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Oscillatory multipulsons: Dissipative soliton trains in bistable reaction-diffusion systems with cross
diffusion of attractive-repulsive type
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One-dimensional localized sequences of bound (coupled) traveling pulses, wave trains with a finite number of
pulses, are described in a piecewise-linear reaction-diffusion system of the FitzHugh-Nagumo type with linear
cross-diffusion terms of opposite signs. The simplest case of two bound pulses, the paired-pulse waves (pulse
pairs), is solved analytically. The solutions contain oscillatory tails in the wave profiles so that the pulse pairs
consist of a double-peak core and wavy edges. Several pulse pairs with different profile shapes and propagation
speeds can appear for the same parameter values of the model when the cross diffusion is dominant. The more
general case of many bound pulses, multipulse waves, is studied numerically. It is shown that, dependent on
the values of the cross-diffusion coefficients, the multipulse waves upon collision can pass through one another
with unchanged size and shape, exhibiting soliton behavior. Moreover, multipulse collisions with the system
boundaries can generate a rich variety of wave transformations: the transition from the multipulse waves to
pulse-front waves and further to simple fronts or to annihilation as well the transition to solitary pulses or to
multipulse waves with lower numbers of pulses. Analytical and numerical results for the pulse pairs agree well
with each other.
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I. INTRODUCTION

Wave interaction in nonlinear reaction-diffusion systems
leads to a rich diversity of pattern formation phenomena with
complex behavior and morphology of the emerging struc-
tures. Such patterns usually develop in bistable and excitable
systems where they result from front and pulse interactions,
respectively. The appearance of multiple fronts enables the
formation of persistent patterns rather than transient ones [1].
Depending on model parameters, there exists a transition from
oscillating (or breathing) patterns to traveling ones [1]. The
interaction of a front and a back leads to the formation of
various bound structures with a pulse-type shape [1,2]. When
the front and the back are following one another, and the back
propagates faster than the front, they may form a traveling
pulse wave [1]. The interaction of front and back is weak if
they are separated by more than a front width [2].

Depending on the type of coupling, oscillations can appear
near the front and play the role of inhomogeneities, which stop
the propagation of the front giving rise to bound states [2]. The
bound state may represent a motionless domain or exhibit a
breathing motion or a spatiotemporal pattern resulting from
an elasticlike collision of the domain boundaries [3]. The
conditions for which the boundaries do not annihilate upon
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collision but behave as if they are elastic objects as opposed
to the fusion of two pulses and the formation of one wide
motionless pulse [4] have been found for front collisions [3]
and for pulse collisions [4]. Another particular behavior of
pulse interactions upon collision where the solitary pulses
pass through one another unchanged was discovered in 1965
and was called soliton interaction [5]. Such solitons appear
also in reaction-diffusion equations [6] and in other dissipa-
tive systems [7]; they are called dissipative solitons [8,9] or
autosolitons [2,10].

In many multicomponent reaction-diffusion systems, a
gradient in the concentration of one species induces also
a flux of another species so that there exist self-diffusion
and cross-diffusion transport processes. The cross-diffusion
mechanism can arise from both attractive-attractive and
attractive-repulsive interactions. The cross-diffusion terms
then have the same or opposite signs, respectively. The case
of cross-diffusion terms with opposite signs [11–14] in a
two-component system,

∂u

∂t
= f (u, v) + D1

∂2u

∂x2
+ h1

∂2v

∂x2
, (1a)

∂v

∂t
= g(u, v) + D2

∂2v

∂x2
− h2

∂2u

∂x2
, (1b)

where D1,2 and h1,2 are the self-diffusion and cross-diffusion
coefficients, respectively, and f (u, v) and g(u, v) are the ki-
netic rate terms is equivalent to a nonlinear Schrödinger equa-
tion for the complex ψ function. Such a system is consistent
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with oscillatory taxis waves and their ability to reflect from
each other [11,15]. In an ecological context, the model with
cross-diffusion terms with opposite signs describes a pursuit-
evasion process in population dynamics with positive taxis of
predators up the gradient of prey (pursuit) and negative taxis
of prey down the gradient of predators (evasion) [11]. For
example, if the nonlinearity of the reaction functions f (u, v)
and g(u, v) is chosen as in Ref. [11], which corresponds to the
Truscott-Brindley model [16], the reaction-diffusion system
with cross diffusion describes the population dynamics of
phytoplankton (u) and zooplankton (v).

The magnitude of the cross-diffusion coefficients can be
quite large compared to that of the self-diffusion coeffi-
cients [17]. It, thus, is reasonable to consider models with
strong cross diffusion where the self-diffusion coefficients
vanish [18–20] or are small in magnitude. Cross-diffusion-
induced spatial, temporal, and spatiotemporal patterns appear
in many such systems [21–25]. The basic spatiotemporal
patterns, traveling waves caused by cross diffusion [26–29],
are the subject of our paper. Pulse waves [20,30] and pulse-
front waves [31] in the piecewise-linear FitzHugh-Nagumo
(FHN) [32,33] model with linear cross-diffusion terms were
investigated previously. The FHN equations, also called the
Bonhoeffer–van der Pol [34–36] model, were originally for-
mulated as a simplification of the Hodgkin-Huxley model [37]
describing the action potential across a nerve membrane. In
this context, the cross-diffusion mechanism reflects the effect
of a generic drug on the neuron firing process when the
influence of certain drugs or external chemicals alters the
normal dynamics of the action potential, so that the spatial
propagation of neuron firing is essentially caused by the cross
diffusion [28].

The piecewise-linear approximation of the nonlinear ki-
netic rate terms allows us to perform analytical calculations
for the traveling waves. Since the pioneering works by McK-
ean [38] and Rinzel and Keller [39], one usually employs
a two-piece approximation for the cubic nonlinearity in the
FHN model [40,41], which can be extended to many other
nonlinear systems [42–45].

The paper is organized as follows. We describe analytically
the paired-pulse waves in Sec. II. In Sec. III, we provide
illustrative examples and discuss their profile shapes. In
Sec. IV, we show the results of numerical simulations for the
propagation behavior of the waves and their interaction with
the system boundaries and with each other. We summarize our
results in Sec. V.

II. MODEL AND SOLUTIONS

The FHN model is a system of two reaction-diffusion equa-
tions where the variable u = u(x, t ) represents the “activator”
or potential variable, and the variable v = v(x, t ) represents
the “inhibitor” or recovery variable. The FHN model with
linear cross-diffusion terms, reflecting attractive-repulsive in-
teractions, is described by equations [15,18,46],

∂u

∂t
= u(1 − u)(u − a) − v + D1

∂2u

∂x2
+ h1

∂2v

∂x2
, (2a)

∂v

∂t
= ε(u − v) + D2

∂2v

∂x2
− h2

∂2u

∂x2
, (2b)

g(u,v)=0

f(u,v)=0

10 u

v

a

FIG. 1. The nullclines f (u, v) = −u − v + H (u − a) = 0 and
g(u, v) = u − v = 0.

where the parameters a and ε are the excitation threshold
and the ratio of timescales, respectively. We consider here the
piecewise-linear approximation [18,39],

∂u

∂t
= −u − v + H (u − a) + D1

∂2u

∂x2
+ h1

∂2v

∂x2
, (3a)
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∂x2
− h2

∂2u

∂x2
, (3b)

with the Heaviside step function H (u − a). The excita-
tion threshold must be 0 < a < 1/2 for the system to be
bistable. The nullclines f (u, v) = −u − v + H (u − a) = 0
and g(u, v) = u − v = 0 for the bistable regime are shown in
Fig. 1.

We look for a specific type of solutions, namely, traveling
waves u = u(ξ ) and v = v(ξ ), where ξ = x − ct is the travel-
ing frame coordinate and c is the wave speed. Such solutions
represent waves that propagate in space with constant speed
and without changing shape. The traveling wave solutions
satisfy the ordinary differential equations,

D
d2u

dξ 2
+ h

d2v

dξ 2
+ c

du

dξ
− u − v + H (u − a) = 0, (4a)

D
d2v

dξ 2
− h

d2u

dξ 2
+ c

dv

dξ
+ u − v = 0. (4b)

To solve the model analytically, we consider the cases
of D1 = D2 ≡ D, h1 = h2 ≡ h, and ε = 1. The mathematical
details of the general solutions for traveling waves can be
found in Ref. [47].

Here, we focus on the traveling pulse waves. The pulses
are homoclinic solutions whose trajectory on the (u, v)-phase
plane starts at a fixed point or steady state as ξ → −∞ and ap-
proaches the same fixed point as ξ → +∞. The well-known
standard pulse solutions in the piecewise linear reaction-
diffusion model consist of three parts or tails that correspond
to the peak and the growing and decaying edges. In this paper,
we extend these simple pulses to similar homoclinic solutions
that consist of five parts, u1,...,5 and v1,...,5. The edge pieces of
these waves, u1, v1 and u5, v5, repeat the behavior of the edges
of simple pulses, whereas the middle pieces u2–4 and v2–4 form
two-peak patterns. This two-peak pattern represents a bound
pulse pair, and we will call such waves paired-pulse waves
or just pulse pairs. The spatiotemporal pattern illustrating the
propagation of the pulse pair for the activator variable u(x, t )
is shown in Fig. 2.
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FIG. 2. Space-time plot showing the evolution of the paired-
pulse wave for the activator variable u(x, t ).

The boundary conditions for the pulses are as follows,
u1, v1(ξ → −∞) = u5, v5(ξ → +∞) = 0 so that the solu-
tions read

u1(ξ ) = ek+ξ [A11 cos(l−ξ ) + A13 sin(l−ξ )], (5a)

u2(ξ ) = ek+ξ [A21 cos(l−ξ ) + A23 sin(l−ξ )]

+ ek−ξ [A22 cos(l+ξ ) + A24 sin(l+ξ )] + 1/2, (5b)

u3(ξ ) = ek+ξ [A31 cos(l−ξ ) + A33 sin(l−ξ )]

+ ek−ξ [A32 cos(l+ξ ) + A34 sin(l+ξ )], (5c)

u4(ξ ) = ek+ξ [A41 cos(l−ξ ) + A43 sin(l−ξ )]

+ ek−ξ [A42 cos(l+ξ ) + A44 sin(l+ξ )] + 1/2, (5d)

u5(ξ ) = ek−ξ [A52 cos(l+ξ ) + A54 sin(l+ξ )] (5e)

for the activator variable, and

v1(ξ ) = ek+ξ [B11 cos(l−ξ ) + B13 sin(l−ξ )], (6a)

v2(ξ ) = ek+ξ [B21 cos(l−ξ ) + B23 sin(l−ξ )]

+ ek−ξ [B22 cos(l+ξ ) + B24 sin(l+ξ )] + 1/2, (6b)

v3(ξ ) = ek+ξ [B31 cos(l−ξ ) + B33 sin(l−ξ )]

+ ek−ξ [B32 cos(l+ξ ) + B34 sin(l+ξ )], (6c)

v4(ξ ) = ek+ξ [B41 cos(l−ξ ) + B43 sin(l−ξ )]

+ ek−ξ [B42 cos(l+ξ ) + B44 sin(l+ξ )] + 1/2, (6d)

v5(ξ ) = ek−ξ [B52 cos(l+ξ ) + B54 sin(l+ξ )] (6e)

for the inhibitor variable. The solution parameters are the
same as in Ref. [47]: k± = ±y − p and l± = z ± q, where

p = cD

2(D2 + h2)
, q = ch

2(D2 + h2)
, (7a)

b = p2 − q2 + p + q

c/2
, d = 2pq − p − q

c/2
, (7b)

y =
√

(
√

b2 + d2 + b)/2, z =
√

(
√

b2 + d2 − b)/2, (7c)

and the integration constants B are expressed as

B1,3 = − (α1γ1 + β1δ1)A1,3 ∓ (α1δ1 − β1γ1)A3,1

γ 2
1 + δ2

1

, (8a)

B2,4 = − (α2γ2 + β2δ2)A2,4 ∓ (α2δ2 − β2γ2)A4,2

γ 2
2 + δ2

2

, (8b)
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FIG. 3. (a) and (d) Paired-pulse waves for the activator u(ξ ), (b) and (e) for the inhibitor v(ξ ), and (c) and (f) on the (u, v)-phase plane (bold
lines) for the model with both self-diffusion and cross-diffusion terms (D = 1, h = 5): (a)–(c) a = 0.2, c ≈ 5.269 and (d)–(f) a = 0.25, c ≈
4.919. The parts u2, u4 and v2, v4 of the waves are shown in gray. The nullclines f (u, v) = 0 and g(u, v) = 0 are shown as thin lines in panels
(c) and (f).
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FIG. 4. (a), (d), (g), (j), and (m) Paired-pulse waves for the activator u(ξ ), (b), (e), (h), (k), and (n) for the inhibitor v(ξ ), and (c), (f), (i),

(l), and (o) on the (u, v)-phase plane (bold lines) for the model with pure cross-diffusion terms D = 0, h = 10. Panels (a)–(i) correspond to
the small threshold a = 0.2: (a)–(c) the slow wave c ≈ 8.802, (d)–(f) the intermediate wave c ≈ 9.666, and (g)–(i) the fast wave c ≈ 10.195.
Panels (j)–(o) correspond to the large threshold a = 0.25: (j)–(l) the slow wave c ≈ 5.936, and (m)–(o) the fast wave c ≈ 7.932. The parts
u2, u4 and v2, v4 of the waves are shown in gray. The nullclines f (u, v) = 0 and g(u, v) = 0 are shown as thin lines in panels (c), (f), (i), (l),
and (o).
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FIG. 5. An example of the solitary pulses: (a) for the activator u(ξ ), (b) for the inhibitor v(ξ ), and (c) on the (u, v)-phase plane (bold lines)

for the model with pure cross-diffusion terms D = 0, h = 10 for a = 0.2. The wave speed is c ≈ 8.723. The parts u2 and v2 of the waves are
shown in gray. The nullclines f (u, v) = 0 and g(u, v) = 0 are shown as thin lines in panels (c).

with

α1 = D(k2
+ − l2

−) + ck+ − 1, β1 = l−(2Dk+ + c), (9a)

γ1 = h(k2
+ − l2

−) − 1, δ1 = 2hk+l−, (9b)

α2 = D(k2
− − l2

+) + ck− − 1, β2 = l+(2Dk− + c), (9c)

γ2 = h(k2
− − l2

+) − 1, δ2 = 2hk−l+. (9d)

The five parts of the pulse profile, (5) and (6), are
fitted together using the matching conditions for the
pieces un(ξ ), vn(ξ ), n = 1, . . . , 5, and their derivatives
dun(ξ )/dξ, dvn(ξ )/dξ at the four matching points. In total,
there are 20 equations for 20 unknown constants (16 inte-
gration constants A, three matching point coordinates and the
pulse speed c), which allows us to determine the pulse speed
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FIG. 6. Numerical simulations. Multipulse waves with two and four peaks for different values of h2. The activator u(x, t ) and the inhibitor
v(x, t ) are shown in black and gray, respectively. The values of the model parameters are fixed at a = 0.25, ε = 1, D1 = D2 = 0, and h1 = 10.
The size of the medium and the initial constant are chosen as L = 240 and v0 = −0.2, respectively. Different panels display different segments
of the x axis to zero on the multipulse waves.
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FIG. 7. Numerical simulations. Multipulse waves with three and seven peaks for different values of h2. The activator u(x, t ) and the
inhibitor v(x, t ) are shown in black and gray, respectively. The values of the model parameters are fixed at a = 0.25, ε = 1, D1 = D2 = 0,
and h1 = 10. The size of the medium and the initial constant are chosen as L = 240 and v0 = 0.9, respectively. Different panels display
different segments of the x axis to zero on the multipulse waves.

and the matching points uniquely. The first matching point is
chosen to be zero due to the translational invariance of the
equations [47].

III. PAIRED-PULSE WAVES

The results of the analytical calculations for the traveling
paired-pulse waves, traveling pulse pairs, are shown graphi-
cally in Fig. 3 for the model (4) with both self-diffusion and
cross-diffusion terms and in Fig. 4 for the pure cross-diffusion
model where the self-diffusion terms vanish. In the first case,
the wave profiles display pronounced two pulse peaks. The
oscillatory character of the solutions (5) and (6) manifests
itself only in the small tails (the oscillations attenuate rapidly)
on the leading edges, which are located on the right side of the
waves before the peaks. The bound pulse pair, which forms a
big double loop on the (u, v)-phase plane [Figs. 3(c) and 3(f)],
consists essentially of the strongly pronounced pulse peaks. In
the second case, the pure cross-diffusion model, we observe
a so-called multiwave regime of propagation for the paired-
pulse waves, namely, the simultaneous coexistence of several
waves with different profile shapes and propagation speeds for
the same values of the model parameters. There exist three

waves with their own profiles and speed values, the slow,
intermediate, and fast waves for a = 0.2, and two waves, the
slow and fast waves for a = 0.25 (Fig. 4). This case where
cross-diffusion effects are dominant displays different wave
profiles compared with the case where both self-diffusion
and cross-diffusion terms are present. Now, the oscillations
attenuate slowly and are noticeable in the leading edges. They
are present even in the core of the waves in the two peaks
so that the two pulse peaks of the pulse pair become part of
a whole oscillatory pattern [Figs. 4(a), 4(b) 4(d), 4(e), 4(g),
and 4(h)], forming oscillatory multipeak pulses. These multi-
ple waves are complemented by the pulse pair with strongly
pronounced pulse peaks [Figs. 4(j)–4(l) and also shown in
three dimensions in Fig. 2], which also occurs in the first
case of the model with both self-diffusion and cross-diffusion
terms.

The multiwave regime of propagation is larger than de-
scribed above. It also includes the coexistence of the simple
standard solitary pulses with one peak. To demonstrate this
feature, we show graphically an example of such waves in
Fig. 5. The values of the model parameters D, h, and a
are chosen the same for both figures (Figs. 4 and 5 for the
pulse pairs and the solitary pulses, respectively), which allows
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FIG. 8. Numerical simulations. Collision sequences and transformations of the multipulse waves with two peaks for the fixed value of h1

and different values of h2. The activator u(x, t ) and the inhibitor v(x, t ) are shown in black and gray, respectively.

us to compare also the existence criteria for both types of
waves. In the interval a ∈ (0, 0.25], both the solitary pulses
and the pulse pairs exist. For a = 0.26 and larger values, the
pulse pairs are absent, whereas the solitary pulses disappear
only at a = 0.31 and no longer exist for larger values of
a [20]. Comparing the profiles of the solitary pulses and of
the pulse pairs, we find that they are similar to each other.
This observation can be explained by the same oscillatory
character of the general solutions. The principal difference is
related to the number of the coexisting waves in the multiwave
regime: The solitary pulses appear as a single wave in the
interval a ∈ (0, 0.25] [48], whereas multiple pulse pairs occur
as mentioned above.

IV. MULTIPULSE WAVES

The results of numerical simulations for the propagation
of the waves and their interaction with medium boundaries
and each other are shown graphically in Figs. 6 and 7.
The direct integration of the partial differential equations (3)
has been performed on a one-dimensional medium of size
L, x ∈ [0, L] with Neumann boundary conditions for both
variables u(x, t ) and v(x, t ). We have applied a first-order
time stepping scheme, which is fully explicit for the kinetic
rate terms and fully implicit for the cross-diffusion terms. We

have considered only the case of pure cross diffusion, i.e.,
the self-diffusion coefficients vanish D = 0. We have used a
second-order central difference approximation for the spatial
derivatives. The space and time steps are chosen as δx = 0.02
and δt = 0.000 25, respectively. The initial conditions are as
follows:

u(x, 0) = 0, x ∈ [0, L], (10)

and

v(x, 0) =
{

0, x ∈ [0, L/2],

v0, x ∈ (L/2, L]
(11)

see Figs. 6(a) and 7(a).
For a first set of numerical calculations, we chose the

cross-diffusion coefficients to be h1 = 10 and h2 = 0.002 and
started from the initial conditions (10) and (11). These condi-
tions lead to the formation of two counterpropagating waves
of pulse type with different numbers of core peaks dependent
on the value of v0, Figs. 6(b) and 7(b). The shapes of these
waves are different for the activator u(x, t ) and the inhibitor
v(x, t ). The profile of the activator is similar to the bursting
pattern, whereas it is saw shaped for the inhibitor. In other
words, the activator is related to a multipulse wave, and the
inhibitor corresponds to a multipeak pulse. The difference lies
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FIG. 9. Numerical simulations. Collision sequences and transformations of the multipulse waves with five peaks for the fixed value of h1

and different values of h2. The activator u(x, t ) and the inhibitor v(x, t ) are shown in black and gray, respectively.

in the wells between the peaks in the core of the waves. The
multipulse waves contain deep wells so that the peaks trans-
form into pulses, whereas the multipeak pulses have shallow
wells in their core. These waves move towards the medium
boundaries, reflect from them, keeping the same number of
peaks, and travel towards each other [Figs. 6(c) and 7(c)].
They collide head on and pass through one another without
changing their size and shape [Figs. 6(d) and 7(d)], i.e., they
display soliton behavior. Therefore, for the sake of brevity,
we call these multipulse waves with soliton interaction “multi-
pulsons.” Such soliton behavior of solitary pulses in reaction-
diffusion systems with cross-diffusion terms of opposite signs
has been reported before [11–14]. The difference is that we
observe a localized sequence with a finite number of bound
pulses, a finite pulse train, in contrast to periodic wave trains
and solitary pulses studied previously. Note that these solitons
in the reaction-diffusion system with cross diffusion [14]
belong to the class of dissipative solitons [8,9].

In a second set of numerical calculations, we used the
waves described above separately as new initial conditions
in a medium with periodic boundary conditions. For these
studies, the value of the second cross-diffusion coefficient was
varied from h2 = 0.002 to h2 = 10. The corresponding waves
are shown in Figs. 6(e)–6(g) and 6(i)–6(k) and 7(e)–7(g)
and 7(i)–7(k) for several values of h2. As the value of the

cross-diffusion coefficient changes from h2 = 0.1 to h2 = 10,
the wells between the peaks in the core of the inhibitor waves
become deeper, and the multipeak pulse for the v variable
transforms into a multipulse wave as for the u variable. At
h2 = 10, both waves, the activator and the inhibitor, belong to
the multipulse type. When h1 = h2 = 10 [Figs. 6(g) and 6(h)],
the waves, composed of two bound pulses propagating with
speed c = 5.93, agree qualitatively well with the analytically
obtained paired-pulse waves with speed c ≈ 5.936 shown in
Sec. III in Figs. 4(j)–4(l). Similar soliton pairs have been
described in other nonlinear equations [49,50]. The numerical
simulations show that the waves in Figs. 6 and 7 attain a steady
profile asymptotically in time and are stable to low noises.

Multipulse collisions can exhibit other types of behavior,
some of which are characteristic for dissipative systems.
Figures 8 and 9 show the results of the interaction of the waves
with the boundaries for the multipulse waves with two and five
peaks, respectively. There exists a variety of wave transforma-
tions: the transition from the multipulse waves to pulse-front
waves and further to the simple fronts [Figs. 8(a)–8(c)], the
transition from the multipulse waves to pulse-front waves and
further to annihilation [Figs. 8(d)–8(f)], the transition from the
multipulse waves to solitary pulses [Figs. 9(a)–9(c)], and the
transition from the multipulse waves to multipulse waves with
a lower number of pulses [Figs. 9(d)–9(i)]. At some values
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of the cross-diffusion coefficients, there are also solitonlike
regimes [Figs. 8(g)–8(i) and 9(j)–9(l)]. For example, for the
multipulse waves with two peaks, this behavior occurs when
h1 = 10 and h2 < 0.15 or h2 = 0.1 and h1 > 5.

Videos showing the wave propagation and interaction are
provided in the Supplemental Material [51].

V. SUMMARY

We have explored the effects of cross diffusion on various
wave dynamics in the piecewise-linear FitzHugh-Nagumo
equation, which has served for a long time in the literature
as a paradigmatic reaction-diffusion model for excitable and
bistable systems. We wish to emphasize our main result:
In addition to the simple standard pulses, consisting of a
single peak with growing and decaying edges, there occur
sequences of bound traveling pulses, the finite wave trains

or multipulse waves in a bistable reaction-diffusion model
of the FHN type with linear cross-diffusion terms describing
attractive-repulsive interactions between the two species, such
as pursuit-evasion interactions in a predator-prey system for
example. In contradistinction to periodic wave trains, these
multipulse waves possess a finite number of bound pulses
in their sequence. We have found sequences consisting of
two–five and seven bound pulses. We have shown that, for the
inhibitor variable, the sequence of pulses transforms into one
pulse with multiple peaks, called a multipeak pulse, when the
values of the cross-diffusion constants differ significantly. We
plan to extend our studies of multipulse waves to explore the
possibility of pulses with peaks of a more complex shape.

We also investigated the interactions of the multipulse
waves. We have discovered that, upon mutual collision, they
pass through one another without any changes in their size and
shape, demonstrating a soliton interaction. This characteristic
property led us to call these waves multipulsons.
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