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Possible instability of one-step replica symmetry breaking in p-spin
Ising models outside mean-field theory
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The fully connected Ising p-spin model has for p > 2 a discontinuous phase transition from the paramagnetic
phase to a stable state with one-step replica symmetry breaking (1RSB). However, simulations in three dimension
do not look like these mean-field results and have features more like those which would arise with full replica
symmetry breaking (FRSB). To help understand how this might come about we have studied in the fully
connected p-spin model the state of two-step replica symmetry breaking (2RSB). It has a free energy degenerate
with that of 1RSB, but the weight of the additional peak in P(q) vanishes. We expect that the state with full
replica symmetry breaking (FRSB) is also degenerate with that of 1RSB. We suggest that finite-size effects will
give a nonvanishing weight to the FRSB features, as also will fluctuations about the mean-field solution. Our
conclusion is that outside the fully connected model in the thermodynamic limit, FRSB is to be expected rather
than 1RSB.

DOI: 10.1103/PhysRevE.101.032127

I. INTRODUCTION

The historical importance of p-spin models [1] was that
it was investigations of their properties which led to the
random first-order transition theory (RFOT) of structural
glasses [2–7]. In this paper we shall once again study
the fully connected p-spin glass model described by the
Hamiltonian [1]

H = −
∑

1�i1<···<ip�N

Ji1,i2,...,ipSi1 Si2 · · · Sip, (1)

where Si is the Ising spin at site i, i, . . . , N , and the
bonds Ji1,i2,...,ip are independent random variables satisfy-
ing the Gaussian distribution with zero mean and variance
p!/(2N p−1). At high temperatures, there is a replica sym-
metric (RS) paramagnetic phase. To characterize the nature
of a glass phase it is useful to study the distribution P(q) of
overlaps q, between two copies A and B of the system, where

q = 1

N

∑
i

SA
i SB

i , (2)

and P(q) is defined as

P(q) = PJ (q). (3)

The thermal averaging is done with the Hamiltonians of the
two copies, A and B, and the overline denotes an average over
the bonds. In the paramagnetic (high-temperature) phase of
the Hamiltonian of Eq. (1),

P(q) = δ(q − q0), (4)

where q0 = 0. Much of the work on the p-spin model has
focused on the dynamical transition at a temperature Td , the
temperature below which metastable states exist separated
by barriers of order N . This has connections with the glass

transition Tg of structural glasses. At a lower temperature
T c

1RSB there is a discontinuous phase transition to a state with
one-step replica symmetry breaking (1RSB). The distribution
of overlaps in the low-temperature phase becomes

P(q) = mδ(q − q0) + (1 − m)δ(q − q1), (5)

where 0 � m � 1 and m equals unity at T c
1RSB. The order

parameter q1 is finite at the transition, so the transition is
discontinuous, but there is no latent heat at the transition. In
the RFOT approach to structural glasses T c

1RSB becomes the
Kauzmann transition temperature TK [8], and for temperatures
below TK the phase with 1RSB is the ideal glass phase.
This paper is about the properties of the p-spin system at
temperatures less than T c

1RSB or structural glasses at tempera-
tures below TK . Until recently, behavior at temperatures below
Tg would have been of only academic interest, but the use
of the swap algorithm in simulations [9] and the creation
of ultrastable glasses by vapor deposition has changed that
situation [9,10].

Gardner pointed out [1] that in the fully connected
p-spin model there is a continuous transition (now called the
Gardner transition), at a temperature TG below T c

1RSB, from
the state with 1RSB to a state with full replica symmetry
breaking (FRSB) [11]. Recently there has been much interest
in Gardner transitions in structural glasses, which is reviewed
in Ref. [12].

The chief purpose of this paper is to question whether the
state which exists between TG < T < T c

1RSB really does have
1RSB symmetry breaking. We shall argue that it probably is
much more like a state with FRSB. We reached this conclu-
sion from the calculation done in Sec. II, where we have gone
beyond 1RSB to 2RSB. A 2RSB calculation has already been
done for the p-spin model by Montanari and Ricci-Tersenghi
[13], but it was mostly focused on behavior at T = 0. In a
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2RSB calculation P(q) has the form

P(q) = m1δ(q − q0) + (m2 − m1)δ(q − q1)

+ (1 − m2)δ(q − q2), (6)

where the weights 1 � m2 � m1 � 0.
We shall find in Sec. II that there are two types of solution

for the equations which determine m1, m2, q0, q1, q2 for the
fully connected p-spin model in the limit N → ∞. There is
a solution, which we refer to as the type-II 2RSB solution,
which has a higher free energy than the 1RSB solution at
temperature T < TG (which in the world of replicas makes
it more stable than the 1RSB solution); it is, however, just the
2RSB approximation to the state of FRSB which is expected
for T < TG. It has an extension to the region T > TG, but there
it has a lower free energy than that of the state of 1RSB.

The other solution will be referred to as the type-I 2RSB
solution. It has m2 = m1 = m, where m is that of the 1RSB
solution of Eq. (5). The free energy of this solution is exactly
degenerate with that of the 1RSB state, and because m2 = m1

its P(q) is also identical with that of the 1RSB state: There
is no weight in the δ function at q = q1. One would expect
that similar states will exist at the K level of replica symmetry
breaking, KRSB, all the way up to FRSB. We believe that if
one goes beyond the leading term as N → ∞ to include the
fluctuations around the mean-field limit then the degeneracy
is lifted and the system goes to a state with FRSB, by having
(say) m2 − m1 no longer zero but of order of a small quantity
which vanishes as N → ∞.

We can provide two arguments that 1RSB has to be re-
placed by FRSB. In fact, we believe that there is already
evidence that finite N effects do modify 1RSB order to FRSB
order in the fully connected model. Billoire et al. [14] studied
P(q) of the p = 3 fully connected model for values of N up
to 192. Their P(q) looks remarkably similar to the finite-
size form predicted by Mottishaw and Derrida [15] for the
generalized random energy model (GREM) when FRSB is
present. Unfortunately the treatment in Ref. [15] was not done
using replicas, so it is not obvious how it might be extended
directly to the finite N fully connected p-spin model.

Our second argument also concerns lifting the degeneracy
of the states with KRSB but this time by the fluctuation effects
about the mean-field solution. The 1RSB (and the KRSB)
state do not have massless modes (null eigenvalues in their
Hessian matrix) [16]. For p-spin models with p even and p/2
odd (such as p = 6) the system has time-reversal invariance
and one can calculate the free energy cost of creating a droplet
of reversed spins with linear extent R within the state [17].
(The calculations of this reference need to be qualified to
make it clear that they are only applicable when p is even with
p/2 odd.) The droplet free energy cost varies as ∼exp(−R/ξ ),
where ξ is the longest length scale in the system. Thus the
free energy cost of flipping the spins in a region of size R will
vanish for R � ξ , implying that the state would be unstable
against thermal fluctuations. However, in the presence of
FRSB, one expects massless modes to occur, i.e., that ξ →
∞ [18]. An example of a state with massless modes is the
low-temperature phase of the Ising (p = 2) spin glass, which
is a phase with FRSB [18] and is stable against excitations of
spin-flipped droplets. We would therefore conclude that the

state which exists between TG and T c
1RSB can be stable against

such fluctuations only if it has FRSB. (This argument holds
only for p even with p/2 odd, but we suspect that for other p
values droplets—but not simply time-reversed droplets—will
exist to destabilize them also.)

In Sec. II we set up the 2RSB calculations and present the
main results. In Sec. III we introduce types of (M − p) models
which are convenient for describing fluctuation effects when p
is even, the “balanced” (M − p) models, and show that among
them there is a subset, those with p even and p/2 odd, for
which the calculations in Ref. [17] are valid. In Sec. IV we
speculate what might happen in physical dimensions like d =
3, which are a long way away from the mean-field limit of the
fully connected model studied in Sec. II. There are simulations
in three dimensions which have FRSB-like features [19,20]. It
is these studies which suggested to us that the state of 1RSB
might just be a feature of the infinite N fully connected p-spin
model. We shall also comment on the possible relevance of
our work to structural glasses (which is the reason one studies
p-spin models) and speculate as to whether the fluctuations
remove not only 1RSB but FRSB in three dimensions.

II. THE FULLY CONNECTED p-SPIN GLASS MODEL

In this section, we study the fully connected p-spin glass
model described by the Hamiltonian of Eq. (1) in the limit
when the number of spins N goes to infinity. The replicated
partition function averaged over the random couplings at
inverse temperature β can be expressed [1] as integrals over
the auxiliary fields qab and λab as

〈Zn〉 = enNβ2/4
∫ ∏

a<b

dqab

∫ ∏
a<b

dλab exp[−NG(qab, λab)],

(7)

where the qab and λab are symmetric matrices with the replica
indices a, b = 1, 2, . . . , n with zero diagonal part and

G(qab, λab) = −β2

4

∑
a �=b

qp
ab + 1

2

∑
a �=b

λabqab

− ln TrSa exp

⎡
⎣1

2

∑
a �=b

λabSaSb

⎤
⎦. (8)

In the large-N limit, the integral in Eq. (7) is given by the
saddle-point values of qab and λab The free energy per site of
the p-spin spin glass model is then given by

F

N
= 1

β
lim
n→0

1

n
G[qab, λab] − β

4
, (9)

where the saddle-point values of qab and λab are assumed to
be used.

If we take the replica symmetric form, qab = q and λab = λ

for a �= b, the solution to the saddle-point equations are given
by λ = q = 0, and the free energy per site is just

FRS

N
= −β

4
− ln 2

β
. (10)
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The entropy per site is then given by

SRS

N
= ln 2 − β2

4
, (11)

which becomes negative for temperature T < T∗ ≡
1/(2

√
ln 2) � 0.601.

A. One-step replica symmetry breaking

We now consider the case where the saddle-point values of
qab and λab take the 1RSB form, where qab and λab is equal
to q and λ on n/m diagonal blocks of size m and q0 and λ0

outside the blocks, respectively. The detailed derivations can
be found elsewhere [1,16], and we present the relevant results
in the following.

In the absence of an external field, the 1RSB saddle points
are given by q0 = λ0 = 0. The other parameters are deter-
mined by

λ = β2

2
pqp−1 (12)

and

q =
∫

Dy coshm(
√

λy) tanh2(
√

λy)∫
Dy coshm(

√
λy)

, (13)

where ∫
Dz ≡ 1√

2π

∫ ∞

−∞
dz e−z2/2. (14)

The free energy for the 1RSB solution is given by

F1RSB

N
= −β

4
[1 + (1 − m)(p − 1)qp − pqp−1]

− ln 2

β
− 1

βm
ln

∫
Dy coshm(

√
λy). (15)

There is another saddle-point equation which is obtained by
varying the free energy with respect to m:

0 = β2

4
qp(p − 1) + 1

m2
ln

∫
Dy coshm(

√
λy)

− 1

m

∫
Dy coshm(

√
λy) ln[cosh(

√
λy)]∫

Dy coshm(
√

λy)
= 0. (16)

We note that when m = 1, F1RSB becomes equal to FRS in
Eq. (10). We determine the temperature T c

1RSB at which the

two free energies are equal to each other by setting m = 1 in
Eqs. (13) and (16) and by solving the equations for β. We have
T c

1RSB � 0.651 for p = 3.
As noted by Gardner in Ref. [1], the 1RSB solution is

stable only when

q

(p − 1)λ
>

∫
Dy coshm−4(

√
λy)∫

Dy coshm(
√

λy)
. (17)

If we use the 1RSB solution, this equation translates into T >

TG, where TG � 0.24 for p = 3.

B. Two-step replica symmetry breaking

We now consider the case where qab takes the two-step
replica symmetry breaking (2RSB) form with values q0,
q1, and q2 specified by the parameters m1 and m2. There
are n/m1 diagonal blocks of size m1 denoted by Bi, i =
1, . . . , n/m1. Outside Bi, qab = q0. Inside each Bi, qab = q1

except for m1/m2 diagonal blocks of size m2 denoted by B j
i ,

j = 1, . . . , m1/m2, where qab = q2. λab takes the same form
with λ0, λ1, and λ2. The terms in the free energy are now given
by∑

a �=b

qp
ab = n

[
(m2 − 1)qp

2 + (m1 − m2)qp
1 + (n − m1)qp

0

]
,

(18)∑
a �=b

λabqab = n[(m2 − 1)λ2q2 + (m1 − m2)λ1q1

+ (n − m1)λ0q0], (19)

and

1

2

∑
a �=b

λabSaSb = λ0

2

n∑
a �=b

SaSb+ 1

2
(λ1 − λ0)

n/m1∑
i=1

∑
a, b∈Bi

a �=b

SaSb

+ 1

2
(λ2 − λ1)

n/m1∑
i=1

m1/m2∑
j=1

∑
a, b∈B j

i
a �=b

SaSb. (20)

We then decouple the terms containing spins with two differ-
ent replica indices using the Hubbard-Stratonovich transfor-
mation. After taking the trace over the spins, we obtain the
expression for the 2RSB free energy as

F2RSB

N
= −β

4

[
1 + (m2 − 1)qp

2 + (m1 − m2)qp
1 − m1qp

0

] + 1

2β
[(m2 − 1)λ2q2 + (m1 − m2)λ1q1 − m1λ0q0]

+ λ2

2β
− ln 2

β
− 1

βm1

∫
Dz ln

∫
Dy

{∫
Dw coshm2 [η(z, y,w)]

}m1/m2

, (21)

where

η(z, y,w) =
√

λ0z +
√

λ1 − λ0y +
√

λ2 − λ1w. (22)

Varying the free energy with respect to qi, we obtain λi = β2 pqp−1
i /2 for i = 0, 1, and 2.
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The saddle-point equation obtained from varying λ0 gives

q0 =
∫

Dz

[∫
Dy {∫ Dw1 coshm2 [η(z, y,w1)]}

m1
m2

−1 ∫
Dw2 coshm2 [η(z, y,w2)] tanh[η(z, y,w2)]∫

Dy {∫ Dw coshm2 [η(z, y,w)]}
m1
m2

]2

. (23)

We can show that q0 = 0 and λ0 = 0 are solutions to the above equation and set them to zero from now on. Varying the free
energy with respect to λ1 and λ2 gives, respectively,

q1 =
∫

Dy {∫ Dw1 coshm2 [ζ (y,w1)]}
m1
m2

−2{∫ Dw2 coshm2 [ζ (y,w2)] tanh[ζ (y,w2)]}2∫
Dy {∫ Dw coshm2 [ζ (y,w)]}

m1
m2

(24)

and

q2 =
∫

Dy {∫ Dw1 coshm2 [ζ (y,w1)]}
m1
m2

−1 ∫
Dw2 coshm2 [ζ (y,w2)] tanh2[ζ (y,w2)]∫

Dy {∫ Dw coshm2 [ζ (y,w)]}
m1
m2

, (25)

where

ζ (y,w) =
√

λ1y +
√

λ2 − λ1w. (26)

Using q0 = λ0 = 0, we can rewrite the free energy, Eq. (21), as

F2RSB

N
= − β

4

[
1 + (p − 1)

{
(1 − m2)qp

2 + (m2 − m1)qp
1

} − pqp−1
2

] − ln 2

β
− 1

βm1
ln

∫
Dy

{∫
Dw coshm2 [ζ (y,w)]

}m1/m2

.

(27)

We evaluate the 2RSB free energy by solving the above
saddle-point equations numerically. There are two more
saddle-point equations which can be obtained by varying the
free energy with respect to m1 and m2. We find, however, that
finding a numerical solution of the full set of these coupled
saddle-point equations is rather tricky. It is more convenient
to solve the two equations (24) and (25) first for given m1

and m2 at fixed inverse temperature β. We then evaluate F2RSB

from Eq. (27) and find the values of m1 and m2 that maximize
the free energy. Since 1 � m2 � m1 � n, we have to have
0 � m1 � m2 � 1 in the limit n → 0.

Before presenting the 2RSB solution, we first look at the
trivial limits of these equations. We first note that q1 = 0 is
always a solution to Eq. (24), since the integrals become in-
dependent of y with ζ = √

λ2w. When q1 = λ1 = 0, Eq. (25)
for q2 becomes exactly the same as Eq. (13) for the 1RSB
solution if we regard q2 and m2 as the 1RSB parameters q and
m, respectively. The 2RSB free energy, Eq. (27) also reduces
to the one for the 1RSB scheme, Eq. (15). We note that this
solution is independent of m1.

There is another limit where the equations reduce to the
1RSB ones. It is the case where q1 = q2. We can indeed check
this is a solution if we take λ1 = λ2 in Eqs. (24) and (25). We
find the integrals over w can be done easily as the integrands
become independent of w. The right-hand sides of the two
equations become identical to each other and also to Eq. (13)
for the 1RSB case if we regard q1 = q2 and m1 as the 1RSB
parameters q and m, respectively. We can also check in this
limit that the free energy reduces to the 1RSB one. In this
case, the solution is independent of m2.

The 2RSB solution we look for in this paper therefore
corresponds to the case where 0 < q1 < q2. At fixed tempera-
ture, we solve Eqs. (24) and (25) numerically for given values
of m1 and m2. We find that there are two different types of

2RSB solutions, which we denote by type-I and type-II in
the following. The type-I solution is characterized by q1 being
much smaller than q2, and it exists in the entire temperature
range below T c

1RSB. At fixed temperature, we calculate the free
energy for the type-I solution for various values of m1 and
m2. For given m1, we find that the free energy is always a
decreasing function of m2(� m1) so that the maximum free
energy for given m1 is always at m2 = m1. As we change the
value of m1, we find that the maximum occurs when m1 is
equal to the 1RSB solution m(T ) at that temperature. In Fig. 1
we plot the type-I 2RSB solutions, q1 and q2 as a function of
temperature. In the zero-temperature limit, q2 approaches 1,
while q1 saturates to a constant value around 0.52.

0 0.1 0.2 0.3 0.4 0.5
T

0.4

0.5

0.6

0.7

0.8

0.9

1

q 1, q
2

FIG. 1. Type-I 2RSB solutions, q1 and q2 as functions of temper-
ature T for p = 3. Squares (blue) and circles (red) correspond to q1

and q2, respectively.
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0 0.1 0.2 0.3 0.4
T

0.9

0.92

0.94

0.96

0.98

1

q 1, q
2

TG

FIG. 2. Type-II 2RSB solutions, q1 and q2 as functions of tem-
perature T for p = 3. Squares (blue) and circles (red) correspond to
q1 and q2, respectively. The filled and open symbols correspond to
the cases m(T ) < m∗

1 (T ) and m(T ) > m∗
1 (T ) (see Fig. 3). TG is the

Gardner temperature.

We can see that the type-I 2RSB solution with m1 = m2

actually reproduces the 1RSB free energy in the following
way. If we put m1 = m2 in Eq. (25), it becomes

q2 =
∫

Dy
∫

Dw coshm2 [ζ (y,w)] tanh2[ζ (y,w)]∫
Dy

∫
Dw coshm2 [ζ (y,w)]

. (28)

If we use the notation

σ1 =
√

λ1, σ2 =
√

λ2 − λ1, (29)

and the vector notation �σ = (σ1, σ2) and �r = (y,w) for the
integration variable y and w, then ζ (y,w) = �σ · �r, and we can
rewrite Eq. (28) as

q2 =
∫

D2�r coshm2 (�σ · �r) tanh2(�σ · �r)∫
D2�r coshm2 (�σ · �r)

, (30)

where ∫
D2�r ≡

∫
Dy

∫
Dw =

∫
d2�r
2π

e−|�r|2/2. (31)

Since the right-hand side of Eq. (30) depends only on |�σ |, it
determines the value of |�σ | or

q2 =
(

2λ2

pβ2

)1/(p−1)

=
(

2|�σ |2
pβ2

)1/(p−1)

(32)

for given m1 = m2 and β. We note that this equation is exactly
the same as the 1RSB one [Eq. (13)] with q2 and |�σ | playing
the role of q and

√
λ, respectively, for the 1RSB case. The

2RSB free energy [Eq. (27)] also becomes the 1RSB one
[Eq. (15)] when m1 = m2. Therefore q2 shown in Fig. 1 is
the same as q for the 1RSB scheme. On the other hand, the
equation for q1 [Eq. (24)] becomes decoupled from the rest of
the equations for m1 = m2, and in particular does not appear
in the free energy expression. The solution of this equation for
q1 is shown in Fig. 1.

The type-II 2RSB solution is characterized by q1 being
closer to q2 than the type-I counterpart as shown in Fig. 2.

0 0.1 0.2 0.3 0.4
T

0

0.1

0.2

0.3

0.4

0.5

m
1, m

2

TG

FIG. 3. Type-II 2RSB solutions, m1 and m2 as functions of tem-
perature T for p = 3. Circles (red) and and squares (blue) correspond
to m1 and m2, respectively. The solid line is the 1RSB solution m(T ).
The dashed line is m∗

1 (T ) above which the type-II 2RSB solution
disappears. The filled and open symbols correspond to the cases
m(T ) < m∗

1 (T ) and m(T ) > m∗
1 (T ), respectively. TG is the Gardner

temperature.

The type-II solution is certainly the relevant solution for tem-
peratures below TG. At fixed temperature, we again calculate
the type-II 2RSB free energy for various values of m1 and
m2. For given m1, the maximum free energy occurs at some
value of m2 which is larger than m1. If we now change m1,
we find that the type-II solution ceases to exist for m1 larger
than some value m∗

1 (T ). At low temperatures, this limiting
value m∗

1(T ) is larger than the 1RSB values m(T ). We find
that the free energy achieves a maximum when m1 is equal
to the 1RSB value m(T ) and at some m2 which is larger than
m1 = m(T ). These values of m1 and m2 are shown in Fig. 3
as filled symbols. At relatively high temperatures, m∗

1 (T ) is
smaller than m(T ); that is, before m1 reaches the 1RSB value
m(T ), the solution disappears. Then the maximum free energy
just corresponds to m1 = m∗

1 (T ) and m2 being equal to some
value larger than m1 = m∗

1 (T ). These are shown in Fig. 3 as
open symbols. As we can see from Fig. 2 and Fig. 3, the
temperature dependence of the parameters is quite different
for temperature above and below TG. The change of behavior
actually occurs at a temperature T � 0.22 for p = 3, which
is quite close to but just below TG. (We suspect that for
KRSB as K grows, the change of behavior will approach TG.)
This alteration in behavior is also reflected in the type-II free
energy and is shown in Fig. 4. The 2RSB free energy is larger
than the 1RSB one for T < 0.22 ≈ TG but becomes smaller
than the 1RSB value at temperatures T > TG. It is clear that
the type-II solution is just the 2RSB approximation to the
state with FRSB, which is expected below TG [1]. What is
perhaps surprising is that this solution has an extension into
the temperature region T > TG. Our numerical work fails to
find it above a temperature T ∗∗. Note that q1 → q2 as T grows
towards T c

1RSB. If q1 = q2 the P(q) of 2RSB in Eq. (6) reduces
to the 1RSB form of Eq. (5). The iterative procedure used
locks onto this 1RSB solution above T ∗∗ rather than the 2RSB
solution.
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0 0.1 0.2 0.3 0.4
T

-0.817

-0.816

-0.815

-0.814

-0.813

F
/N

TG

FIG. 4. The free energy per site of the type-II 2RSB solution
(squares) vs the 1RSB free energy per site (circles).

We have restricted our studies of the 2RSB state to the
physical region where m2 � m1 so that the probability associ-
ated with the δ function in Eq. (6) at q = q1 remains positive.
There are solutions in the unphysical region where m2 < m1

but they cannot be of physical significance. However, in a dif-
ferent but related context, solutions with negative probabilities
have been discussed in the literature [21,22] and related to the
properties of metastable states or barriers. The type-I solution
is stationary (a maximum) along the line m1 = m2, but not
a true saddle point in the full physical region of the m1, m2

space. The type-II solution is a genuine stationary solution in
these variables provided T < TG. The ideal solution would be
a saddle point rather than one having to be constrained “by
hand” to lie in the physical region. However, we expect that
this difficulty will go away in the K → ∞ limit when the
system is stabilized by finite-size effects or by fluctuations.
It is invariably the case that for a system which has FRSB is
approximated by KRSB there are unsatisfactory features to be
found in that level of approximation.

III. THE CASE OF p EVEN, p/2 ODD

The results in Sec. II are for the fully connected p-spin
model which provides the mean-field limit for the p-spin

model. To go beyond mean-field theory many workers have
found it convenient to study a generalization of the p-spin
model, the so-called (M − p) models in which one has M
different types of Ising spins coupled by short-range (usually
nearest-neighbor) p-spin interactions [16,19,23–26]. In this
section we introduce a model of this kind which provides
a convenient way of discussing fluctuation effects when p
is even. We refer to it as the “balanced” (M − p) model as
in this model if x and y denote two nearest-neighbor points
on a lattice there are always p/2 spins on site x and p/2
spins on site y. In the usual (M − p) model, the number
of spins on either x or y can range from 1 up to p − 1.
The big advantage of the balanced model is that with it
there is no need to introduce hard and soft modes, as in
Refs. [23,25].

Denote the M different spins which can be placed at site
x by Si(x), i = 1, 2, . . . , M. We shall focus on the case when
p = 6. Let us define for this case

Rαβ (x) ≡ 1

M3

M∑
i1<i2<i3

Sα
i1 (x)Sβ

i1
(x)Sα

i2 (x)Sβ
i2

(x)Sα
i3 (x)Sβ

i3
(x) (33)

= 1

3!M3

M∑
i1, i2, i3
distinct

Sα
i1 (x)Sβ

i1
(x)Sα

i2 (x)Sβ
i2

(x)Sα
i3 (x)Sβ

i3
(x)

= 1

6

[
1

M

M∑
i

Sα
i (x)Sβ

i (x)

]3

− 3M − 2

6M3

M∑
i

Sα
i (x)Sβ

i (x)

� 1

6
Q3

αβ (x), (34)

where in the large-M limit, the second term, which comes
from the diagonal elements, is subleading, and we have de-
fined

Qαβ (x) ≡ 1

M

M∑
i

Sα
i (x)Sβ

i (x). (35)

The Hamiltonian for the balanced (M − p) model for
p = 6 is

H = −1

2

∑
x �=y

M∑
i1<i2<i3

M∑
j1< j2< j3

J (i, j)
(x,y) Si1 (x)Si2 (x)Si3 (x)S j1 (y)S j2 (y)S j3 (y), (36)

and each J (i, j)
(x,y) is chosen independently from a Gaussian distribution of variance J2/M p−1 and it couples only sites x and y, which

are nearest neighbors. The replicated partition function for the even p balanced model basically looks like

Zn ∼ Tr exp

⎡
⎣1

2

∑
x,y

K (x, y)
∑
α<β

Rαβ (x)Rαβ (y)

⎤
⎦ ∼

∫ ∏
x

α<β

dφαβ (x) exp

⎡
⎣−1

2

∑
x,y

∑
α<β

φαβ (x)K−1(x, y)φαβ (y)

⎤
⎦

× Tr exp

⎡
⎣∑

x

∑
α<β

φαβ (x)Rαβ (x)

⎤
⎦, (37)
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where K (x, y) is zero if x and y are not nearest neighbors.
Reference [25] distinguishes the case of p even and p/2 even
(such as p = 4) and the situation when p is even and p/2
is odd (such as p = 6). In the case of p = 4 the field theory
in φαβ has terms like w2φ

3
αβ with w2 nonzero, which can be

obtained by tracing out Rαβ . For the case p = 6 coefficients
like w2 are all zero. In other words, the field theory in terms of
φαβ for p = 6 is manifestly time-reversal invariant and rather
like that of the zero field Ising spin glass model. For p = 4 the
field theory is more like that of the Ising spin glass model in a
field.

A. The fully connected limit of the balanced model

For the fully connected p = 6 balanced model each J (i, j)
(x,y)

is chosen independently from the Gaussian distribution with
zero mean and the variance

J2

NM p−1
= J2

NM5

for p = 6. We shall now show that when M is large the fully
connected balanced model reduces to the p = 6 model in
Eq. (8).

The replicated and bond-averaged partition function is

Zn = enNCTr exp

⎡
⎣β2J2M

4N

∑
x �=y

∑
α �=β

Rαβ (x)Rαβ (y)

⎤
⎦, (38)

where C is a constant coming from the diagonal replica terms
and Rαβ (x) is a shorthand notation for the collection of spins
given in Eq. (33). This can be rewritten using the integral
representation (via �αβ) of the δ function constraint enforcing
Rαβ = 1

N

∑
x Rαβ (x) or

NMRαβ = 1

M2

∑
x

M∑
i1<i2<i3

Sα
i1 (x)Sβ

i1
(x)Sα

i2 (x)Sβ
i2

(x)Sα
i3 (x)Sβ

i3
(x)

(39)
as

Zn = enNC
∫ ∏

α<β

dRαβ

∫ ∏
α<β

d�αβ exp

⎡
⎣β2J2NM

4

∑
α �=β

R2
αβ

(40)

− NM
∑
α<β

�αβRαβ + N ln TrS eA(�)

⎤
⎦, (41)

where

A(�) =
∑
α<β

�αβ

M2

M∑
i1<i2<i3

Sα
i1 Sβ

i1
Sα

i2 Sβ
i2

Sα
i3 Sβ

i3
(42)

and we have neglected the diagonal terms in sites which
are subleading in the large-N limit. In the large-N limit, the
integral is dominated by the saddle-point values. Varying with
respect to Rαβ , we have

�αβ = β2J2Rαβ. (43)

The replicated partition function can now be written as

Zn = enNC
∫ ∏

α<β

dRαβ

× exp

⎛
⎝−β2J2NM

2

∑
α<β

R2
αβ + N ln TrS eA(R)

⎞
⎠. (44)

From Eq. (42), we have

A(R) = β2J2M
∑
α<β

Rαβ

M3

M∑
i1<i2<i3

Sα
i1 Sβ

i1
Sα

i2 Sβ
i2

Sα
i3 Sβ

i3

= β2J2M
∑
α<β

Rαβ

3!M3

M∑
i1, i2, i3
distinct

Sα
i1 Sβ

i1
Sα

i2 Sβ
i2

Sα
i3 Sβ

i3

� β2J2M

6

∑
α<β

Rαβ

(
1

M

M∑
i

Sα
i Sβ

i

)3

, (45)

where we have neglected the subleading terms in the large-M
limit. We again insert the δ function constraint using λαβ to
enforce

qαβ = 1

M

M∑
i

Sα
i Sβ

i , (46)

and then we have

Zn = enNC
∫ ∏

α<β

dRαβ

∫ ∏
α<β

dqαβ

∫ ∏
α<β

dλαβ

× exp

⎛
⎝−β2J2NM

2

∑
α<β

R2
αβ + β2J2NM

6

∑
α<β

Rαβq3
αβ

− NM
∑
α<β

λαβqαβ + NM ln Tr eÃ(λ)

⎞
⎠, (47)

where

Ã(λ) =
∑
α<β

λαβSαSβ. (48)

The saddle-point equation for Rαβ gives

Rαβ = 1
6 q3

αβ, (49)

and we have

Zn = enNC
∫ ∏

α<β

dqαβ

∫ ∏
α<β

dλαβ exp[NMG(q, λ)], (50)

where

G(q, λ) = β2J2

72

∑
α<β

q6
αβ −

∑
α<β

λαβqαβ + ln Tr eÃ(λ). (51)

This is the standard expression for the fully connected six-
spin model if we change J2 → 36J2; compare Eq. (8). [The

032127-7



J. YEO AND M. A. MOORE PHYSICAL REVIEW E 101, 032127 (2020)

first term is (β2J2/2)
∑

α<β qp
αβ for the p-spin model.] The

saddle-point equations are

λαβ = β2J2

12
q5

αβ, (52)

qαβ = 〈SαSβ〉Ã. (53)

B. Instability of the 1RSB state against thermal fluctuations
of time-reversed droplets for p even, p/2 odd

In Ref. [17] one of us argued that the 1RSB state in the M −
p model is unstable against thermal fluctuations and so cannot
exist outside the mean-field limit. The argument was based on
calculating the interface free energy obtained by reversing the
signs of J (i, j)

(x,y) for the couplings across a d − 1 dimensional
hyperplane. A system like the balanced (M − p) model with
p = 6 has the features for which the calculation of Ref. [17] is
valid. For odd values of p and for p even with p/2 even (such
as p = 4) (i.e., for situations where w2 �= 0) the arguments
of this reference need modifying. We suspect that there are
fluctuations which will also destabilize their 1RSB state, but
it is only for the case of p even, p/2 odd such as p = 6 that we
can explicitly identify the destabilizing fluctuations as time-
reversed droplets and do the calculations which show that in
the 1RSB state these droplets cost very little energy so that
thermal excitation of them will destroy the 1RSB order.

The key observation is that for p = 6 the field theory has
w2 = 0, i.e., it has the same features as the Ising spin glass
in zero applied field. This is not the case for p = 4 which
has w2 nonzero. For it flipping the sign of the bonds across a
d − 1-dimensional hyperplane induces complicated changes
to the state whereas for p = 6 the field φαβ merely has a
sign change, just as for the Ising case studied in Ref. [27]
which were carried over into Ref. [17]. We will not repeat the
details of the calculation here. The essence of the calculation
is that the interface free energy will be vanishingly small in
any state which is not marginal. In the 1RSB state (or KRSB
state with K finite) there are no massless modes. We deduce
from this that it is only in the mean-field limit that the 1RSB
state can be stable for p = 6. In any finite dimension it will be
unstable. In its place we believe that there is a discontinuous
transition to a state with FRSB. In states with FRSB there are
marginal modes which stabilize the system against destruction
by time-reversed thermal fluctuations.

IV. DISCUSSION

We know of no simulations of (M − p) models with p = 6.
There are, however, simulations of models of (M − p) models
with p = 4 in Ref. [19]. When p = 4 there is time-reversal
invariance just as for p = 6, so its P(q) in the 1RSB state
will have support over the full range −1 < q < 1. For models
with time-reversal invariance Eq. (5) P(q) at mean-field level
becomes (with q0 = 0)

P(q) = mδ(q) + (1 − m)/2δ(q − q1) + (1 − m)/2δ(q + q1).

(54)

Note that here q relates to the overlap of two copies of the
system as in Eq. (2). The δ functions in the simulations of

Ref. [19] were smeared out, although it is not clear whether
this was due to finite-size effects in the system or arising
because the system is just not in the 1RSB state.

There are other simulational studies on the p = 4 model
in three dimensions which reveal striking differences with
the results which might have been expected based on stud-
ies of the fully connected p-spin model. Franz and Parisi
[20] found for both M = 3 and M = 4 that as the tempera-
ture is reduced in the high-temperature paramagnetic phase
there was a growing (possibly diverging) length scale and
susceptibility. In both the RS and 1RSB phases the length
scales can be calculated, and at least at the level of Gaussian
fluctuations about the mean-field solution no divergence as
T → T c

1RSB [16] arises. (The study of the length scales in the
p-spin type of model at Gaussian level is not straightforward
[16,28,29], because one has to consider fluctuations in the
size of the blocks in the 1RSB matrix. It may also be further
complicated by the need to allow for the degeneracy of the
free energy of states with KRSB as found in this paper.)
At Gaussian level the length scales are determined by the
eigenvalues of the Hessian matrix: For the RS and 1RSB states
there are no null eigenvalues and therefore no long length
scales [16].

Campellone et al. [19] suggested that the difference be-
tween their results and the mean-field picture was due to
nonperturbative contributions which had produced in P(q)
features usually associated with that of full replica symmetry
breaking (FRSB) but did not provide any details of how
this might arise. We have argued that fluctuations around the
mean-field solution will convert the order below T c

1RSB from
1RSB to FRSB in finite dimension, but we too are unable to
provide a quantitative treatment.

If the discontinuous transition at T c
1RSB is to a state which

has FRSB, a number of questions arise. One concerns the ex-
istence of the Gardner transition [1,11] which is a continuous
transition from within the 1RSB state to a state with FRSB.
As we are claiming that there is already FRSB present for
T < T c

1RSB, it becomes a moot point as to whether in such a
situation there will still be a Gardner transition.

The field theory of the balanced (M − p) models is in the
variable φab. This field theory has quite different physics for
the cases p = 4 and p = 6 where in the latter case w2 = 0.
The Gardner transition is to a state similar to that expected
from the Ising model in a field [1]. It is difficult to see how
that would happen in finite dimensions for the p = 6 balanced
model.

Another question concerns suspicions that FRSB may not
actually exist in dimensions d < 6 [30–32]. That might be
the reason why within the Migdal-Kadanoff RG procedure
applied to the M − p spin model with p = 3 and M = 2
and M = 3 in dimensions d = 3 and d = 4 we failed to see
any phase transition [23,26] as the temperature was reduced.
There was, however, evidence of an “avoided” transition as
the correlation length grew considerably, just as was reported
in the direct simulations of Refs. [19,20]. An avoided tran-
sition is one at which the correlation length grows but not
to infinity as the temperature is reduced. The p-spin type
of model seems in low dimensions, i.e., d = 3 or d = 4, to
have similarities with the Ising spin glass in an external field.
Thus the effect of fluctuations around the mean-field solution
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might be to remove the discontinuous transition completely in
low dimensions, though that might occur for d > 6 where we
expect FRSB to survive.

Since p-spin models are of interest only by virtue of their
possible relevance to structural glasses and RFOT theory, we
shall comment on possible implications of this avoided transi-
tion for them. The length scale in the high-temperature phase
in structural glasses is that of the point-to-set length scale ξPTS

[33,34] and according to the RFOT [2–6] ξPTS diverges at the
Kauzmann temperature TK [8], the temperature at which the
configurational entropy per particle sc is supposed to vanish.
Below TK the glass is hypothesized to enter the so-called
“ideal glass state” [2,3,6] where the configurational entropy
sc is zero. The growth of ξPTS is driven by the “rarefraction”
of states as T → TK . (Some suspect [35,36] that sc never
actually vanishes.) Now, as the temperature is reduced below
the glass transition temperature Tg, ξPTS increases [37,38].
In the vicinity of Tg, ξPTS is actually small, only a few
molecular diameters [34,37,38]. As a consequence of new
simulational methods (the swap algorithm [9,38]) it has now
become possible to study ξPTS at temperatures well below
Tg where indeed it becomes somewhat longer. According to
RFOT theory it diverges as T → TK , but if the discontinuous
transition is removed by fluctuations around the mean-field
solution and the transition is avoided, the correlation length
will not actually diverge, just as was seen in the Migdal-
Kadanoff RG procedure [23,26].

A recent attempt to explain the growing length scale can be
found in Refs. [39,40]. This work too focusses on the effect of
fluctuations on the mean-field solution. One of their scenarios
was that the growing length scale was in the same universality
class of the Ising spin glass in a field (a scenario favored by
us [24]), but their chief scenario was that there was a genuine
RFOT like transition at TK .

Our work in this paper suggests that the discontinuous
transition from the RS paramagnetic state to a state with
1RSB, which was first derived in the fully connected model,
might be modified even in very high dimensions, or just by
finite-size effects alone, to a discontinuous transition to a
state with FRSB. As the dimensionality is lowered further,
possibly below six dimensions, these same fluctuations might
also remove the state with FRSB completely. But our main
message is that the nature of the ideal glass state might not
be as simple as that envisaged on the basis of it being a state
whose order parameter is that predicted by 1RSB, and that
much further work remains to be done.
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