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Universal energy scaling law for optimally excited nonlinear oscillators
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We compute the optimal temporal profile for an external driving force F (t ) that can maximize the energy
absorption of any driven nonlinear oscillator. The technique is based on constraining the maximum amplitude
of the force field such that optimal control theory can provide quasianalytical solutions. We illustrate this
computational technique for the undamped Duffing oscillator as well as for a driven quantum mechanical
two-level system. We find that under optimal force conditions the asymptotic time-dependence of the maximum
amplitude growth is given by a power law X (t ) ∼ t2/α , where the (possibly noninteger) exponent is determined
by the highest degree of the oscillator’s nonlinearity α. As a universal result, this predicts that the maximal
energy absorption of any nonlinear oscillator grows (under an optimized force field) quadratically in time. We
also find for the two-level system that—even under optimized excitation conditions—the maximally achievable
inversion does not monotonically increase with the force amplitude. It is characterized by an interesting sequence
of n-cycle thresholds as well as a self-termination of the growth.
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I. INTRODUCTION

The search for the optimal energy transfer from an exter-
nal source into a classical or quantum mechanical nonlinear
dynamical system is an important challenge in many areas
of science and engineering. To construct a perfect temporal
or spatial dependence of an external force field that under
specific constraints can maximize a certain objective, such
as the excitation of a system variable, is a very common
application of optimal control theory [1–8].

A historical example of such a temporal control mechanism
from accelerator physics is the synchrocyclotron, where the
frequency of the driving rf electric field is varied in time to
compensate for relativistic effects due the particles’ veloc-
ity [9,10]. In the corresponding spatial control mechanism
(isochronous cyclotron) the magnetic field has a chosen in-
homogeneity to keep the particles focused.

In other fields of physics, for excellent reviews on nu-
merous applications of autoresonances in general nonlinear
systems, see the work by Friedland [11]. A nice tutorial on the
application of optimal control theory to atomic and molecular
systems was provided by Werschnik and Gross [12]. Recently,
optimal control theory was examined for quantum field theo-
retical mechanisms to increase the yield in laser assisted pair
creation processes [13–16]. In many theoretical analyses of
these nonlinear dynamics, the effect on the external force field
was often limited to the perturbative regime so that analytical
methods could be employed [17]. As soon as the system
leaves the linear regime, these solutions are not necessarily
very reliable.

To avoid the, from a practical perspective, uninteresting
infinite forces, one usually has to restrict some properties
of the force field [18–21]. A very common constraint limits
the total energy in the pulsed force field. Unfortunately, the
determination of the optimal time-dependence of the energy-
constrained forces usually requires extensive computational
analysis.

In this work, we will show that if we examine amplitude-
restrained force fields, then quasianalytical approaches are
available for estimating the optimal time-dependence of the
force. Using the example of classical nonlinear oscillators as
well as quantum mechanical two-level systems, we suggest
that an oscillatory force whose frequency instantaneously
matches the natural eigenfrequency of the system at each
time is not necessarily the most efficient means to excite the
system. In fact, if the degree of nonlinearity α, for the corre-
sponding potential V (x) ∼ xα exceeds 2, then an appropriate
blue shift is required for the optimal driving frequency to
accommodate for the dressing of the system by the nonper-
turbative excitation force.

The work is structured as follows. In Sec. II we show for
any general classical mechanical oscillator the fastest energy
transfer is provided by a discontinuous (telegraphlike) force
field with appropriately chosen sign switching times. We
outline an iterative scheme to determine these switching times
for any oscillator. In Sec. III we illustrate this scheme for
concrete physical systems pointing out that the energy-scaling
of the optimal energy growth rate is universal and therefore
independent of the degree of nonlinearity of the oscillator. In
Sec. IV we predict that the dressing effects associated with
nonperturbative forces require either a red or blue shift in
the optimal chirping frequency compared to the instantaneous
natural frequency. In Sec. V we illustrate the universality of
our findings for a quantum mechanical system [22–24]. We
close in Sec. VI with a discussion and an outlook to future
challenges.

II. METHODOLOGIES TO DETERMINE THE TEMPORAL
SHAPE OF THE OPTIMAL FORCE

The optimal (amplitude-limited) force F (t ), that leads to
the maximal energy growth of any oscillator is given by
a telegraphlike signal with characteristic moments in time
Tn when F (t ) changes its sign. The sequence of the exact
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switching times can be obtained from numerical solutions to
an iterative set of coupled transcendental equations. These
solutions suggest remarkable scaling laws for these times as
well as the associated maximal elongations of the oscillators
as time progresses. We show that the optimal force field can be
also obtained from the solution to a single ordinary differential
equation in time based on some instantaneous feedback.

A. The optimal force field

The principal goal of this Section is to construct the
optimal time-dependence of an external time-dependent field
F (t ) that can maximize the amount of energy transferred
to a general nonlinear oscillator after a final time from that
force. The equation of motion for the amplitude x(t ) is given
by md2x/dt2 = −dV/dx + F (t ). This problem is related to
maximizing directly the final amplitude of the oscillator. For
simplicity, in this work we assume that the particle of mass
m is initially at rest and located at the origin. To exclude
the trivial solution F (t ) = ∞ and to find a possibly exper-
imentally realizable shape, we have confined the maximal
permitted magnitude of F (t ) to −F0 � F (t ) � F0. In Ap-
pendix A we review the usual variational approach used in
optimal control theory. Here the optimal force field F (t ),
as well as the Lagrangian co-state and state variables, have
to satisfy consistently a set of nonlinear coupled differential
equations that for a general potential V (x) are not possible
to be solved analytically. However, we can obtain a helpful,
simple property about F (t ). It turns out that a necessary
condition for F (t ), to lead to either a local or global maximum
x(T ), is that F (t ) must take the form of a telegraphlike signal,
i.e., F (t ) = F0 g(t )/|g(t )| for any arbitrary function g(t ). In
other words, except for the two temporally trivial constant
cases F (t ) = −F0 or F (t ) = F0, the optimum force field F (t )
has to be a discontinuous function of time. The optimum force
field F (t ) has to jump back and forth between its only two
permitted values −F0 and F0. This key observation opens the
door to a remarkably easy analysis based on a straightforward
determination of those moments in time when the optimal
force function changes its sign. Alternatively, in Sec. II B
we will also show that by implementing a simple feedback
mechanism the optimal force field can be obtained from the
solution of a simple autonomous differential equation that
determines automatically the periodicity changes of the pulse
train.

The sequence of those moments in time, when the op-
timal force switches its sign, are denoted by Tn with n =
0, 1, 2, ..., can be constructed from an iterative sequence
Tn+1 = H[Tn, An+1, An], where An+1 and An denote the max-
imal excursions of the particle associated with the turning
point times Tn+1 and Tn. We set T0 and A0 to zero. The first
switch time T1 for F (t ) is given by the time the particle takes
to travel in the potential V (x) − F0x from its initial location
x(0) = 0 to A1, i.e., T1 = (m/2)1/2

∫ A1
0 dx[F0x − V (x)]−1/2.

The value of the particle’s first (positive) turning point A1

follows from a similar consideration based on energy conser-
vation, i.e., 0 = −F0A1 + V (A1). The next switch time T2 =
T1 + (m/2)1/2

∫ A2

A1
dx[F0A1 + V (A1) − F0x − V (x)]−1/2 is as-

sociated with the travel time from location A1 to the second
turning point A2, which is the (negative) real solution to

F0A2 + V (A2) = F0A1 + V (A1). In summary, we obtain the
following set of coupled recursion relationships for An+1

and Tn+1,

Tn+1 = Tn + (m/2)1/2
∫ An+1

An

dx[−F0An + V (An)

+ F0x − V (x)]−1/2, for n even, (1)

Tn+1 = Tn − (m/2)1/2
∫ An+1

An

dx[F0An + V (An)

−F0x − V (x)]−1/2, for n odd, (2)

V (An+1) − F0An+1 = V (An) − F0An, for n even, (3)

V (An+1) + F0An+1 = V (An) + F0An, for n odd. (4)

Let us consider the general class of those potentials V (x)
that can be characterized by a single nonlinearity, i.e., V (x) =
λ|x|α/α, where the real variable α with 1 � α � ∞ denotes
the degree on nonlinearity of the oscillator and the positive
constant λ is the amplitude of the potential. We do not
consider the case of those binding potentials for 0 � α � 1,
as the restoring force would be less than the one provided
by the external time-dependent force. As a side issue, we
note that for the special case α = 2 we recover the usual
harmonic oscillator V (x) = m�2x2/2, (if λ = m�2), while
for the largest possible degree of nonlinearity, α = ∞ we
obtain the infinite potential well, which restricts the particle’s
position to −1 � x(t ) � 1 and to a force-free motion between
these turning points. Under this set of single-nonlinearity
oscillators, one can examine the following set of approximate
solutions to Eqs. (1)–(4),

Tn = NT (α)
(m

λ

) 1
2(α−1)

(
m

F0

) α−2
2(α−1)

n
α

2(α−1) , (5)

An = (−1)n+1NA(α)

(
F 2

0

λm

)1/α

T 2/α
n , (6)

where NA and NT are dimensionless parameters to be deter-
mined. The functional form of these two approximate expres-
sions are suggested from a dimensional analysis and also by
generalizing two special limiting cases (see below).

We have illustrated the remarkable accuracy of this set of
solutions for any α, λ and F0 in Fig. 1, where we compare
the predictions of Eqs. (5) and (6) with the exact numerical
solutions to Eqs. (1)–(4) for oscillators with four degrees of
nonlinearity α = 1.5, 2, π, and 4.

The agreement for sufficiently large n is remarkable. We
also see that for α < 2 the durations between the optimal
switching times τn ≡ Tn − Tn−1 increase with the number
n of sign changes, whereas for α > 2 the optimal driving
frequency for the oscillators increases with n.

The dimensionless numerical factors NA(α) and NT (α) in
Eqs. (5) and (6) were obtained such that the values of An and
Tn in the equations match that of the solutions of Eqs. (1)–(4).
These coefficients do not depend on the particle’s mass m, the
external force amplitude F0, nor the strength λ of the potential.
They are therefore unique to each oscillator. We have graphed
them in Fig. 2.
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FIG. 1. Comparison of the predictions for the maximal amplitude |An| and the optimal switching cycle durations τn according to Eqs. (5)
and (6) (open circles) and the exact (solid line) solutions to the iterative set of transcendental Eqs. (1)–(4) for four different oscillators with
α = 1.5, 2, π, and 4. [Other parameters are F0 = 4, m = 1, and λ = 1. We use here and below in all of our numerical illustrations the atomic
unit system.]

Quite remarkably, for a certain range α > 4, NA(α) is
practically constant and depends only very weakly on the
degree of nonlinearity.

There are two interesting, special cases for which An and
Tn, and therefore the numerical values for NA(α) and NT (α),
can be easily derived analytically. The first special case is the
simple harmonic oscillator V (x) = m�2x2/2. The increase
of the turning points with F0 can be determined analytically
as An = (−1)n+1(2n)F0m−1�−2. Also, the corresponding in-
tegrals can be evaluated analytically as well, leading to the
interesting result Tn = (n/2)2π/�, independent of F0. This
means that we obtain NA(2) = 2/π and NT (2) = π . We note
that also the natural period of the corresponding unforced
oscillator (F0 = 0), 2π/�, is independent of the distance
between the two turning points. While in the driven case
(F0 �= 0) the particle is accelerated more between the two
turning points, the resulting distance of travel also increases
with F0.

The second fully analytically accessible system occurs
for α = ∞. Here the maximal excursion amplitude at each
turning point is given by An = (−1)n+1, such that NA(∞) = 1
in Eqs. (5) and (6). Similarly, we obtain Tn = 2(m/F0)1/2n1/2,
such that NT (∞) = 2.
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FIG. 2. The dependence of the coefficients NA and NT with the
degree of nonlinearity α. For the two special cases of α = 2, α = ∞,
we have the set of analytical values NA(2) = 2/π and NT (2) = π

(black dots), and NA(∞) = 1 and NT (∞) = 2 (dashed lines). The
open circles are the actual data determined by matching.

B. Alternative numerical determination
of the optimal force field F(t)

As an alternative method to determine the switch times Tn

for the optimal force field, we can obtain F (t ) directly from
the solution to a single differential equation. This approach
can be computationally more efficient than the tedious recur-
sive method. The key observation is that the optimal force
is always aligned parallel to the instantaneous velocity, i.e.,
F (t ) = F0Sign(dx/dt ). This means, to obtain the optimized
temporal evolution for any oscillator, we can remove this
explicit dependence on this independent variable F (t ) and
simply use this specific functional form in the equation of
motion, i.e., we need to solve

m
d2x

dt2
= −dV

dx
+ F0Sign

(
dx

dt

)
, (7)

with the initial conditions x(0) = dx/dt (0) = 0. This tech-
nique of constructing the optimal F (t ) from the solution of
single differential equation is certainly more efficient and
computationally reliable than trying to solve consistently
the corresponding set of Eqs. (1)–(4). It also incorporates
the easiest form of an instantaneous feedback mechanism
[25–41], where the force is instantly determined by an internal
variable, which is here the velocity dx/dt . Including this
particular instantaneous feedback mechanism removes any
external time-dependent force and the dynamics becomes
autonomous, but as a result, the equation of motion becomes
even more nonlinear in addition to that provided by V (x). The
term F0Sign(dx/dt ) could be interpreted as a “negative drag,”
where the (negative) drag coefficient is inversely proportional
to the particle’s speed |dx/dt |.

III. THE SCALING OF THE ENERGY WITH TIME

We can generalize the scaling laws predicted for systems
with a single-degree of nonlinearity to multiple degrees, such
as the well-known Duffing oscillator [42–44]. We examine
the temporal growth of the oscillator’s energy and suggest a
new scaling law that is universal to any driven classical me-
chanical system under optimal force conditions. We compare
the energy conversion efficiency of the discrete telegraphlike
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FIG. 3. (a) The maximal elongations |An| for the Duffing oscillator as a function of time under optimal driving force F(t) for the first
6000 cycles. For comparison, the two refence lines are |An|(Tn) ∼ T 2α

n from Eqs. (5) and (6) for α = 2 and α = 4, but Tn was used from the
mixed-α system; (b) The instantaneous frequency ω(t ) of the optimal driving force; (c) The instantaneous effective value of the nonlinearity
αeff (t ) ≡ 2[Log(Tn) − Log(Tn−1)]/[Log(An) − Log(An−1)]. (The parameters are � = 2, λ = 0.04, F0 = 1.)

pulse trains with monochromatic forces that are naturally
continuous in time.

A. Effective instantaneous degree of nonlinearity

Here we illustrate our computational method for the spe-
cial example of the (nonlinear) Duffing potential V (x) =
m�2x2/2 + λx4/4. Using the technique outlined above, we
can easily compute the elongation x(t ) under optimal force
conditions, by solving the corresponding differential equation
md2x/dt2 = −m�2x − λx3 + F0Sign(dx/dt ) numerically.

In Fig. 3(a) we have graphed (on a logarithmic scale) the
corresponding absolute value of the amplitude x(t ) for the
parameters m = 1, � = 2, λ = 0.04, and F0 = 1. For conve-
nience we use atomic units. For comparison, we have also
added the single-nonlinearity solutions |An| obtained from
Eq. (6) for α = 2 and α = 4 where we used the numerically
found values of Tn. For our parameters, they grow like x(t ) ∼
t1 (for α = 2) and x(t ) ∼ t1/2 (for α = 4). We see that after a
time of about 25, the linear growth begins to slow down and
after a time around 120 a.u. it becomes equal to a square root
growth. The time for this transition region matches the time
when the two potential energies m�2x2/2 and λx4/4 become
comparable in magnitude. The corresponding elongation x =
�(2m/λ)1/2 amounts to 14 a.u., which is associated with a
time of 60 a.u., which is consistently in the center region of
the transition domain.

In Fig. 3(b) we have converted the sequence of numerically
obtained switching times Tn to the corresponding instanta-
neous frequency ω defined here as ωn = π/(Tn − Tn−1). For
early times, ω matches the natural frequency (� = 2) of
the corresponding harmonic oscillator, after which it grows.
As the instantaneous frequency of the quartic oscillator also
increases with increasing excitation amplitude, one could
conjecture that the optimal chirped frequency of the external
driving force simply matches the natural frequency of the
unforced oscillator for that amplitude. However, we will show
in more detail in Sec. IV below that this is not true and
only approximately valid in the perturbative limit (F0|An| �
V (An)), or for infinitely long times.

The transition between the different temporal scaling re-
gions suggests that for shorter times the harmonic portion
of V (x) determines the overall dynamical response x(t ),
whereas for longer times (and the corresponding larger
excursion distances x) the nonlinear portion of V (x) be-
comes more relevant. This temporally changing degree

of effective nonlinearity can be captured quantitatively
if we define αeff (t ) ≡ 2[Log(An) − Log(An−1)]/[Log(Tn) −
Log(Tn−1)]. This instantaneous nonlinearity represents the
inverse of the slope of the maximal excursion amplitudes of
|x(t )| versus time on double logarithmic axes. It is based
on the scaling law |An| ∼ T 2/α

n characteristic for single-
nonlinearity oscillators; see Eq. (6). To test if the definition of
this new dynamical characteristics αeff (t ) is indeed physically
meaningful, we have graphed it in Fig. 3(c). Complementary
to the increasing instantaneous frequency, it nicely shows that
it starts at the expected value αeff(t ) = 2 for the linearity
dominated early time regime and then changes to approach
αeff(t ) = 4 for the longer times. This nicely illustrates how
one can recover the oscillator’s degree of nonlinearity from its
dynamical response to an optimized force.

B. The temporal growth of the free and total energy

The t2/α scaling of the maximum amplitude characteristic
of each cycle has some remarkably universal consequences
for the corresponding growth of the force-free energy as well
as total energy at those moments in time Tn. The force-free
energy is given by e ≡ (m/2)(dx/dt )2 + V (x). Its temporal
growth satisfies the equation of motion de/dt = F (t )dx/dt ,
which due to the in-phase relationship between the velocity
and the (telegraphlike) optimal force F (t ) = F0Sign(dx/dt ),
reduces to de/dt = F0|dx/dt |. As dx/dx(t ) is a nontrivial, the
exact temporal growth e(t ) can only be obtained numerically,
unless α = 2 or α = ∞. But is clear that e(t ) is a monotoni-
cally growing function of time.

In contrast, the corresponding total energy, denoted by E ≡
(m/2)(dx/dt )2 + V (x) − F0Sign(dx/dt )x, is constant in time
during each cycle when the force is constant. The total energy
during the nth cycle, denoted by En, changes abruptly from En

to En+1 at those moments in time Tn, when the force switches
its sign. This sudden increase at times Tn is given by En+1 −
En = 2F0|An|.

During each cycle there is a distinct moment in time
when the instantaneous values of the two energies e and
E agree with each other. These times occur precisely when
the particle’s position crosses the origin at x = 0 such
that the potential energy V (x) vanishes and both energies
reflect the kinetic energy.

In Fig. 4 we have graphed e(t ) and E (t ) for the optimally
pumped sextic oscillator together with the analytical predic-
tion V (An). While the growth of e(t ) takes a nonlinear but
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FIG. 4. The growth of the force-free energy e(t ) and the total
energy E (t ) as a function of time for the optimally driven sextic
oscillator (α = 6) for the first four cycles. The dashed line and the
four open circles are the associated analytical prediction according
to Eq. (8). (The parameters are (α = 1), F0 = 0.5.)

monotonically growing shape, at the turning points it matches
the analytical prediction

e(Tn) = V (An) = λ|An|α = NA(α)α
(

m

λF0

)
T 2

n , (8)

where we have used Eq. (6) for the dashed line as well as
the open circles. As the α-dependence in the exponent for the
time cancels out, we have here a remarkably universal finding.
This predicts that under optimal driving conditions the energy
growth of any driven oscillator with a single-nonlinearity α

is always quadratic in time, independent of α. However, due
to the possible time-dependence of the effective instantaneous
degree of nonlinearity α(t ) (see Sec. III A) for oscillators with
mixed nonlinearities, the prefactor NA(α(t ))α/λ in Eq. (8)
can vary in time, such that this universal power-law behavior
e(Tn) ∼ T 2

n is only approximately valid for oscillators with
mixed nonlinearities.

For example, for the harmonic oscillator the corresponding
energy en = m−1�2A2

n/2 grows as e(Tn) = (2/π2)F 2
0 m−1T 2

n ,
independent of �.

C. Energy conversion efficiency

The finding that the optimal force field F (t ) has to be a
discontinuous function of time seems to contradict at first
the intuitive expectation that, for example, in the case of
the linear oscillator, a fully resonant situation is usually dis-
cussed for a (continuous) sinusoidal excitation force. In fact,
one could argue that the higher harmonic spectral frequency
components of a (telegraph) square wave function are ac-
tually ‘wasted’ as they do not match the natural resonance
frequency �. To illustrate this point for a simple example,
we have compared the temporal growth of x(t ) obtained
from md2x/dt2 = −m�2x + F (t ), for the two driving forces
F (t ) = F0Sign[sin(�t )] and for Ftrig(t ) = F0 sin(�t ). While
both forces lead to a linear growth of the turning points
x(t ) in time, the prefactor of xopt(t ) (∼(2/π )tF0�

−1; see
Sec. III A) is by a factor of 4/π larger than the one for
xtrig(t )[∼(1/2)tF0�

−1], confirming that for an amplitude con-

straint force field, a discontinuous F (t ) is indeed superior to
the traditional sinusoidal resonant force.

However, this does not mean that the energy transfer effi-
ciency of Fopt(t ) is automatically higher than that of Ftrig(t ).
As both forces are external, any energy depletion mecha-
nism is obviously neglected in this treatment. For example,
in electrodynamics the energy contained in an electric field
pulse is directly proportional to the time-integrated square
of the electric field. One could therefore consider here the
integral

∫
dtF (t )2 as a possible measure for the available

energy reservoir provided by the external force field. as a
possible measure for the available energy reservoir. In this
case, for a fair comparison, we should have compared the
effect of the two equally “energy normalized” forces Fopt(t ) =
F0Sign[sin(�t )] and Ftrig(t ) = 21/2F0Sign[sin(�t )] on the
growth of x(t ). In this case, we find that the growth of the
elongation x(t ) exceeds that of Fopt(t ) by 11%, associated with
a factor of xtrig(t )/xopt(t ) = 21/2(π/4) = 1.11. This confirms
quite interestingly that if we had fixed the total energy of the
force F (t ), i.e.,

∫
dtF 2(t ) (instead of the amplitude), then a

sinusoidal force does indeed lead to a larger amplitude x(t ) as
expected.

IV. OPTIMAL FREQUENCY OF F(T) RELATIVE TO THE
INSTANTANEOUS NATURAL FREQUENCY

As discussed in Sec. II B, we can also examine the prop-
erties of the optimal force F (t ) by solving first the au-
tonomous differential equation md2x/dt2 = −m�2x − λx3 +
F0Sign(dx/dt ) numerically for x(t ) and then computing
dx/dt from this solution, allowing us to construct the optimal
F (t ) = F0Sign(dx/dt ). To better interpret the meaning of
F (t ), we have determined the inverse of the difference be-
tween two consecutive switching times π/(Tn − Tn−1), which
we interpreted in Sec. III A as the instantaneous frequency
of F (t ), denoted by ω(t ). This frequency ω(t ) is graphed in
Fig. 3(b) for m = 1, � = 4 and λ = 0.04. We found that F (t )
is periodic with frequency � for early times, while for longer
times the frequency increases with time.

One could conjecture that the switching time durations,
i.e., τn = Tn − Tn−1, could follow the instantaneous half pe-
riods of the associated natural (unforced) motion associated
with this amplitude. While this correspondence is exactly true
for the harmonic oscillator, i.e., Tn − Tn−1 = π/�, it can only
serve as a rough guidance for the exact switching times.

For example, one can also estimate the amplitude depen-
dence of the corresponding nondriven purely quartic oscillator
(with V (x) = λx4/4) that oscillates periodically between x ±
A, given by τα=4 ≡ (2m)−1/22

∫ A
−A dx[λA4/4 − λx4/4]−1/2.

After rescaling and numerical evaluation of the integral∫ 1
−1 dx(1 − x4)−1/2, we obtain τα=4 ≈ 7.416(λm)−1/2A−1.

However, the true switching time (Tn − Tn−1) is given in
Eqs. (1)–(4) by the integral (2m)−1/2

∫ Aright

−A dx[F0A + λA4/4 +
F0x − λx4/4]−1/2, where Aright follows from −F0Aright +
V (Aright ) = F0A + V (−A). We see that the two integrals dif-
fer in two ways, the expressions in the second square root
contains the additional (positive) term F0(A + x), and also
its upper integration limit is not A but a larger amplitude
Aright. While the first mechanism would decrease the switching
time relative to the natural half period τα=4, the larger upper
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FIG. 5. Comparison of the natural half period of the α = 1.5 oscillator and quartic (α = 4) oscillator (associated with F0 = 0 and the
true required switching durations τn = Tn − Tn−1 for the optimal driving force F (t ) as a function of the left elongation of the particle x(Tn) =
−A).[other parameters are m = 1 and λ = 1]

limit Aright would increase the switching time. To examine
which of these two mechanisms is the dominant one, we have
compared in Fig. 5 τα=4 (given by the open circles) with the
true switching times for F0 = 0.01, 0.1 and 0.3.

There are two interesting observations. First, the required
switch time is a nonmonotonic function of the amplitude A.
For α = 4 and small A the time increases whereas for large
amplitudes it decreases. This immediately suggests that it is
not possible to obtain an optimal driving force where the
instantaneous frequency is a monotonic function of time, i.e.,
a linear chirp is not the best choice. For larger excursions
A, the match is expected as the (spatially constant) force F0

becomes negligible compared to the much larger restoring
force provided by V (x). Also, in the same limit, for large val-
ues of A the solution to −F0Aright + V (Aright ) = F0A + V (−A)
becomes Aright = A. This finding suggests that for early times
(when A is small) the switching time for the optimal F (t )
can only be approximated by the natural half period in the
perturbative limit, when F0 is small.

The second observation suggests that the optimal switching
time should always be chosen shorter than the instantaneous
period for oscillators with α > 2. This means that the cor-
responding instantaneous driving frequency should, at least
for short excitation times, be chosen above the instantaneous
natural frequency of the quartic oscillator. For longer times
(associated with larger amplitudes A), the value of the natural
frequency can serve as a good guidance for the frequencies of
the optimal driving force.

To provide a complete picture, we have compared the
optimal switching durations with the corresponding natural
(amplitude) dependent half-periods also for oscillators with
α < 2. Here the natural periods decrease with increasing
amplitudes. In addition, the optimal switching durations have
to be chosen even longer. In other words, the optimum driving
frequencies need to be red-shifted relative to the increasing
(force-free) oscillation periods.

V. QUANTUM MECHANICAL TWO-LEVEL SYSTEM
UNDER OPTIMIZED EXCITATION

A. The model system and the optimal force to
maximize the final inversion

We show that the same ideas with regard to computing the
optimal external force field for a classical oscillator can be

easily generalized to a nonlinear quantum mechanical system.
It turns out that a suitable chirped telegraph signal provides
also here the optimum force field to maximize the inversion
of this system if the external force is amplitude constrained.

The time-evolution of the quantum state |�(t )〉 of a two-
level system [22–24] is described (in the absence of any deco-
herence) by the two complex probability amplitudes Cg(t ) and
Ce(t ) such that |�(t )〉 = Cg(t )|g〉 + Ce(t )|e〉. The Hamiltonian
describing the energy transfer between the ground state |g〉
and the excited state |e〉 is given (in atomic units) by

H (t ) = ω0|e〉〈e| + F (t ){|e〉〈g| + |g〉〈e|}, (9)

where ω0 is the energy difference between the two levels and
F (t ) denotes the product of the external time-dependent elec-
tric field, whose amplitude is limited by −F0 < Ft < F0 and
the dipole moment of this transition. The Schrödinger equa-
tion id|�(t )〉/dt = H (t )|�(t )〉 leads to two coupled equations
of motion for Cg(t ) and Ce(t ) which preserve |Ce(t )|2 +
|Cg(t )|2 = 1.

We assume that the atom is initially in its ground state,
i.e., Cg(t = 0) = 1 and try to construct the optimal force
F (t ), such that the final inversion (population difference),
defined as S3 ≡ |Ce|2 − |Cg|2, is maximal after the interaction.
It is therefore appropriate to construct first the corresponding
equations of motion for S3. They are given by the coupled set
of three equations [45,46]

dS1/dt = −ω0S2(t ), (10)

dS2/dt = ω0S1(t ) − F (t )S3(t ), (11)

dS3/dt = F (t )S2(t ), (12)

where S1 ≡ CgC∗
e + C∗

gCe and S2 ≡ −i(CgC∗
e + C∗

gCe) are the
real and imaginary parts of the polarization and F (t ) [with
−F (0) � F (t ) � F (0)] is the scaled external force containing
the dipole moment between both states. The set of three
equations for the three (pseudospin) Bloch vector variables
preserve S1(t )2 + S2(t )2 + S3(t )2 = 1, as the corresponding
3 × 3 matrix generator is a real antisymmetric matrix, which
has the eigenvalues 0 and ±i�. Here we denote with � ≡
[ω2

0 + F 2
0 ]1/2 the laser dressed frequency if F (t ) = F0. It

should not be confused with any generalized Rabi-frequency
[(ωL − ω0)2 + F 2

0 ]1/2, which is very different and character-
izes the time-scale for an inversion for a monochromatic
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driving force with frequency ωL in those regions, where the
rotating wave approximation is valid.

Applying the methodology laid out in Appendix A, for the
quantum system the coupling term added to the Hamiltonian
of optimal control theory is given by

h = λ1[−ω0S2] + λ2[ω0S1 − S3F (t )] + λ3S2F (t ), (13)

If we reparametrize the amplitude constrained force again as
F (t ) = F0 sin[ω(t )t], then the corresponding main equation
of optimal control theory, i.e., dh/dω = 0 requires for this
quantum system that any local or global force field also has
to be again discontinuous, in full agreement with the findings
for the classical oscillators discussed in the sections above. In
other words, our problem is once again reduced to computing
the best possible set of switch times Tn for the telegraph
signal F (t ).

B. Analytical estimates of the switching times Tn

We find an analytical expression for the perfect driving
frequency for optimal energy absorption, which is always
larger (blue shifted) than the eigenfrequency associated with
the energy difference between upper and lower state.

The specific structure of the equations Eqs. (10)–(12)
suggests also for the quantum mechanical system a construc-
tive technique for determining the optimal switch times to
maximize S3(t ). While in Sec. III this was guaranteed by
keeping the force F (t ) parallel to the velocity of the particle,
for the two-level system we have to keep the force parallel to
the imaginary part of the polarization S2(t ). In other words,
if we choose F (t ) = F0Sign[S2(t )], then S3(t ) is required to
grow monotonically as the right-hand side (rhs) of Eq. (12)
has to be nonnegative at all times. In addition to constructing
the optimal switch times, we also have to examine under
which conditions for ω0, F0, and the total interaction time we
can achieve an optimum inversion S3 and by how much this
maximally achievable inversion differs from its theoretical
upper limit of S3 = 1.

In Appendix B we derive explicit expressions for the
switching times Tn. For the sequence of switching times for
the optimal telegraphlike force F (t ) are given by Tn = nπ/�,
with n = 1, 2, 3..., N . The total number N of required (equidis-
tant) switching times depends on the amplitude F0 of the force.
The smaller the force, the larger is the number of required
switching cycles. Quite remarkably, this means that each value
of F0 dictates a precise number of switching cycles after which
the dynamics self-terminates.

C. Numerical results for n-cycle thresholds
under optimal force conditions

In this section we illustrate the unusual halt of the temporal
growth of S3(t ) under optimal force conditions and also
compare it with the data for a monochromatic (and therefore
continuous) driving force whose frequency is either at exact
resonance with ω0 or at �.

In Fig. 6 we have graphed the inversion S3(t ) for seven
values of F0 and a level energy spacing ω0 = 2π , which sets
the natural time scale of the system (2π/ω0) to unity.
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FIG. 6. The growth of the inversion S3(t ) under the optimal force
conditions for seven values of F0. We chose ω0 = 2π such that
the time scale can be viewed in units of the natural cycles of the
unperturbed two-level system.

We see that the number of cycles to approach the fi-
nal inversion (when the dynamics self-terminates) decreases
with increasing F0. For the lowest force (F0/ω0 = 1.5), the
quasioscillatory growth takes about seven cycles until the
dynamics self-terminates at S3(t ) close to unity. For the next
two larger forces (F0/ω0 = 2 and 3) it takes five and four
cycles and the final inversion decreases. The next largest force
(F0/ω0 = 4.56) matches exactly the second threshold value
Fthre,2 and we enter the region where the maximal inversion is
reached after two cycles. For an even larger force (F0/ω0 = 7)
the final inversion increases again until for (F0/ω0 = 10.88)
(which matches exactly the first threshold Fthre,1 and we enter
the one-cycle region, in which the inversion increases again
with increasing F0.

To obtain a more quantitative and complete view of this
complicated sequence of increasing and decreasing inversions
as a function of the force amplitude F0, we have graphed in
Fig. 7 the final S3. While in the limits of small as well as large
force amplitudes F0 we can always reach the theoretical upper
limit of S3 = 1, the maximally achievable inversion is indeed a
highly nonmonotonic function of F0, characterized by several
threshold values for F0 = Fthre,n, where the inversion takes a
local minimum. These threshold values describe exactly the
transitions from the n cycle to the (n + 1) cycle regions in
F0. For example, consistent with our analytical derivations
above, we find the first threshold occurs at Fthre,1 = 1.732ω0
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FIG. 7. The maximally achievable inversion as a function of the
force amplitude F0. The minima agree with the n-cyle thresholds.
(ω0 = 1.)
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FIG. 8. The growth of the inversion S3(t ) under the optimal
force conditions. For comparison, the line is the inversion under the
continuous monochromatic driving force F (t ) = F0 sin(ω0t ) and the
dashed line is the response to F (t ) = F0 sin(�0t ) We chose ω0 = 2π ,
such that the time scale can be viewed in units of the natural cycles
of the unperturbed two-level system. [(F0 = 2, corresponding to the
five-cycle regime.)

(with S3 = 0.500). This numerical value matches the exact
analytical value 31/2ω0, which describes the onset of final
inversions that self-terminate after only a single cycle, i.e.,
after a time of T1 = π/[ω2

0 + F 2
0 ]1/2. The transition to the

two-cycle domain (i.e., T2 = 2π/[ω2
0 + F 2

0 ]1/2) occurs for
Fthre,2 = 0.726ω0 (with S3 = 0.809), which matches again
with the analytical estimate Fthre,2 = (5 − 2 × 51/2)1/2ω0 de-
rived above. While it is very difficult to obtain analytical data
for the other thresholds, their numerical values can be deter-
mined from the figure. For example, we find Fthre,3 = 0.482ω0

(with S3 = 0.902), Fthre,4 = 0.364ω0 (with S3 = 0.940), and
Fthre,5 = 0.293ω0 (with S3 = 0.960).

As a final point of discussion and to motivate possible
future research work, we want to briefly compare the tem-
poral growth of the inversion S3(t ) obtained for the opti-
mal telegraph signal with the corresponding response to the
two monochromatic signals F (t ) = F0 sin(ω0t ) and F (t ) =
F0 sin(�0t ), see Fig. 8.

As expected, we find that the telegraph signal minimizes
the required time to reach the maximal inversion. We also
see that the blue-shifted frequency is most advantageous for
the telegraph signal, whereas the bare resonant condition
(driving force frequency = ω0) is favored over the blue shifted
frequency for the monochromatic case. As a side remark, we
note that in this highly nonlinear domain the response is far
from what one could have expected for the rotating wave
approximation where the high-frequency components of the
force-field are neglected in a rotating frame.

VI. SUMMARY AND OUTLOOK TO OPEN QUESTIONS

We have examined the time-dependence of the optimal
external force field F (t ) that can maximize the energy transfer
to any classical nonlinear oscillator as well as a quantum
mechanical two-level atom. We have shown that we can obtain
an excellent estimate for F (t ) if we constrain its amplitude and
require −F0 � F (t ) � F0. Optimal control theory predicts
that under this constraint the optimal F (t ) must be discontin-
uous and alternating at specific times between the values ±F0.
This means, that the problem of constructing F (t ) can be re-
duced to determining the optimal switch times Tn for the sign

of F (t ). As the force is piece-wise constant, we can obtain
analytical estimates for Tn from the corresponding Newton
or Schrödinger equation. In case of an (energy) unbounded
oscillator, the telegraph signal leads to an unlimited growth of
the energy while for the two-level system it can self-terminate
the quantum dynamics.

It turns out that the traditional belief that the optimum
chirp of the force field is the one that perfectly matches
the instantaneous frequency of the force-free system, is only
correct if the amplitude of the force is sufficiently small [11].
In the more general nonperturbative limit, the dressing of the
force field has to be taken into account. This nonlinear mech-
anism [associated with Stark-shifts due to F (t )] effectively
blue-shifts the optimally chirped frequency for those classical
(α > 2) and quantum systems that we have investigated. For
classical oscillators with a nonlinearity (α < 2) a red-shifted
instantaneous driving frequency is required.

In addition to the analytical estimates of the switch time,
we have also proposed a feedback mechanism where the
values of the optimal force field are determined from either the
velocity (classical system) or the imaginary part of the polar-
ization (quantum system). While in any real experimental sys-
tem an instantaneous feedback is not possible, the unavoidable
time delay between the measurement of the dynamical values
and the adoption by the force field would naturally deteriorate
the efficiency of the energy transfer.

It might be interesting to examine if the exact data regard-
ing the red- or blue-shifted instantaneous driving frequencies
for the optimal telegraph signal can be used as a quantitative
guidance for other forces that are continuous in time. As
the analytical predictions rely heavily on the precise validity
of the in-phase relationship between the velocity and force,
they might provide a robust guidance for continuously driven
systems only at either earlier times, or for those forces whose
amplitudes are perturbative compared to dV/dx, such that the
red- or blue-shifts are negligible. To the best of our knowl-
edge, there is presently no reliable analytical guidance for the
optimal chirping of the frequency for strong quasimonochro-
matic driving fields. In this case one could possibly try to
generalize the present approach based on the velocity-force
in-phase relationship for each single force cycle. However, as
the force’s amplitude will be time-dependent in this case, the
corresponding equations that relate two consecutive maximal
elongation amplitudes An and An+1 will be nontrivial.

We would expect that the power-law behavior can be
applied for those potentials with V (x → ∞) �= ∞ to estimate
the smallest possible time duration required to eject a parti-
cle to infinity. In the case of molecular optical physics, the
interatomic Morse-potential [1 − exp(−x)]2 or the Lennard-
Jones potential (|x|−12 − |x|−6) can be used to examine the
scaling of the shortest possible dissociation time with system
parameters under optimal driving conditions.
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APPENDIX A: OPTIMAL CONTROL THEORY FOR AN
AMPLITUDE-CONSTRAINT FORCE FIELD

Here we briefly review how the usual tools of optimal
control theory can be applied to a driven nonlinear oscilla-
tor, given by the Hamilton function H = p2/(2m) + V (x) −
F (t )x. Its Hamilton equations of motion, i.e., dx/dt = p/m
and d p/dt = −V ′ + F (t ) serve as a constraint together with
the limitation of the amplitude of F (t ). To rewrite this con-
strained problem to maximize the final amplitude x(T ) as
an equivalent but unconstrained problem, we can introduce
the two Lagrangian multipliers (costate functions) λ1(t ) and
λ2(t ). As a result, we have to maximize the objective J ,
defined as

J = x(T ) +
∫ T

0
dt

[
λ1

(
p

m
− dx

dt

)

+ λ2(−V ′ + F − d p

dt

)]
, (A1)

This objective J is a functional of F (t ), x(t ), λ1(t ), and λ2(t ).
It turns out that the notation can be simplified if we define
a Hamiltonian h according to h ≡ λ1 p/m + λ2(−V ′ + F ),
leading to

J = x(T ) +
∫

dt

(
λ1

dx

dt
+ λ2

d p

dt

)
+

∫
dt h. (A2)

To account for the force field F (t ) that is amplitude-limited,
i.e., −F0 � F (t ) � F0, we can parametrize the force as
F (t ) = F0 cos[ω(t )t], where the introduced time-dependent
“frequency” ω(t ) is an unknown real function of time. The
optimization goal therefore translates to the determination of
the time-dependence of ω(t ), such that the resulting F (t ) can
optimize the final amplitude of our nonlinear oscillator.

If we compute the variation of the objective δJ , then we
obtain

δJ = δx(T ) +
∫

dt

[
δλ1

dx1

dt
+ λ1δ

(
dx1

dt

)

+ δλ2
d p

dt
+ λ2δ

(
d p

dt

)]
+

∫
dt δh. (A3)

If we integrate the terms containing λ1δ(dx1/dt ) and
λ2δ(dx1/dt ) by parts, and using δx(t = 0) = 0 and δp(t =
0) = 0 due to the fixed initial conditions, then we obtain

−
∫

dt

[
λ1δ

(
dx1

dt

)
+ λ2δ

(
d p

dt

)]

=
∫

dt

(
dλ1

dt
δx + dλ2

dt
δp

)

− λ1(T )δx(T ) − λ2(T )δp(T ). (A4)

Next, the variation of h amounts to δh = (∂h/∂ω)δω +
(∂h/∂x)δx + (∂h/∂λ1)δλ1 + (∂h/∂λ2)δλ2. Using the specific
definition of h, the partial derivatives simplify to ∂h/∂λ1 =
p/m and ∂h/∂λ2 = −V ′ + F .

If we require that the variation δJ vanishes for the optimal
solutions, then we have to require that each co-factor of each
variation, δω, δλ1, δλ2, δx, δp, δx(T ), and δp(T ) vanishes,
i.e., we obtain

∂h/∂ω = 0, (A5)

dx/dt = p/m, with x(0) = 0, (A6)

d p/dt = −V ′ + F, with p(0) = 0, (A7)

dλ1/dt = −∂h/∂x = λ2d2V/dx2, with p(0) = 0, (A8)

dλ2/dt = −∂h/∂ p = λ1/m, with λ2(T ) = 0. (A9)

Equation (A5) is the main control equation and can be
solved. As h ≡ λ1 p/m + λ2[−V ′ + F (t )] we have ∂h/∂ω =
λ2∂F/∂ω = −λ2F0t sin[ω(t )t] = 0. From Eqs. (A8) and (A9)
it follows that neither of the two Lagrange parameters λ1 or λ2

can be zero. Therefore, the frequency ω(t ) can take only dis-
crete values of either ω(t )t = 0 or ω(t )t = π . This means that
the optimal F (t ) is a telegraphlike signal alternating between
−F0 and F0. In other words, it can be expressed as F (t ) =
Sign[g(t )] = F0 g(t )/|g(t )|, where g(t ) can be any function
of time. We also note that Eqs. (A6) and (A7) for the state
variables x(t ) and p(t ) do not contain the costate variables,
and the costate Eqs. (A8) and (A9) for λ1(t ) and λ2(t ) do
not contain explicitly F (t ). But as λ1(t ) and λ2(t ) depend on
x(t ), which the depends on F (t ), the set of equations have
nontrivial solutions.

APPENDIX B: ANALYTICAL ESTIMATES FOR
THE SWITCHING TIMES

In this Appendix we derive the switching times for the
two-level system. Let us first examine the first time interval
from t = 0 to t = T1 with F (t ) = F0 > 0 during which S2(t )
is positive. While there are in general no analytical solutions
for S1(t ), S2(t ), and S3(t ), here F (t ) is piecewise constant and
solutions can be found for each cycle. We obtain

S1(t ) = F0ω0[−1 + cos(�t )]/�2, (B1)

S2(t ) = F0 sin(�t )/�, (B2)

S3(t ) = −[
ω2

0 + F 2
0 cos(�t )

]
/�2. (B3)

This means that S2 remains positive from t = 0 to T1 = π/�.
To construct the second switch time T1, we have to use

S1(T1) = −2F0ω0, S2(T1) = 0, and S3(t ) = −[ω2
0 − F 2

0 ]/�2

as the new initial conditions and the negative force F (t ) =
−F0 for the continued time evolution. Here we obtain the
slightly more complicated solutions

S1(t ) = F0ω0
[−3F 2

0 + ω2
0 + (

F 2
0 − 3ω2

0

)
× cos(�(t − T1))

]
/�4, (B4)

S2(t ) = F0
(
F 2

0 − 3ω2
0

)
sin[�(t − T1)]/�3, (B5)

S3(t ) = [
3F 2

0 ω2
0 − ω4

0 + F 2
0

(
F 2

0 − 3ω2
0

)
× cos(�(t − T1))

]
/�4, (B6)

032202-9



MCGINNIS, HOLLAND, SU, AND GROBE PHYSICAL REVIEW E 101, 032202 (2020)

which, in general, would predict the second switch time to be
T2 = T1 + π/�.

However, St (t ) is only negative in this interval T1 < t < T2

if the prefactor in Eq. (B5) is negative, in other words, if
F0 < 31/2ω0. If, however, it turns out that the magnitude of
the force F0 is actually larger than 31/2ω0, then S2(t ) would
continue to be positive also in this second interval and—
as a result—the rhs of Eq. (12) is negative [as F (t ) < 0].
This would lead to an (undesired) decrease of S3(t ) in this
second cycle. This means that, in retrospect, we should not
have switched the sign of F (t ) at T1 after all. We could
therefore (incorrectly) conjecture that we should have kept the
sign of F (t ) even for t > T1 as positive. Quite interestingly
though, the corresponding solution [for positive F (t )] in this
cycle [given by S2(t ) = F0 sin(�t )/�] is actually negative for
t > T1. This means that unfortunately the rhs of Eq. (12) is
also negative in this case. This means that neither sign of
F (t ) can maintain the desired growth of S3(t ) in the second
cycle. In other words, if F0 > Fthre,1, where the first threshold
is given by Fthre,1 ≡ 31/2ω0, then this particular excitation
scheme under a telegraphlike force field reaches its optimum
inversion already after a single cycle of duration t = π/�,
given by the positive amount

S3,opt(t ) = [
F 2

0 − ω2
0

]
/�2, if F0 > 31/2ω0, (B7)

which takes the value S3,opt = 0.5 at the threshold for F0 =
Fthre,1. Quite interestingly, we will show in Sec. V C that this
particular value is actually the smallest possible inversion for
any optimized telegraphlike excitation.

As a side issue, we mention that this abrupt halt of any
further evolution of S3(t ) is quite fascinating when viewed
from the perspective of the numerical solution to the Eq. (13),
where we have used F (t ) = F0Sign[S2(t )]. At time t = T1,
S2(t ) is numerically extremely close to zero and therefore
the sign of F (t ) basically becomes random and determined
by numerical noise. However, F (t ) remains a function of
the sign of this noisy S2(t ). As a result, the functional form
of Eq. (11) guarantees that S2(t ) remains close to zero and

therefore dS1(t )/dt as well as dS3(t )/dt remain practically
equal to zero. This occurrence of high frequency oscillations
is analogous to the behavior of a simple electronic comparator
with a slow moving, noisy input voltage. Here one usually
employs a positive feedback in the form of a Schmitt trigger
to eliminate the oscillations, which are unwanted in this case.

Let us now return to the case, where F0 < Fthre,1, such that
the sign change of F (t ) to negative for the second cycle actu-
ally continues the desired increase of S3(t ) and the evolution
does not yet self-terminate. We would then find that (after the
above-mentioned time T2 = T1 + π/�) we should switch the
sign of F (t ) back to positive for the third cycle. In this interval
we would obtain the solution for the polarization,

S3(t ) = F0
(
F 4

0 − 10F 2
0 ω2

0 + 5ω4
0

)
sin[�(t − T2)]/�5. (B8)

If F0 is sufficiently small such that the prefactor (F 4
0 −

10F 2
0 ω2

0 + 5ω4
0) is positive, then we have F (t )S2(t ) positive as

desired and the third switch time would be T3 = T2 + π/�.
However, if the prefactor (F 4

0 − 10F 2
0 ω2

0 + 5ω4
0 ) = (F 2

0 −
z2

1ω
2
0 )(F 2

0 − z2
2ω

2
0 ) [with z1 ≡ (5 − 2 × 51/2)1/2 ≈ 0.727 and

z2 ≡ (5 + 2 × 51/2)1/2 ≈ 3.078] happens to be negative, then
similar to the scenario above S2(t ) is negative and leading to
an undesired decrease of S3(t ). As the alternative solutions
for T2 < t < T3 (with a negative sign of the force) would also
lead to a decrease of S3(t ), the evolution would come to a
halt at time t = T2 with the optimum value S3(T2). To reach
the second cycle, we had already required that F0 < 31/2ω0 ≈
1.732ω0. This means that (F 2

0 − z2
1ω

2
0 )(F 2

0 − z2
2ω

2
0 ) is negative

if F0 > z1ω0. This means that

S3,opt = (
6F 2

0 ω2
0 − ω4

0 − F 2
0

)
/�4

× if (5 − 2 × 51/2)1/2ω0 < F0, (B9)

which takes the value S3,opt = (5 + 51/2)/4 at the second
threshold for F0 = Fthre,2 ≡ (5 − 2 × 51/2)1/2ω0. This partic-
ular threshold value is actually the second local minimum of
the inversion for any optimized telegraphlike excitation. If the
force amplitude F0 is smaller than Fthre,2, then this iterative
scheme can be continued, as the telegraph signal given by
F (t ) = F0Sign[sin(�t )] will continue to increase S3(t ).
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