling variable:

�s(ε, t ) = log �(ε, t ). (C7)
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FIG. 14. The results of the critical scaling analysis for polychro-
matically perturbed AM (M = 7) with W = 2.0(>W ∗). (a) The same
scaled MSD �s(ε, t ) as a function of x = ξ0|εAM

c − ε|−νtα/2ν , where
ξ0 is the localization length in the unperturbed case. The results for
some values of ε in Fig. 3(f) are plotted in the figure. The delocalized
(localized) regime is upper (lower) branch. (b) The scaled MSD
�s(ε, t ) with α = 0.25 as a function of ε for some pick-up times.
The crossing point is εAM

c � 0.0034. (c) s(t ) as a function of t . The
critical exponent ν � 0.49 is determined by the least-squares fit of
(b).

Figure 12(b) shows a plot of �s(t ) as a function of ε at
several times t , and it can be seen that this intersects at the
critical point εc. In addition, Fig. 12(c) shows a plot of

s(t ) = �s(ε, t ) − �s(εc, t )

|εc − ε| ∝ tα/2ν (C8)

as a function of t , and the critical localization exponent ν is
determined by best fitting this slope. In Fig. 12(a), we plot
�s as a function of x for different values of ε by using the
obtained the critical exponent ν. Similar results to case in
Ref. [4] is obtained.

Further, Figs. 13 and 14 display the results of the finite-
time critical scaling analysis for trichromatically perturbed
AM of M = 3 with W = 0.5 (<W ∗) and AM (M = 7) with
W = 2.0 (>W ∗), respectively. As a result, even in the AM,
the OPST is well established for the LDT regardless of
the number of colors M and the disorder strength W . The
localization critical exponent ν obtained is almost similar if
M is the same. The result strongly suggests that the LDT is a
universal transition phenomenon.

For M = 2 to M = 7, in LDT of SM and AM, the critical
exponents ν obtained from the critical scaling analysis are
shown in Table I. The results of the critical exponent of
the d-dimensional Anderson transition are also cited from
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TABLE I. The critical exponents numerically obtained by the scaling analysis which characterizes the critical dynamics in the
polychromatically perturbed SM and AM for M = 2–7. Reference [8] and Ref. [7] are results that have already been reported for SM. The
lower four lines show the critical exponents numerically obtained for the d-dimensional disordered systems [28–31]. The last line is result of
semicassical theory of SCT in Ref. [23].

M = 2 (d = 3) M = 3 (d = 4) M = 4 (d = 5) M = 5 (d = 6) M = 6 (d = 7) M = 7 (d = 8)

SM (K = 3.1, h̄ = 0.24) 1.4 ± 0.1 0.85 ± 0.05 0.65 ± 0.05 0.47 ± 0.05 0.46 ± 0.05 0.40 ± 0.05
Ref. [8] 1.58 1.15 – – – –
Ref. [7] 1.537 1.017 – – – –
AM (W = 0.5) 1.46 1.18 0.80 0.62 0.53 0.41
AM (W = 2.0) 1.48 1.01 0.88 0.65 0.57 0.49
Ref. [28] 1.57 1.12 0.93 – – –
Ref. [29] 1.52 1.03 0.84 0.78 – –
Ref. [30] 1.57 1.15 0.97 – – –
Ref. [31] 1.57 1.11 0.96 0.84 – –
Ref. [23] 1.5 1.0 0.83 0.75 0.70 0.66

the literature. It can be seen that in the perturbed SM and
AM with M color modes the critical localization exponent
of LDT reproduces well those of the Anderson transition of
the d (= M + 1)-dimensional random system and the critical
exponent ν of LDT decreases with increase of M. In the case
of the d-dimensional Anderson transition, at least in d → ∞,
the mean-field approximation works exactly, and the critical
exponent ν asymptotically approaches the result of SCT ν =
1/2. This can be expected from the fact that in the Anderson

transition, spatial connections in higher dimensions makes the
quantum interference effect less important. However, in the
LDT in SM and AM, the exponent tends to decrease more
rapidly as M increases. In particular, in the case of M = 7,
our result suggests the possibility of ν < 1/2. Note that even
in these cases, Harris’s inequality ν � 2

d is not broken [32].
Improvement in the numerical accuracy can be achieved by
increasing the number of ensembles. It will be reported in a
forthcoming publication.
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