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Trapping and sorting of active matter in a periodic background potential
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We study, numerically, a system of active particles with either a single noise value or a mixture of equal
proportions of particles with two noise values under the influence of an attractive periodic background potential,
and we observe their diffusion regimes and trapping states. For the single noise system, we show that the slow
diffusion is correlated to a significant particle trapping, while normal diffusion is seen for partial or no trapping.
Our results indicate that low noise particles are less susceptible to the background, i.e., they have a smaller
chance to be trapped as compared to higher noise particles for the same background, and that denser systems
achieve a no-trapping state, unless for the largest noise value we studied. For the mixtures, we study the sorting
of particles based on their noise value differences and observe that particles with distinct noises are trapped at
distinct radii compared to a trap minimum, and, since these radii depend on the density, the latter should be well
tuned in order to have an efficient sorting.
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I. INTRODUCTION

Active (or self-propelled) particles, man-made or biolog-
ical, are entities which produce (or absorb) energy for their
motion, usually in a random direction [1]. Numerical mod-
els are largely employed aiming to understand the effect of
collective motion [2], clustering [3], phase separation [4],
and, recently, manipulation [5]. Several reported results in the
literature show how to capture active particles [6] and rectify
their motion [7,8] in a lattice of traps, mimicking the dynamics
on a crystalline surface [9]. Further, promising studies related
to the control of such particles by imposing obstacles [10],
external fields [11], and boundaries [12] are expanding the
branches of research in self-motile dynamics.

Recently, it was shown numerically [13] that active rods
can be trapped inside a V-shaped rigid boundary, a structure
much used in probing net transport [7]. Such trapping depends
on the particle density, ϕ, and the angle of the V, α, and occurs
in three regimes: no trapping, in which α � 120o and it is
virtually independent of ϕ; complete trapping, for αL � α �
120o, with αL dependent on ϕ; and partial trapping, which
occurs for α � αL. All three phases meet at a triple point such
that, for higher ϕ, the complete trapping phase is suppressed,
implying that the V barrier has a saturation limit. Also, Kumar
et al. [14] showed through experiments and simulations for the
same type of barrier that one can sort mixtures of active rods
based on the rotational noise difference between the species,
respecting, obviously, the limits imposed by the barrier; they
showed that lower noise particles tend to get trapped while
those of larger noise fly about. In these investigations, the
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confinement is purely a geometrical effect [6]; the particles
cannot cross the arms of the V since the potential is infinite.
We proposed to investigate the same phenomenon but for a
soft boundary and see what changes occur to such trapping
patterns. Our soft boundary will be provided by an external
potential that mimics an optical tweezer. We call it a soft trap
or well.

The technique of optical tweezers is a powerful tool to
manipulate [15–20] matter in a noninvasive way, as part of the
main scenario of manipulation techniques at the microscale
and nanoscale. The attractive background generated by the set
of focused laser beams forms one of the various examples of
patterned substrates explored in theoretical and experimental
realizations. Therefore, we investigate the dynamics of an
active system in the presence of a periodic potential back-
ground, made of a square lattice of attractive wells, mimicking
a similar lattice of optical tweezers. We will refer to the
potential minima (and the regions around them) simply as
wells. Previous works showed that passive particles under
such background potential can be seen to realize the lattice
gas model [16], have focused on sorting [17] either induced
by size [18] or index of refraction [19], and showed that,
when driven by a constant external flow, particles tend to
follow specific directions of motion when passing through
such background [20]. In the present paper, we do not take
into account variations in particle shape. Instead, we examine
the interplay of the effective density of the system to active
fluctuations on the particle dynamics, insofar as the attractive
regions select a kind of particle whereas the other one may
pass, by adjusting the strength of the wells. We measured
two quantities through which we characterize our findings: the
mean square displacement (MSD), averaged over all particles
and realizations, and the fraction of trapped particles (FTP)
in a well. The second was already used as a measure for the
classification of the trapping transition [13,14].
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Our paper has a close correspondence to Refs. [21,22] in
the use of soft traps. However, we have three major differences
of implementation.

(1) We studied a lattice of soft traps, as opposed to a single
trap.

(2) As a consequence of this first choice, motivated by
various studies with passive particles in such backgrounds
[16–20], we considered smaller trap radii, not larger than
three particle diameters, than those of Refs. [21,22], around
30 particle diameters.

(3) Our traps, in general, do not have circular boundaries
of constant force, as for a parabolic trap.

Finally, we investigated sorting mixtures of active particles
with distinct noise values, as in Ref. [14], using such a setup,
where Ref. [22] investigated the same phenomenon but for
a passive-active particle mixture. Given these differences,
our paper follows a line of investigation closer to that of
Refs. [13,14], namely, classification of trapping transition,
but bearing a link, its relation to diffusion, to the works of
Refs. [21,22].

The paper is organized as follows. In Sec. II, we present
the numerical model. In Sec. III, we present the results for
trapping and sorting. Lastly, in Sec. IV, we present our con-
clusions.

II. MODEL

Our setup follows the approach of Ref. [3] and consists of
soft, interacting self-propelled disks, which are free to move
on a two-dimensional (2D) periodic array of attractive wells.
The dynamics of the ith disk is governed by the coupled
overdamped Langevin equations, i.e.,

∂ri

∂t
= vi + μ[Fi − ∇iU (r)] + ξi(t ),

∂θi(t )

∂t
= ηi(t ), (1)

where ri is the position of the ith particle and θi(t )
is the direction of the intrinsic velocity vector vi =
v0[cos θi(t )î + sin θi(t )ĵ], v0 being its magnitude. The Gaus-
sian white noises ξi(t ) and ηi(t ) represent the thermal
fluctuations, from ordinary Brownian motion, and active
fluctuations (due to some inner mechanism of the parti-
cles) responsible for changing the internal motion direc-
tion, respectively. Both have zero mean and their corre-
lations are given by 〈ξia(t )ξ jb(t ′)〉 = 2Dtδi jδabδ(t − t ′) and
〈ηi(t )η j (t ′)〉 = 2Drδi jδ(t − t ′), with intensities Dt (transla-
tional diffusion coefficient) and Dr (rotational diffusion co-
efficient), i, j = 1, . . . , N , and a, b = x, y. The term Fi =∑

j �=i Fi j , where Fi j = κai j r̂i j for ai j > 0 (Fi j = 0 otherwise),
accounts for the soft interaction among particles, with ai j =
( d

2 − ri j ) and d their diameters. The parameter μ = 1 is
the mobility. The initial values for positions and veloci-
ties directions are random, both updated at time increments

T = 0.001. The system is allowed to evolve for t/
T =
3 × 106 cycles, in which 106 of those cycles are considered
as thermalization cycles where no measurements are per-
formed. We neglected hydrodynamic interactions and thermal
fluctuations [3], i.e., our model is entirely non-Brownian
(we do this by setting Dt = 0). In single noise systems, we

used Dr = 10−5, 10−2, 1.0, and 10. For the binary system
we considered two mixtures: Dr = 10−5 and 10, and Dr =
10−2 and 1.0, both with equal proportions. Other fixed param-
eters are interparticle interaction stiffness κ = 10 and self-
propulsion velocity magnitude v0 = 1. Lengths are given in
units of d , while the time unit is set by t = d/v0, with v0 = 1.
We considered three distinct densities ϕ = 0.1, 0.2, and 0.3
in order to check for their influence on the change of the
trapping of particles.

The periodic background is modeled by the 2D potential

U (x, y) = −V0

1 + exp
[ − A

(
cos

(
2πx
λ

) + cos
( 2πy

λ

) − 2B
)] , (2)

which generates a force field very similar to that of a lattice of
optical tweezers [17]. The parameter B stands for the relative
size of the wells. The larger the values of B the narrower
the wells. In our setup, B = [0.1–1]. The parameter A = 5.
The space available for the particles is chosen according to the
lattice spacing λ. We define a square box with Lx = Ly = 96,
so that we have 13 × 13 periodic wells spaced by λ = 8 such
that periodic boundary conditions are correctly implemented.
The potential strength V0 sets the residence time (ttrap), i.e.,
the average time a particle spends within a single well. Once
inside a well, a particle has a larger chance to escape for lower
values of V0 for a fixed λ. Simulations are carried out for
V0 = 2.0.

Finally, we discuss briefly the role of the distinct time
scales of our setup. One of them is the usual active motion
time scale tr = 1/Dr , which defines the diffusion regime;
given our background potential, we define an escape time
scale as te = R/v0, in which R stands for the distance between
the well center and the boundary around it in which the
maximum restoring force is below v0/μ (see below for a
more detailed discussion). This expression may be seen as the
amount of time a noiseless particle starting from a well center
covers a distance of R. The value of R is closely related to the
parameter B of the potential (as implied above); the largest
R value we considered was about R ≈ 3; given the value of
the self-propulsion speed, we have that the escape time scale
is of the order of te = 1 time unit. We ran our simulations
for times of the order of 103 time units, which far surpasses
te. Therefore, we believe to have passed any transient effects
related to escaping the wells. We discuss the role of tr below.

III. RESULTS AND DISCUSSIONS

A. Trapping in single noise systems

We begin by showing our MSD results. Given that we
have an attractive background potential, we would expect the
influence of such potential to show up in the long time limit
of these curves. For instance, if we have a state in which this
influence is minimal, we would expect to see normal, or even
faster, diffusion. On the other hand, given that this influence
is considerable, we would probably have subdiffusion; clearly,
for the complete trapping state, we would have no diffusion, or
maybe strong subdiffusion as seen in Refs. [21,22]. In Fig. 1,
we show the MSD for all ϕ, Dr , and B values we studied.
Clearly, we have several distinct diffusion regimes ranging
from ballistic to normal to no diffusion (plateaus) with no
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FIG. 1. The MSD for (a) ϕ = 0.1, (b) ϕ = 0.2, and (c) ϕ =
0.3 as a function of time, given in cycles, for different values of
parameter B. The background strength and length are V0 = 2 and
λ = 8. The dotted and dashed lines scale as t and t2, respectively.

apparent discontinuous changes among them. There is even
evidence of cage effects, in which we see an intermediate
no-diffusion state between the limit behaviors of the MSD.

We see that for fixed ϕ and Dr , for B � 0.8, the diffusion
regime is either ballistic for low noise or normal. For now, let
us concentrate on the curves for Dr � 10−2; we will return
to the results for Dr = 10−5 after commenting on the results
for the FTP. As we decrease B, the long time MSD curves
progressively change from normal to plateaus for Dr � 1.0;
for Dr = 10−2 there is no appreciable change in the regime.
If we fix ϕ and B, the change in the diffusion regime with Dr

is more pronounced, always from faster to slower diffusion,
with increasing Dr , for lower B. This indicates that there is a

trend for particle trapping to occur at high noise, and larger
wells (lower B), as seen by the plateaus at Dr = 1.0 and 10.

For fixed Dr and B, increasing the particle density makes
the system less susceptible to the external potential, i.e., the
diffusion become faster for larger densities. For instance, for
B = 0.6 and Dr = 10, we have at ϕ = 0.1 a trapped state,
while at ϕ = 0.2 this plateau is barely visible, and we have
a regime close to normal diffusion; finally, at ϕ = 0.3, normal
diffusion is evident. As a distinct example, take the B = 0.4
curve at Dr = 1.0. We see that it shows nearly a trapped state
at ϕ = 0.1; for the next density, the MSD clearly shows a cage
effect, but reaching normal diffusion; finally, at ϕ = 0.3, we
only have normal diffusion. It is customary to show single
particle trajectories to characterize the system state, but in
this case such correlation does not occur because, since we
consider a particle to be trapped if it stays in a well for a
definite amount of time, in a system partially trapped, for
instance, there will be both types of trajectories, those that
remain a long time in a well and those that do not. Hence,
single particle trajectories are a not a good indicator of the
trapping state.

Our findings, hence, indicate that high noise particles are
more easily trapped compared to the low noise ones; also,
larger wells trap particles more easily; finally, adding more
particles to the system makes it less affected by the external
potential. The first feature is different from what was reported
in Refs. [13,14] for hard traps; in their investigations, the
opposite occurred: high noise particles are less probable to
get trapped. This is the effect of their rigid boundary, in
what we called earlier a geometrical effect. Since low noise
particles have a longer persistent motion, i.e., they travel a
longer distance before changing drastically their direction of
motion as compared to the high noise ones, when inside a
rigid V barrier, this longer path will eventually reach the
apex of the V, since active particles slide along solid surfaces;
given many such particles entering the inner part of the V,
it will be nearly impossible for the particles to turn their
motion around and escape a trap for a proper apex angle. Also,
as a contingent feature of their investigations, the shapes of
the particles (rods) are very suited to be trapped in their V
boundaries; there is even the appearance of orientational order
in the trapped state [13]. In our case, given that we have a soft
boundary, such features should not play a very important role
in the results.

The long persistent motion is precisely what makes the
active disks less susceptible to the external potential given the
soft boundary [21–24]. To see this consider that an isolated
active particle with no thermal motion will always cross a
barrier if its maximum restoring force is less than v0/μ.
Hence, we have simply a force balance condition to determine
whether escaping an attractive well will occur. This is in
contrast to recent studies of the generalized Kramers problem
[25–27], where the escape rate is calculated for active particles
with thermal fluctuations. This force condition alone is not
enough, though, for the crossing to occur because the particle,
starting from a well center, must climb the potential barrier
up to the point of maximum restoring force and keep its
motion beyond it in order to escape the well. For a given
well radius, i.e., a B value, particles with a higher Dr will
have lower probabilities of reaching such a point and will be
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FIG. 2. Contour plot of the gradient force �F = −∇U (x, y) for
V0 = 2 and (a) B = 0.9 and (b) B = 0.2.

trapped in this well. Therefore, the rotational noise should
be low, given that the force balance condition is satisfied,
so that a particle may escape a well. Our investigation was
carried out for a system of interacting particles, therefore this
isolated particle picture is changed in a way that particles
with high noise reach the points of maximum restoring force
by being pushed inside a well by others. This scenario helps
to understand the dependence of the diffusion regime as we
increase particle density: by adding more particles, more of
them will be captured by the wells, but more of them will
interact; hence, given an appropriating density, high noise
particles may reach the maximum restoring force boundary
more easily, increasing their chance for escaping. Also, the
escaping could occur even if the maximum restoring force
condition is not met for an individual particle, regardless of its
noise value: if it is pushed more strongly by the others against
the maximum restoring force, it will escape. As a comparison,
in a recent study of a collection of passive particles under
such periodic potentials [28,29], the main effect of increasing
density, at particle number commensurate to the number of
potential minima, at fixed temperature is to produce several
distinctly ordered configurations of particles within each min-
ima, but no escape is induced unless the temperature is large
enough.

This whole scenario does not hold for our largest well
radii B � 0.3. Our results for these values deviate from the
general behavior described here; these MSD curves show a
stronger diffusion than for smaller wells. Specifically, when
we have Dr = 10−2 and ϕ � 0.2, we see that the MSD curves
decrease their absolute values for decreasing B, but the curves
below B = 0.3 increase with decreasing B (which can also
be seen for Dr = 1.0 and and 10 at these densities). This
occurs because, in general, the well has a circular shape for
large B [see Fig. 2(a)]; as B decreases, these circles disappear,
and the maximum restoring force occurs only in particular
directions [see Fig. 2(b) for an example in which this max-
imum force is along the ±π/4 related to the horizontal].
Hence, particles can escape these wells more easily through
the paths along the main directions, where the force is lower,
leading to such strange behaviors. The average density field
for ϕ = 0.1, Dr = 10−2, and B = 0.1 seen in Fig. 3(a) clearly
shows such “escape routes” for these strongest wells. Perhaps,
these features could be avoided by using simpler background
potentials, such as the harmonic traps of Refs. [21–23], but
we do feel that our general conclusions regarding the trapping

FIG. 3. Time-averaged density map measured for ϕ = 0.1. The
parameters are (a) B = 0.1 and Dr = 10−2 and (b) B = 0.4 and
Dr = 10−5.

phenomenon and the diffusion regimes are independent of
such potentials.

All of these conclusions were made based solely on the
MSD results. Still, we cannot, except in some very evident
cases, say whether we have no, partial, or complete trapping,
according to the classification of Ref. [13]. We already have
a few hints on such states: the normal ones are probably
those of no or partial trapping, while the plateaus correspond
to complete trapping states; all the other regimes, including
the caged states, may be an instance of the partial trapping
state. In the end, a precise classification can only be made
with the values for the FTP. We show in Fig. 4 this quantity,
as an average over all particles, for all the parameters used.
To measure such fraction, we follow the particles, after the
thermalization time, and measure the time they spend in a
well. The well boundary is the circle around a well minimum
that passes over the farthest point in which the restoring force
is �v0/μ. If this time is equal to the simulation time, then
it is trapped. Note that this is a strong requirement to make;
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FIG. 4. The fraction of trapped particles as a function of the
relative well size B for all Dr and ϕ.

particles should enter a well and not leave it for the whole
simulation (in Ref. [13], the trapping time for a particle was
taken at a much lower value). We show, in Fig. 5, the mean
distribution of the maximum residence time, P(tm), of a single
particle within a well for Dr = 10−2 and 1.0, B = 0.4, and
all ϕ; other cases have similar results for this quantity. The
P(tm) is computed by, at the end of each realization, measuring
for each particle the longest time it remained in a single well
and constructing P(tm) from these data as an average over all
particles and realizations.

FIG. 5. Maximum residence time distribution P(tm ) for Dr =
10−2 and 1.0; B = 0.4; (a) ϕ = 0.1; (b) ϕ = 0.2; and (c) ϕ = 0.3
(these are representative of the whole phenomenon). The horizontal
axis is normalized by the simulation time in each case.

Let us begin with the results for ϕ = 0.1. We see that,
for Dr = 10−2 and 1.0, there is a progressive increase of
the FTP for B � 0.7 until B = 0.4. For lower B, the FTP
decreases (which is an effect of the distorted well boundary,
as remarked earlier). For Dr = 10, there is a similar trend, but
the FTP begins to increase for B � 0.8. We see that the cases
in which there are no trapped particles, i.e., in which the FTP
is zero, are correlated with normal or superdiffusion curves
of Fig. 1(a); in the cases in which the FTP is near 1, there is
no diffusion. Note that for ϕ = 0.1, Fig. 5(a), we have partial
trapping for Dr = 10−2 (given the peak at tm = 1) and total
trapping for Dr = 1.0 (seen as the sharp peak at tm = 1).

When we consider the results for the other two density
values, ϕ = 0.2 and 0.3, we see that there is a similar trend
of the FTP with B: it is zero for large B, and increases at some
definite B, until decreasing again. The main effect, though,
of increasing the particle density is that the FTP magnitude
decreases. It is an effect similar to what was reported in
Refs. [13,14], where the authors go from a total trapping to
a partial trapping state by increasing ϕ. At ϕ = 0.2, Fig. 5(b),
we see that the P(tm) for Dr = 10−2 has broadened around
tm = 0.20, and no particle is trapped according to our con-
dition, hence the vanishing of the FTP for this case. For
Dr = 1.0, the sharp peak at tm = 1 is much lower and there is a
broad peak around tm = 0.50, characterizing partial trapping.
Finally, at ϕ = 0.3, Fig. 5(c), at Dr = 10−2, there is only one
narrow peak around tm = 0.30, i.e., there is no trapping; for
Dr = 1.0 the data have broadened between tm = 0.10 and
0.40. This is another evidence that an active particle trap,
either hard or soft, has a saturation point where total trapping
will cease to occur. In our case, this saturation point is a
function of the background intensity V0 and angular noise. We
passed through all three trapping regimes by only increasing
the density. This is rather surprising, since at ϕ = 0.1, as
reported in Refs. [21,22], there are trapped particles, and we
might expect that, by adding more particles, some of the
new ones will get trapped and some will move about the
system due to the repulsion against the trapped ones, the result
of which is a partial trapping state. What our results show,
in contrast to this expectation, is that with the addition of
more particles their mutual repulsion will render all of them
untrapped; i.e., by adding more particles, the ones already
trapped are replaced by the new ones, which, in turn, will
be replaced by other particles, and so on; the result is a no
trapping state. This is a consequence of our choosing such
small traps; for large ones, increasing ϕ will cause particles
outside the trap to aggregate, leaving the region close to it at a
smaller density [21].

Hence, we can state that, for a given ϕ and V0, we have no
trapping state for high B (small well); partial, or no, trapping
for intermediate B; and, finally, total trapping for low B (or
strong well). Also, we see again that high noise particles are
more susceptible to being trapped with soft boundaries.

Let us return to the Dr = 10−5 case. The MSD curves for
this case follow trends similar to those seen for the other
noise values. But we should be careful to interpret the data
for the FTP and to correlate it to the corresponding MSD
curves in this case: for instance, for ϕ = 0.1, we have normal
diffusion for all B, but an FTP that is close to 1, indicating
a complete trapping state. The issue here is that, given their
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very low noise, they take very long times, longer than our
simulation time, to change their motion direction appreciably;
hence, when falling in a strong well, they take long times
to reach the “escape routes”; they stick, as it were, to the
maximum restoring force boundary. Nevertheless, they move
in such boundaries, albeit very little [compare the magnitudes
of the MSD curves of Fig. 1(a) for B � 0.7 to those for
B > 0.7]. In Fig. 3(b), we have the average density field
for ϕ = 0.1, B = 0.4, and Dr = 10−5; the rings that form
around the well centers are the consequence of the effect just
described. Again, such rings were observed in Refs. [21,22],
and their local structure is a triangular lattice. Here, given the
size of the traps, we should not expect to see such symmetric
arrangements, for they require a large number of trapped
particles to occur.

B. Sorting in binary mixtures of distinct noise values

We have considered the diffusion and trapping phe-
nomenon of active particles with a single noise. By following
along the lines of Ref. [14], we study how we can separate a
mixture of active particles with two distinct noise values. We
consider the same model, but now the N particle system is a
50 : 50 mixture of particles with noise values Dr1 and Dr2 >

Dr1. Since we have already characterized the relation between
the diffusion regime and the trapped state, we concentrate here
only on the FTP as the indicator of separation.

In Ref. [14], the authors showed that the efficiency of
the sorting is enhanced by the disparity between the noise
values of the particles in the mixture: the larger the latter, the
better the former. Our simulations, on the other hand, show a
more complicated scenario for sorting particles based on noise
differences with soft traps; although there is a tendency for a
better sorting based on this difference, the whole phenomenon
depends, additionally, on the well size, B, and the overall
density, ϕ. We show, in Fig. 6, the results for the FTP of
two mixtures as a function of B for all ϕ, that illustrate the
phenomenon. For the first mixture, we consider Dr1 = 10−5

and Dr2 = 10; for the second, we choose Dr1 = 10−2 and
Dr2 = 1.0.

In order to have a good sorting, the FTP for one type should
be considerably larger than the other. From Fig. 6, we see
that this is achieved only in the following cases: for the first
mixture at ϕ = 0.2, B = 0.5, and ϕ = 0.3, B � 0.2; for the
second mixture, this feature is seen for ϕ = 0.1, B = 0.1 and
0.6, ϕ = 0.2, and B = 0.3 and 0.2. It is worth noticing that
the results for B � 0.4 may be influenced by the deformity
of the well, as pointed out earlier. Hence, we concentrate on
the other cases, namely, Dr1 = 10−5, Dr2 = 10, ϕ = 0.2, and
B = 0.5; and Dr1 = 10−2, Dr2 = 1.0, ϕ = 0.1, and B = 0.6.

Why does this scenario occur? Our results for a single noise
system indicate that interactions between particles are crucial
for them to overcome the maximum restoring force (see the
dependence of the FTP on ϕ, Fig. 4) and escape the traps;
also, similarly to what was reported in Refs. [21–23], particles
are trapped at distinct radii (forming shells) related to the well
minimum, and these radii grow for lower noise particles. In
a mixture, if both types are trapped, they will be at distinct
radii around the minima. Therefore, if these shells are far
enough so that interactions between the particles of distinct

FIG. 6. The FTP for (a, d) ϕ = 0.1, (b, e) ϕ = 0.2, and (c, f) ϕ =
0.3. (a–c) Dr1 = 10−5 and Dr2 = 10. (d–f) Dr1 = 10−2 and Dr2 = 1.

noises are weak, they will behave as two isolated systems,
with the trapping scenario given by our previous analyses.
This is what occurs for the first mixture in the cases at ϕ = 0.1
and B � 0.6; in fact, larger noise particles in a mixture tend
to be more trapped, i.e., to have a higher FTP as compared to
the single noise value result, because they occupy shells closer
to the minima, and, in order to escape a trap, would have to
overcome not only the potential barrier but also the outer layer
of lower noise particles in the same mixture. By this same
reasoning, lower noise particles more easily escape the traps.
For both mixtures, at all ϕ and B � 0.8, the FTP vanishes
because the wells are too small to trap any particle (which
also occurs for the single noise value system, see Fig. 4). For
all other cases, we have either a poor or a good sorting.

This picture is corroborated by the data on the mean
trapping radius 〈rtrap〉, shown in Fig. 7 as a function of time
for all ϕ and B = 0.5, for the first mixture, and B = 0.6
for the second mixture. This quantity, the mean trapping
radius, indicates the average distance the particles are from
the nearest well minimum; its value is roughly the radius of
the shell, while its variance is a rough measure of the width
of the shell. Let us begin with the data for the first mixture,
Fig. 7(a). For ϕ = 0.1 and 0.2, we see that the differences
between the radii are 0.70 and 0.53, respectively; in both
cases, there is the possibility of interactions, since these values
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FIG. 7. Time-averaged radius trap over the whole simulation
time for (a, d) ϕ = 0.1, (b, e) ϕ = 0.2, and (c, f) ϕ = 0.3. Upper
panel: Mixture composed by particles with Dr = 10 (black) and
10−5 (red) in a well for B = 0.5. Bottom panel: Mixture composed
by particles with Dr = 1 (black) and Dr = 10−2 (red) in a well for
B = 0.6. The horizontal axis is normalized by the simulation time in
each case.

are less than one diameter, but only for ϕ = 0.2 we see a
good sorting. We explain this feature by the smaller difference
between the radii, which allow more frequent and intense
particle interactions (they may overlap more strongly), and the
fact that the low noise ones are very close to the maximum
restoring force level, and any push from within the well may
render them free. For ϕ = 0.1, given that we have fewer
particles, they do not interact with the intensity needed for
some to escape, hence we have a complete trapping state.
For ϕ = 0.3, we have no trapping, and, given that we have
more particles, they occupy roughly the same levels around
the minima with strong fluctuations around the mean; hence,
no particle stays for long within a single well.

In the second mixture, Fig. 7(b), the picture is similar: for
ϕ = 0.1, particles have clearly distinct trapping radii, with a
difference of 0.43, which allows for sorting for this mixture; in
the other two densities, we have no trapping, with both having
nearly equal trapping radii with strong fluctuations. In view of
the previous results, we speculate that for a lower density the

trapping radii difference would be larger, and we would have
a complete trapping state.

We may summarize our observations as that in order to
have sorting we need an appropriate density value for each
mixture, so that interactions between species may be just
enough to push the lower noise particles off the traps; if
this parameter is lower or larger, we will have a complete
trapping (insufficient interactions) or no trapping (too many
interactions). This appropriate density value depends on the
strength of the potential, the intensity of the repulsion between
the particles, and the difference between their rotational noise
values.

IV. CONCLUSIONS AND OUTLOOKS

We studied the diffusion and trapping of either a system
of active particles with a single noise value or mixtures
with equal proportions of active particles with two distinct
noise values under the influence of an attractive periodic
background. We called such attractive traps soft traps, in
opposition to the previous study of this phenomenon in a
V-shaped, rigid trap. In the single noise value cases, we
showed that the diffusion regime is closely correlated to the
trapping state: complete trapping corresponds to no diffusion
or subdiffusion; partial or no trapping corresponds to normal
diffusion. We observed that particles with lower noise values
have more difficulty to escape from a trap, which is consistent
with previous studies of active particles under the influence
of soft traps [23,24]. We also studied how the diffusion and
trapping regimes change with increasing density and observed
that the relevant effect of increasing this quantity is to render
all particles, except those of very high noise values, free; i.e.,
starting from some trapped state, the system will always reach
a no-trapping regime.

For mixtures of particles with distinct noises, we studied
the possibility to sort particles based on this difference. In
contrast to a similar study in a hard V-shaped trap [14]
we found that the noise difference alone is not enough to
determine the sorting efficiency. Additionally, given the soft
boundary, an appropriate density (not too small or too large)
is needed to achieve an efficient separation, i.e., to trap only
one type of particles. The separation of particles occurs be-
cause, for given background strength, noise difference, and
density, the particles become trapped in a well at specific
radii [23], the trapping radii, which decrease for higher noise.
Therefore, the difference between the trapping radii should
allow interactions between particles so that those on the larger
radius (typically, particles with lower noise values) may es-
cape the trap. Despite the more complex scenario for particle
sorting in soft traps, when compared to hard traps, it is still
possible to draw efficient sorting strategies.
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