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Phase coherence is not related to topology
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Phase coherence is an important measure in nonlinear science. Whereas there is no generally accepted
definition for phase and therefore for phase coherence, many works associate this feature with topological
aspects of the systems, such as having a well-defined rotating center. Given the relevance of this concept for
synchronization problems, one aim of this paper is to argue by means of a couple of counterexamples that phase
coherence is not related to the topology of the attractor. A second aim is to introduce a phase-coherence measure
based on recurrence plots, for which probabilities of recurrences for two different trajectories are similar for a
phase-coherent system and dissimilar for non-phase-coherent systems. The measure does not require a phase
variable defined a priori.
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I. INTRODUCTION

The study of chaotic phase synchronization (PS) [1] has
received considerable attention in recent years and contributed
to understand many natural phenomena in different fields
(e.g., [2–4]). Unfortunately, a general characterization of such
phenomena is still lacking, mostly due to the wide variety of
attractors, with great diversity of topologies and dynamics, for
which it is hard even to define a proper phase variable in a
general way [5]. Hence, different and very often nonequiva-
lent metrics have been used in the study of PS, which are as-
sociated with timescales, phase coherence, attractor topology,
etc., in cases for which custom phase definitions have been
proposed.

A phase variable has spatial and rhythmic properties [6],
where the former refers to recurrence features in the state
space and the latter refers to the elapsed time between
these recurrences. These two distinct characteristics can clar-
ify the role of some concepts in nonlinear dynamics. Whereas
there is no generally accepted definition for phase coherence,
many works refer to it as a spatial feature, related to the
easiness of finding a proper rotating center, e.g., [7–13]. In
several works, topological attributes of the attractor, such
as funnel or screw type, are related to the lack of phase
coherence. Perhaps, this is motivated by the largely used
benchmark Rössler oscillator, where the non-phase-coherence
emerges together with a funnel topology.
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The present paper contests this point of view and shows
that the phase coherence is essentially a rhythmic property of
the oscillator, which is not related to the topology of the attrac-
tor. Counterexamples of a phase-coherent-funnel and a non-
phase-coherent-spiral oscillator are provided using standard
measures of phase coherence. In addition, a measure based
on recurrence plots is introduced, which provides statistically
significant results in distinguishing phase coherence, without
requiring a phase variable.

This paper is organized as follows. Section II provides
background material. A key tool used in the paper is time
reparametrization of ordinary differential equations; this is
quickly reviewed in Sec. III and illustrated in Sec. IV. The
proposed measure of phase coherence is presented in Sec. V.
The main conclusions are presented in Sec. VI.

II. BACKGROUND

The concept of phase coherence has different interpre-
tations in the scientific literature. The term was used by
Farmer and coworkers in the spectral analysis of chaotic
attractors [14,15]. It was stated that phase-coherent systems
“have power spectra that are superpositions of delta functions
and broad backgrounds” [14] and it was argued that the
system could be decomposed into periodic and nonperiodic
subsystems, where the first is responsible for the peaks and
the latter is responsible for for the broad background in the
spectrum. Later, Stone [16] introduced the term in the context
of frequency entrainment of chaotic oscillators.

Some more recent works have linked the concepts of phase
coherence with topological aspects of the attractor, e.g., the
ease to find a proper rotating center [7–13]. However, no clear
connection between such concepts seems to exist, as shown in
the sequel.
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In this paper, the terms topology, spatial features, and
geometry refer to features of a chaotic attractor as an object:
a set of trajectories organized in a particular shape. This
terminology is inspired by the topological analysis, that in-
vestigates the stretching and squeezing mechanisms that act to
create a strange attractor and organize all the unstable periodic
orbits in the attractor [17–19] in terms of branched manifolds,
bounding tori, genus, etc. In these analyses, the rhythm of
the evolution is not essential. In the context of this paper,
geometry or topological aspects refer to characteristics of the
shape of the attractor in the state space.

One of the most used measures of phase coherence is the
phase diffusion coefficient, which is based on a statistical
analysis of the behavior of a phase variable, in terms of a
stochastic diffusion model [20]. It considers that the time
derivative of a phase variable (frequency) can be approxi-
mated by a constant term ω (mean frequency) added to a
random noise ξ (t ), leading to φ(t ) = φ0 + ωt + ∫ t

0 ξ (τ )dτ .
The fluctuation strength of φ(t ) can be evaluated by the
variance

σ 2(t ) ≡ 〈[φ(t ) − φ0 − ωt]2〉 ∝ 2Dt, (1)

where 〈·〉 denotes the ensemble average and D denotes the
phase diffusion coefficient.

A coherent oscillation occurs when D ≈ 0. However, for
chaotic oscillators, it is worth pointing out that this coefficient
requires a phase variable defined a priori, which carries many
unclear issues related to the problem of defining such a
phase [5].

Some works use the coherence factor [21,22], that does not
require an explicit phase variable and is calculated with the
help of a Poincaré section P as

χ
(P )
CF = 〈T (P )〉

σ
(P )
T

, (2)

where T denotes the time between consecutive crossings of
the Poincaré section and σT , its standard deviation.

The main drawback lies in the choice of a proper Poincaré
section. The coherence factor χCF seems to be useful for
comparing very similar systems (e.g., with and without some
addition of noise) [23], but it can be meaningless for com-
paring very different systems. Perhaps some optimal Poincaré
section (see, e.g., [24]) should be used for such a purpose.

A measure that does not require either a phase variable
or a Poincaré section has been proposed [12]. It is based on
recurrence properties of the system [25], described by the
recurrence matrix

R(ε)
i, j = 	(ε − ‖xi − x j‖), (3)

where 	(·) is the Heaviside function, ε ∈ R is a predefined
threshold, x ∈ Rn is the state vector, and i and j are discrete-
time indices.

A notion of the rhythm of the system is quantified by
the recurrence time τ (given in samples), which is the time
between recurrent points. The probability of recurrence at τ

can be obtained directly from the recurrence matrix (3) as

P(ε)(τ ) =
∑N−τ

i=1 R(ε)
i,i+τ

N − τ
, (4)
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FIG. 1. Histogram of returning times to the Poincaré section P =
{x : x = 0, ẋ > 0} for the chaotic Cord system [27] with parameters
(a, b, F, G) = (0.258, 4.033, 8.0, 1.0). A smooth density function
(orange dashed line) was fitted to guide the eye. The embedded figure
shows the (x, z) projection of the attractor with the corresponding
Poincaré section.

where N is the data length. The P(ε)(τ ) is also known as
the generalized autocorrelation function and has been used to
quantify phase synchronization between oscillators 1 and 2 by
means of the correlation coefficient [26]:

ρ
(ε)
CPR =

〈
P̄(ε)

1 (τ ) P̄(ε)
2 (τ )

〉
σ

(ε)
1 σ

(ε)
2

, (5)

where 〈·〉 indicate time averaging over τ , and for the ith oscil-
lator the P̄(ε)

i means that the average has been subtracted and
σi is the respective standard deviation. A ρCPR ≈ 1 indicates
phase synchronization.

To quantify the phase coherence, the so-called generalized
coherence factor has been proposed [12]:

χ
(ε)
GCF = 〈τ 〉(ε)

σ
(ε)
τ

, (6)

where 〈τ 〉(ε) and σ (ε)
τ are the mean and standard deviation

of recurrent times taken from (4). This index, however,
did not achieve a high level of significance in distinguish-
ing noncoherent from coherent dynamics for the Rössler
system [12].

Note that the phase diffusion coefficient (1), the returning
times to a Poincaré section (2), and the generalized coherence
factor (6) relate to rhythmic characteristics of the system.
Other commonly mentioned features, such as the ease to find a
proper rotating center [7–13], or if the phase of some Hilbert-
transformed observable increases monotonically [12,13], re-
late to topological characteristics of the oscillator.

These two points of view are not related in general. An
interesting example is provided by the Cord attractor [27],
which in spite of having a very regular returning time (i.e.,
low variance) with small phase diffusion (D = 0.05) has a
challenging topology [28] without a single rotating center, as
shown in Fig. 1.
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III. TIME REPARAMETRIZATION

To argue in favor of the lack of relation between topol-
ogy and phase coherence, consider a nonlinear oscillator
described by

ẋ = f (x), (7)

where the x ∈ Rn is the state vector, f : Rn → Rn is a non-
linear vector function, and, for some initial condition x0 ≡
x(0)—which is not an equilibrium point, i.e., f (x0) 
= 0—the
solution of (7) exists, it is unique, and its trajectories converge
to an attractor � ⊂ Rn.

Now we introduce a modified version of (7):

ẋ = r(x) f (x), (8)

where r : Rn → R+ is a positive smooth scalar function.
The introduction of r(x) is a well-known method in the

analysis of ordinary differential equations and it leads to
a reparametrization of time [29], where the flow and the
attractor � remain at exactly the same spatial location for both
systems (7) and (8), but the time evolution can be stretched or
shrunk at each point of Rn, according to r(x). It provides an
interesting tool for analysis because it surgically isolates the
two aforementioned elements: on the one hand the rhythm,
related to r(x); and, on the other, the spatial (or topological)
characteristic, related to f (x).

Note that this procedure can be applied to any system
described as (7). It shows that the rhythm can be changed
independently of the geometry of the attractor. Despite the
general applicability of this procedure, on oscillators of any
dimension, in what follows, this property will be used to
modify some specific benchmark systems in order to confirm
that, in fact, topology does not have any general relation to
phase coherence.

IV. COHERENT FUNNEL AND NONCOHERENT SPIRAL

The Rössler system is given by (7) with

f (x) =

⎡
⎢⎣

−y − z

x + ay

b + z(x − c)

⎤
⎥⎦, (9)

where x ≡ [x, y, z]�, (b, c) = (0.1, 8.5), and the parameter
a is used to switch between spiral (a = 0.16) and funnel
(a = 0.3) behaviors. A proper Poincaré section can be defined
regardless of the dynamic behavior [17] as

Pr =
{

(y, z)∈R2 : x = c − √
c2 − 4ab

2
, ẋ>0

}
. (10)

We introduce the non-phase-coherent-spiral oscillator by
modifying the Rössler system, described as (8) with (9);
parameter a = 0.16 (spiral); and the ad hoc choice:

r(x) := 0.01 + 0.05(x2 + y2), (11)

where r(x) > 0,∀x ∈ Rn.
The phase-coherent-funnel oscillator is introduced simi-

larly, by using a = 0.3 (funnel) and taking

r(x) := 0.546 − 0.471 tanh

(
z − 25.5

11

)
, (12)

where as before r(x) > 0,∀x ∈ Rn.

FIG. 2. Histograms of returning times of the (a) spiral Rössler,
(b) funnel Rössler, (c) non-phase-coherent-spiral system with (11),
and (d) phase-coherent-funnel system that uses (12), with respect to
the Poincaré section Pr (10). For each histogram, a smooth density
function (dashed line) was fitted to guide the eye. The embedded
figures show the (x, y) projection of the corresponding attractor and
Poincaré section.

Clearly, as shown in Fig. 2, the returning time for the
non-phase-coherent-spiral [Fig. 2(c)] system has the highest
dispersion corresponding to a very irregular dynamic (rhyth-
mic) evolution. On the other hand, the returning times for the
phase-coherent-funnel [Fig. 2(d)] system are restricted to a
narrow range, and indicate time regularity even greater than
for the classical spiral attractor [Fig. 2(b)].

This analysis can be readily confirmed by the power spec-
trum density of each state variable (Fig. 3). Comparing the

FIG. 3. Power spectrum density of the (a) spiral Rössler, (b) non-
phase-coherent-spiral system, (c) funnel Rössler, and (d) phase-
coherent-funnel system, for each variable, respectively, from top to
bottom: x, y, and z. A straight dashed red line was added to detect the
peaks.
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original spiral and funnel Rössler oscillators [Figs. 3(a) and
3(c)], it is straightforward to distinguish between the phase-
coherent and noncoherent behaviors, where the existence of a
clear peak with a broad background [Fig. 3(a)] is the signature
of phase coherence [14]. This signature can also be observed
for the phase-coherent-funnel [Fig. 3(d)], but not for the non-
phase-coherent-spiral [Fig. 3(b)], system. The phase diffusion
index (1) corroborates with the analysis, where D = 0.009
for the spiral and D = 0.332 for the funnel Rössler; D =
2.661 for the non-phase-coherent-spiral and D = 0.005 for
the phase-coherent-funnel systems.

The notion of phase coherence should not be associated
to topological aspects of the attractor. Hence, it seems that to
relate coherence and the ease with which a phase variable can
be defined as a scalar function of the states is not generally
true. Following the same line of reasoning, it is conjectured
that many rotating centers do not necessarily imply many
timescales and vice versa.

V. COHERENCE AND RECURRENCE

Topological properties of an attractor have no bearing on
phase coherence, and the probability of recurrence (4) can be
used instead. This probability function displays regular peaks
in the presence of phase coherence and irregular patterns indi-
cate a noncoherent phase [26]. Figures 4(a)–4(d) show those
different patterns, where the rhythm of recurrence (lag τ )
seems to be roughly predictable for phase-coherent systems.

Returning times were used in quantifying phase coherence
by Zou et al. [12]. In that work, index χGCF (6) was proposed,
although it was unable to clearly detect phase coherence in
a benchmark problem with Rössler oscillators. A different
approach is proposed next.

Phase-coherent systems possess trajectories that recur at
very regular time lags. Each subplot in Fig. 4 shows the prob-
ability of recurrence (4) computed for two distinct trajectories
of the same system, denoted in different colors. The two
trajectories were simulated from different initial conditions
from the same oscillator.

Based on such a procedure, a very simple yet effective
principle is proposed here as a way for detecting phase
coherence; namely, two probabilities [see Eq. (4)] of
recurrences will be very similar only for a phase-coherent
system, as illustrated in Fig. 4.

FIG. 4. Probabilities of recurrence for the (a) spiral and (b) fun-
nel Rössler and (c) noncoherent-spiral and (d) coherent-funnel sys-
tems. The threshold ε was chosen in order to achieve about 6%
recurrence rate. The different colors denote different realizations
using the same system.

FIG. 5. From top: Maximum Lyapunov exponent, phase diffu-
sion coefficient, and RTC index (χRTC) for the Rössler oscillator
(9) with (b, c) = (0.4, 8.5). The average (solid line) and standard
deviation (yellow bars) of D and RTC were taken from 100 Monte
Carlo runs. The gray areas correspond to periodic windows (λmax <

0.02). The sets S0, S1, and S2 are identified by the colorbar on the
very top.

More formally, for a system described as (7), consider
two different finite trajectories γa(t ; x0,a) and γb(t ; x0,b), with
different initial conditions x0,a, x0,b ∈ �, taken from the same
system (7). The probability of recurrence (4) is computed
over each trajectory, denoted, respectively, by P(ε,γa )(τ ) and
P(ε,γb)(τ ). The proposed recurrence time coherence (RTC) is
computed as

χ
(ε,γa,γb)
RTC = 〈P̄(ε,γa )(τ ) P̄(ε,γb)(τ )〉

σ (ε,γa ) σ (ε,γb)
, (13)

where P̄(ε,γi )(τ ) is the probability computed using the ith
trajectory of the system. Note that the computation of (13) is
very similar to (5). In the case of (13), P̄ is computed for two
trajectories of the same system, whereas in (5) it is computed
for two different systems.

The basic idea is that phase-coherent systems have high
probability of recurrence at regular time lags τ , whereas non-
phase-coherent systems yield irregular patterns of P̄(ε,γi )(τ )
for each ith realization (Fig. 4). A high value, χRTC ≈ 1,
corresponds to phase-coherent dynamics.

In order to systematically evaluate the performance of the
χRTC index in distinguishing noncoherent and phase-coherent
behaviors, following [12], the Wilcoxon-Mann-Whitney U
test is performed for the Rössler system (9) with (b, c) =
(0.4, 8.5) and 300 equally spaced values in the interval a ∈
[0.15, 0.3]. For each a, the maximum Lyapunov exponent
(λmax), 100 Monte Carlo runs of the phase diffusion coeffi-
cient (D), and the RTC index (χRTC) were computed. Those
values are shown in Fig. 5, where it is possible to clearly
identify the onset of the noncoherent behavior. Three sets
of behaviors were identified as periodic (S0), phase coherent
(S1), and non-phase-coherent (S2):

S0 = {χRTC(a) : λmax(a) < 0.02},
S1 = {χRTC(a) : λmax(a) � 0.02 ∩ D̄(a) < 0.02},
S2 = {χRTC(a) : λmax(a) � 0.02 ∩ D̄(a) � 0.02},

where D̄ denotes the average of D over the 100 Monte Carlo
runs.

032207-4



PHASE COHERENCE IS NOT RELATED TO TOPOLOGY PHYSICAL REVIEW E 101, 032207 (2020)

The statistical test revealed that the RTC index can dis-
tinguish between coherent (S1) and noncoherent (S2) behav-
iors with high level of significance [30]. The average and
standard deviations of the phase-coherent behavior are μ1 =
0.98 and σ1 = 0.02, and for the noncoherent behavior they are
μ2 = 0.85 and σ2 = 0.03. As a rule of thumb, if one considers
a noncoherent behavior for χRTC < 0.92, a successful rate of
98.6% in the classification is observed in the analyzed case
(red dotted line in Fig. 5).

The RTC index was also applied to other chaotic systems
with nontrivial topology such as the Cord [27] and Li [31]
oscillators. The results attained similar performance as the
phase diffusion coefficient. One of the main advantages of the
RTC index is that it does not require a phase variable defined
a priori.

VI. CONCLUSIONS

The concept of phase coherence should not be associated
with topological features of the attractor. A procedure with
general applicability, based on reparametrization of time, was
used to provide counterexamples for two types of systems:

phase coherent with funnellike geometry and non-phase-
coherent with spirallike geometry. The same line of reasoning
can be used for other oscillators to show the same point.

Based on recurrence plots, a measure of phase coherence
was proposed (RTC index) that yields statistically significant
results in discerning between noncoherent and phase-coherent
behaviors in the tested systems. The main advantage of the
RTC is that it does not depend on a phase variable, on the
choice of an observable, or on the definition of a (Poincaré)
section. The calculation is done only over a recurrence plot
obtained from a time series.
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