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The capacity to identify realizable many-body configurations associated with targeted functional forms for the
pair correlation function g2(r) or its corresponding structure factor S(k) is of great fundamental and practical
importance. While there are obvious necessary conditions that a prescribed structure factor at number density ρ

must satisfy to be configurationally realizable, sufficient conditions are generally not known due to the infinite
degeneracy of configurations with different higher-order correlation functions. A major aim of this paper is to
expand our theoretical knowledge of the class of pair correlation functions or structure factors that are realizable
by classical disordered ensembles of particle configurations, including exotic “hyperuniform” varieties. We first
introduce a theoretical formalism that provides a means to draw classical particle configurations from canonical
ensembles with certain pairwise-additive potentials that could correspond to targeted analytical functional forms
for the structure factor. This formulation enables us to devise an improved algorithm to construct systematically
canonical-ensemble particle configurations with such targeted pair statistics, whenever realizable. As a proof
of concept, we test the algorithm by targeting several different structure factors across dimensions that are
known to be realizable and one hyperuniform target that is known to be nontrivially unrealizable. Our algorithm
succeeds for all realizable targets and appropriately fails for the unrealizable target, demonstrating the accuracy
and power of the method to numerically investigate the realizability problem. Subsequently, we also target
several families of structure-factor functions that meet the known necessary realizability conditions but are not
known to be realizable by disordered hyperuniform point configurations, including d-dimensional Gaussian
structure factors, d-dimensional generalizations of the two-dimensional one-component plasma (OCP), and the
d-dimensional Fourier duals of the previous OCP cases. Moreover, we also explore unusual nonhyperuniform
targets, including “hyposurficial” and “antihyperuniform” examples. In all of these instances, the targeted
structure factors are achieved with high accuracy, suggesting that they are indeed realizable by equilibrium
configurations with pairwise interactions at positive temperatures. Remarkably, we also show that the structure
factor of nonequilibrium perfect glass, specified by two-, three-, and four-body interactions, can also be realized
by equilibrium pair interactions at positive temperatures. Our findings lead us to the conjecture that any realizable
structure factor corresponding to either a translationally invariant equilibrium or nonequilibrium system can
be attained by an equilibrium ensemble involving only effective pair interactions. Our investigation not only
broadens our knowledge of analytical functional forms for g2(r) and S(k) associated with disordered point
configurations across dimensions but also deepens our understanding of many-body physics. Moreover, our
work can be applied to the design of materials with desirable physical properties that can be tuned by their pair
statistics.
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I. INTRODUCTION

An outstanding problem in condensed matter physics, sta-
tistical physics, and materials science is the capacity to con-
struct, at will, many-particle configurations with prescribed
correlation functions. Solutions to this general problem are
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of great importance both fundamentally and practically. Ad-
vances in this direction will shed light on the unsolved the-
oretical realizability problem, as described below. Practical
implications of progress on this problem include the design
of material microstructures with novel physical properties.

A classical many-particle system in d-dimensional Eu-
clidean space Rd is completely specified by the n-particle
probability density function ρn(r1, . . . , rn) for all n � 1,
where r1, . . . , rn are the particle position vectors. In the
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field of statistical mechanics, the one-particle function
ρ1(r1) and the two-particle function ρ2(r1, r2) are the most
important ones. These functions play crucial roles in deter-
mining equilibrium and nonequilibrium properties of systems
and can be ascertained experimentally from scattering data
[1]. In the case of statistically homogeneous systems, which
is the focus of this work, ρ1(r1) = ρ, where ρ is the number
density, and the two-particle function depends only on the pair
displacement vector r = r2 − r1 so that ρ2(r1, r2) = ρ2g2(r),
where g2(r) is the pair correlation function. Of course, these
two functions alone cannot completely specify the ensemble
of configurations, i.e., there is generally a high degeneracy
of configurations with the same ρ and g2(r) but different
higher-order statistics (g3, g4, . . .) [2,3].

This degeneracy issue naturally leads to the following
version of the realizability problem: Given a prescribed g2(r)
with a fixed positive number density ρ, are there ensemble
configurations of particles that realize such prescribed statis-
tics? This realizability problem has a rich and long history
[2,4–15], but it is still a wide open area for research. There
are obvious necessary conditions for a given pair correlation
function to be realizable; for example, g2(r) must be a non-
negative function, i.e.,

g2(r) � 0 for all r. (1)

Moreover, the corresponding ensemble-average structure
factor

S(k) = 1 + ρh̃(k) � 0 (2)

must be non-negative for all wave vectors k, where h̃(k) is
the Fourier transform of the total correlation function h(r) ≡
g2(r) − 1. Another simple realizability condition is that the
number variance σ 2(R) associated with a randomly placed
spherical window of radius R, which is entirely determined
by ρ and g2(r) [or S(k)] [16], must satisfy the lower bound
[4]

σ 2(R) � θ (1 − θ ), (3)

where θ is the fractional part of ρv1(R), with

v1(R) = πd/2Rd

�(1 + d/2)
(4)

the volume of a d-dimensional sphere of radius R. The
Yamada condition (3) is relevant only in very low dimensions,
often only for d = 1 [2]. Indeed, generally speaking, it is
known that the lower the space dimension, the more difficult
it is to satisfy realizability conditions [2], a point elaborated in
Sec. V.

Conditions for realizability have also been found for spe-
cial types of many-particle systems [10]. Moreover, necessary
and sufficient conditions for the particular class of point
configurations with hard cores have been identified [15,17],
but these conditions are difficult to check in practice. Thus,
knowledge of necessary conditions beyond inequalities (1)–
(3) that can be applied to determine the realizability of general
pair correlation functions are, for the most part, lacking.

This places great importance on the need to formulate
algorithms to construct particle configurations that realize
targeted hypothetical functional forms of the pair statistics

with a certain density. Successful numerical techniques could
provide theoretical guidance on attainable pair correlations.
Algorithms have been devised in direct space to generate
particle realizations that correspond to hypothetical pair cor-
relation functions [8,9], but only up to intermediate values
of the pair distance |r|. This prevents one from accurately
constructing the large-scale structural characteristics of the
systems.

Therefore, such direct-space methods are not suitable to
explore the realizability of hypothetical functional forms of
pair correlation functions that could correspond to disor-
dered hyperuniform point configurations with high fidelity.
Disordered hyperuniform many-particle systems are exotic
amorphous states of matter that are like crystals in the manner
in which their large-scale density fluctuations are anomalously
suppressed and yet behave like typical liquids or glasses in
that they are statistically isotropic without any Bragg peaks.
More precisely, hyperuniform point configurations possess a
structure factor S(k) that goes to zero as the wave number |k|
vanishes [16,18], i.e.,

lim
|k|→0

S(k) = 0. (5)

For a large class of ordered and disordered systems, the
number variance σ 2(R) has the large-R asymptotic behavior
[16,18]

σ 2(R) = 2dφ

[
A

(
R

D

)d

+ B

(
R

D

)d−1

+ �

(
R

D

)d−1
]
, (6)

where φ = ρv1(D/2) is a dimensionless density, D is a
characteristic length, A and B are volume and surface-area
coefficients, respectively, and �(R/D)d−1 represents terms of
lower order than (R/D)d−1. The coefficients A and B can be
expressed as

A = lim
|k|→0

S(k) = 1 + d2dφ〈xd−1〉 (7)

and

B = − d22d−1�
(

d
2

)
�

(
d+1

2

)
�

(
1
2

)φ〈xd〉, (8)

where �(x) is the Gamma function, x = r/D, and 〈xd〉 =∫ ∞
0 xd h(x)dx is the dth moment of h(x). In a perfectly hy-

peruniform system [16], the non-negative volume coefficient
vanishes, i.e., A = 0. On the other hand, when A > 0 and B =
0, the system is hyposurficial; examples include homogeneous
Poisson point patterns and hypothetical hard-sphere systems
[16]. Finally, in antihyperuniform systems

lim
|k|→0

S(k) = +∞ (9)

and A becomes unbounded [18]. Antihyperuniform systems
include fractals as well as systems at thermal critical points.

When the structure factor goes to zero in the limit |k| → 0
with the power-law form

S(k) ∼ |k|α, (10)

where α > 0, hyperuniform systems can be categorized into
three different classes according to the large-R asymptotic
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scaling of the number variance [18]:

σ 2(R) ∼
⎧⎨
⎩

Rd−1, α > 1 (class I)
Rd−1 ln R, α = 1 (class II)
Rd−α, 0 < α < 1 (class III).

(11)

Class I is the strongest form of hyperuniformity in the sense
that it is the scaling that provides the greatest suppression of
large-scale density fluctuations.

Disordered hyperuniform systems have attracted great at-
tention because of their deep connections to problems that
arise in physics, materials science, mathematics, and biology
[18–24] as well as for their emerging technological impor-
tance, including disordered cellular solids that have complete
isotropic photonic band gaps [25,26], surface-enhanced Ra-
man spectroscopy [27], transparent materials [28], terahertz
quantum cascade lasers [29], and certain Smith-Purcell ra-
diation patterns [30]. While a variety of equilibrium and
nonequilibrium hyperuniform systems have been generated
via computer simulations [18], current numerical techniques
(with the exception of the collective-coordinate approach
[31,32]) cannot guarantee perfect hyperuniformity [18].

Remarkably, very little is known about analytical forms
of two-body and higher-order correlation functions that are
exactly realizable by disordered hyperuniform systems. An
exception to this dearth of knowledge is the special class of
determinantal point processes [10,33–37], examples of which
are considered in Sec. III. Furthermore, no one to date has
shown the rigorous existence of hyposurficial point configu-
rations, even if they have been shown to arise in the computer
simulation study of phase transitions involving amorphous
ices [38].

The purpose of the present investigation is to expand our
theoretical knowledge of the class of pair correlation functions
or, equivalently, structure-factor functions that are realizable
by disordered hyperuniform ensembles of statistically ho-
mogeneous classical particle configurations at some number
density ρ, including d-dimensional Gaussian structure factors,
d-dimensional generalizations of the two-dimensional (2D)
one-component plasma (OCP), and d-dimensional Fourier
duals of the previous OCP cases. We also demonstrate the re-
alizability of unusual nonhyperuniform point configurations,
including hyposurficial and antihyperuniform examples. Our
findings lead us to the conjecture that any realizable structure
factor corresponding to either an equilibrium or nonequilib-
rium homogeneous system can be attained by an equilibrium
ensemble involving only effective pair interactions in the
thermodynamic limit.

We begin by introducing a theoretical formalism that pro-
vides a means to draw equilibrium particle configurations
from canonical ensembles with certain pairwise-additive po-
tentials that could correspond to targeted analytical functional
forms for the structure factor (Sec. II B). Using this theoretical
foundation, we then devise an algorithm to construct system-
atically canonical-ensemble particle configurations with such
targeted pair statistics whenever realizable (Sec. II C). We
demonstrate the efficacy of our targeting method in two ways.
First, as a proof of concept, we test it to target several different
structure factor functions across dimensions that are known to
be realizable by determinantal hyperuniform point processes

(Sec. III). We verify that all of these considered targets are
indeed realizable. As another proof of concept, we also show
that this methodology indeed fails on a nontrivial target that
is known to be unrealizable, even though the target meets all
explicitly known necessary realizability conditions (Sec. IV).
Taken together, these benchmark tests demonstrate the ac-
curacy and power of the method to numerically investigate
the realizability problem. Finally, we apply the methodology
to target several families of structure-factor functions that
meet the known necessary realizability conditions but were
not known to be realizable by disordered hyperuniform and
nonhyperuniform (hyposurficial and antihyperuniform) sys-
tems (Secs. V and VI). In all of these instances, we are able
to achieve the targeted structure factor with high accuracy,
suggesting that these targets are indeed truly realizable by dis-
ordered hyperuniform many-particle systems in equilibrium
with effective pairwise interactions at positive temperatures.
Our results lead to a conjecture that any realizable structure
factor can be attained by an equilibrium ensemble involving
only effective pair interactions, which is presented in Sec. VII.
We further demonstrate the validity of this conjecture by
showing that a previously numerically found structure factor
of a nonequilibrium state of two-, three-, and four-body inter-
actions can also be realized by equilibrium pair interactions.
Concluding remarks and a discussion of our results are pre-
sented in Sec. VIII.

II. THEORETICAL ANALYSIS AND
ALTERNATIVE ALGORITHM

A. Motivation

At first glance, the aforementioned Fourier-based
collective-coordinate optimization procedure may seem to be
ideally suited to construct possibly realizable hyperuniform
configurations, since it enables one to obtain configurations
with desired structure factors for wave vectors around the
origin with very high accuracy [31,32,39,40]. One begins
with a single classical configuration of N particles with
positions rN ≡ r1, . . . , rN in a fundamental cell under
periodic boundary conditions. Here the structure factor of a
single configuration, S (k), is constrained to be equal to a
target function S0(k) for k in a certain finite set K. These
constraints are enforced by minimizing a fictitious potential
energy 
(rN ), defined to be the square of the difference
between S (k) and S0(k),


(rN ) =
∑
k∈K

[S (k) − S0(k)]2, (12)

where, for a single configuration, the structure factor at a
nonzero k vector is given by

S (k) = 1

N
|ρ̃(k)|2 (k 	= 0) (13)

and

ρ̃(k) =
N∑

j=1

exp(−ik · r j ) (14)

is the complex collective density variable. Throughout the
paper, we will use S to denote single-configuration structure
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factors and S to denote ensemble-average structure factors. It
was shown that the potential energy given by (12) is equivalent
to a certain combination of long-range two-, three-, and four-
body interactions [31]. Therefore, constraining S (k) to a tar-
get function S0(k) using this method is equivalent to finding a
single ground-state configuration with these interactions. One
calculates S (k) from (13) rather than (2) not only because
it applies only for a single finite-size configuration (not an
ensemble), but (13) allows K to include k vectors very close
to the origin.

However, this standard collective-coordinate method can-
not be used for the realizability problem. It suffers from nu-
merical difficulty if the cardinality of K is too large, meaning
that only a portion of wave vectors can be targeted. Indeed,
if the number of independent constraints is larger than the
total number of degrees of freedom dN , then the system runs
out of degrees of freedom and the potential energy surface
often becomes so complicated that one cannot find a 
 = 0
state, even if the target S0(k) is known to be realizable [32].
This method also enforces S (k) = S0(k) for k ∈ K for a
single configuration, while in many cases we only expect the
ensemble average S(k) to be equal to S0(k). These drawbacks
will be overcome by our algorithm, as detailed in Sec. II C.

B. Theoretical formalism

The discussion above suggests that targeting an ensemble-
average structure factor, which would enable the toleration of
fluctuations in individual configurations, may be a possible
way to bypass the limitations of the standard collective-
coordinate procedure for the realizability problem. We now
show on theoretical grounds how this is indeed the case.
Specifically, we demonstrate that targeting ensemble-average
structure factors results in an enormous increase in the number
of degrees of freedom, which in turn enables one to extend the
range of constrained wave vectors over an infinite set, in prin-
ciple. Moreover, we show that the configurations are sampled
from a canonical ensemble with a certain pair potential.

Let us begin by imagining imposing constraints such that
the average structure factor for a finite number of configura-
tions Nc is equal to a target functional form for k ∈ K, i.e.,

〈S (k)〉 = S0(k) for any k ∈ K, (15)

where 〈S (k)〉 is the average structure factor of these Nc

configurations. We will assume the Nc → +∞ limit in this
theoretical section, so

〈S (k)〉 = S(k), (16)

where S(k) is the ensemble-average structure factor defined
in (2). In this thermodynamic limit (Nc → +∞), there is an
infinite number of degrees of freedom, which enables one to
extend the range of constrained wave vectors over all space.

A critical question is what the behavior of each individual
configuration is when such constraints are imposed. Although
it appears that these configurations interact with each other
in some complex manner, we now demonstrate that these
configurations follow the canonical-ensemble distribution of
a pairwise additive potential energy. To begin with, let us
consider constraining the target structure factor at a single
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FIG. 1. When a large number of systems can exchange heat with
each other but not with the environment, one can focus on one system
(central one indicated with a white background) and treat the rest
as a heat bath (systems having yellow background). The central
system with fixed N , V , and T follows the distribution function of
a classical canonical ensemble with a temperature T determined by
the total energy of the systems and degeneracy of the heat bath. For
the problem at hand, we show that the temperature is determined
by the target structure factor S0(k), as specified by the relation
kBT = S0(q)/[1 − S0(q)].

point k = q,

S0(q) = S1(q) + S2(q) + · · · + SNc (q)

Nc
, (17)

where Si(q) (i > 0) is the structure factor of the ith config-
uration at wave vector k = q. In Eq. (17), we are treating
S1(q),S2(q), . . . ,SNc (q) as Nc random variables and con-
strain their arithmetic mean to be equal to S0(q). As we will
show later, Si(q) (i > 0) is exponentially distributed, which
implies that Si(q) is not self-averaging [41,42].

The key idea is that because we allow an arbitrary large
number of configurations Nc and constrain their arithmetic
mean structure factor [right-hand side of Eq. (17)], we can
focus on one configuration, which we call the reference sys-
tem, with fictitious energy ER = S (q) and treat the rest of the
Nc − 1 configurations as a heat bath with temperature

kBT = S0(q)

1 − S0(q)
. (18)

The relation (18) for the temperature is derived immediately
below. Under these conditions, the reference system obeys
the distribution function of a canonical ensemble in the limit
Nc → ∞. Figure 1 schematically describes this scenario.

The probability density function (PDF) of the total energy
of any system in the canonical ensemble is given by

P(E ) = g(E ) exp(−E/kBT )

Z
, (19)

where Z is the partition function, g(E ) is energy degeneracy
or density of states, and T is the temperature. To determine
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the temperature of the heat bath explicitly in terms of S0(q),
we make the simple observation that in the high-temperature
or ideal-gas limit, the PDF (19) is proportional to the density
of states

g(E ) ∝ lim
T →∞

P(E ). (20)

Thus, to determine the heat bath’s density of states and
corresponding temperature for general correlated systems,
we only need to know the distribution of its total energy
EH , assuming the heat bath consists of Nc − 1 uncorrelated
(infinite-temperature) systems.

Let us first focus on one system comprising the heat bath
and denote its energy by E1. For an ideal gas, each particle’s
location is random and independent. Thus, for any particle j,
exp(−iq · r j ) is a unit vector of a random orientation in the
complex plane. Therefore, the collective density variable (14)
is the sum of N random unit vectors in the complex plane.
From the theory of random walks, we know that for large N ,
ρ̃(q) in the complex plane follows a Gaussian distribution and
the PDF of |ρ̃(q)| is given by

Puncorr (|ρ̃(q)|) = 2|ρ̃(q)|
N

exp[−|ρ̃(q)|2/N]. (21)

Therefore, the PDF of the energy E1 = S (q) = |ρ̃(q)|2/N is
given by

Puncorr (E1) = Puncorr(|ρ̃(q)|)
[

dS (q)

d|ρ̃(q)|
]−1

= exp(−E1). (22)

Thus, the energy, i.e., the single-configuration structure factor,
is exponentially distributed. This combined with (20) implies
that the density of states of a single configuration is also an
exponential function of the energy

g(E1) ∝ exp(−E1). (23)

For two uncorrelated configurations, the probability distri-
bution of their total energy E12 = E1 + E2 is

Puncorr (E12) =
∫ E12

0
Puncorr (E1)Puncorr (E2)dE1 (24)

=
∫ E12

0
exp(−E1) exp[−(E12 − E1)]dE1 (25)

= E12 exp(−E12). (26)

The distribution for the total energy of three configurations is
then

Puncorr (E123 = E12 + E3)

=
∫ E123

0
Puncorr (E3)Puncorr (E12)dE3

= E2
123

2
exp(−E123). (27)

Similarly, one can find that the distribution of the total energy
of Nc − 1 configuration is

Puncorr
(
E = E1 + E2 + · · · + ENc−1

) = ENc−1

(Nc − 1)!
exp(−E ).

(28)

As we detailed before, the density of states of the heat bath,
made from Nc − 1 systems, is proportional to the probability
distribution function of the total energy of Nc − 1 uncorrelated
systems:

g(E ) ∝ Puncorr (E ) = ENc−1

(Nc − 1)!
exp(−E ). (29)

The temperature of the heat bath is therefore

kBT =
[
∂ ln g(E )

∂E

]−1

=
[

Nc − 1

E
− 1

]−1

, (30)

where E = EH is the energy of the heat bath. On average, each
configuration has an energy of S0(q). Therefore, in the Nc →
∞ limit, EH = (Nc − 1)S0(q) and the heat-bath temperature
is explicitly given by

kBT = S0(q)

1 − S0(q)
, (31)

which is what we set out to prove.
In the Nc → ∞ limit, the heat bath is infinitely large

and we can determine the probability density function of the
energy of the reference system, ER, which is not included in
the heat bath, using the canonical distribution function, i.e.,

P(ER) = g(ER) exp(−ER/kBT )

Z
(32)

∝ exp(−ER) exp(−ER/kBT ). (33)

After normalization, one finds

P(ER) = exp(−ER) exp(−ER/kBT )

S0(q)
= exp[−ER/S0(q)]

S0(q)
.

(34)

Since we previously defined ER = S (q),

P[S (q)] = exp[−S (q)/S0(q)]

S0(q)
. (35)

By symmetry, this distribution is applicable not only to the
reference system, but also to the other Nc − 1 systems as well.
This means that for any particular configuration, its structure
factor at a constrained k vector is exponentially distributed.
We will numerically verify this conclusion in the Appendix.
As in the ideal-gas case, the exponential distribution of S(q)
implies that ρ̃(q) is Gaussian distributed.

As we previously showed, if one constrains the ensemble-
average structure factor S(q) to be equal to S0(q), the resulting
configurations follow the canonical-ensemble distribution of
a system with energy defined as E = S (q) at temperature
kBT = S0(q)/[1 − S0(q)]. Equivalently, one could also define
a rescaled energy as

E = ṽ(q)S (q), (36)

where

ṽ(q) = 1/S0(q) − 1, (37)

and set kBT = ṽ(q)S0(q)/[1 − S0(q)] = 1. As detailed in our
earlier papers [43–45], such a definition of E is equivalent to
a pairwise additive potential. For example, in the thermody-
namic limit, the total energy of such a system of particles with
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pairwise interactions is given by

E = ρ

2

∫
Rd

v(r)g2(r)dr, (38)

which can be represented in Fourier space using Parseval’s
theorem [45]:

E = ρ

2
ṽ(k = 0) − 1

2
v(r = 0) + ρ

2(2π )d

∫
Rd

ṽ(k)S(k)dk.

(39)

The derivation of (36) and (37) applies to the cases where
one constrains S(k) at a single k vector. Can one generalize
it to constraining S(k) at multiple k vectors? If one con-
strains S(k) at up to d different orthogonal wave vectors
(inner product being zero), formulas (36) and (37) would
still apply exactly. This is because such constraints affect
particle positions in different, independent directions and can
thus be treated separately. If the d wave vectors are linearly
independent but not orthogonal, one could still apply a linear
transformation to reduce the problem to the orthogonal case.

To treat cases where the number of k vectors is larger
than d , we recall that in the Gibbs formalism, the inverse
temperature is a Lagrange multiplier of energy. For multi-
ple constrained wave vectors k1, k2, . . . , kNk , we can use a
separate Lagrange multiplier for each constraint. Consider
maximizing the Gibbs entropy of the reference configuration

S = −kB

∫
P(rN ) ln P(rN )drN , (40)

where P(rN ) is the probability density function of the refer-
ence configuration, subject to constraints

Ck =
∫

P(rN )S (k)drN − S0(k) = 0, (41)

for each constrained k, and

D =
∫

P(rN )drN − 1 = 0. (42)

If these constraints are satisfiable, we can find P(rN ) by
constructing the Lagrangian function

L = S −
∑

k

λkCk − λDD, (43)

where λk and λD are Lagrange multipliers. Setting
δL/δP(rN ) = 0, we find

P(rN ) = 1

Z
exp

[
−

∑
k

λkS (k)

]
, (44)

where Z = ∫
exp [−∑

k λkS (k j )]drN is the partition func-
tion of the reference system. We see that if we define the
fictitious energy as

E =
∑

k

λkS (k), (45)

which is still a pair potential [43–45], then P(rN ) follows
the equilibrium distribution at kBT = 1. However, we could
not find an explicit expression for λk. Theoretically, λk is
completely determined by the target structure factor. However,
the dependence is nontrivial due to the correlation between

S(k) at different k vectors. We proved that S(k) is expo-
nentially distributed in the single-constraint or independent-
constraint cases. While we cannot prove that when multiple
nonindependent wave vectors are constrained, we do provide
numerical evidence for such behavior in the Appendix.

To summarize, we have proved that if one constrains the
ensemble-average structure factor at one or multiple k vectors
and if the constraints are satisfiable, then the resulting configu-
rations are drawn from the canonical ensemble with a pairwise
additive interaction (36) or (45). Thus, when we constrain
S(k) for all k vectors to be equal to a structure factor realized
by some n-body interactions, our method finds an effective
pair interaction that mimics the configurations produced by
such n-body interactions. For the single-constraint case, we
showed that the structure factor for a single configuration at
the constrained k vector is exponentially distributed. For the
multiple-constraint case, we will also show strong numerical
evidence in the Appendix that the exponential distribution still
holds. If the structure factors at the constrained k vectors are
independent from one another, then the interaction is given by
Eqs. (36) and (37) and the temperature is kBT = 1. However,
if the structure factors at these k vectors are correlated,
then (37) is inexact. We numerically test and verify these
conclusions in the Appendix for specific examples.

C. Ensemble-average algorithm

Based on this theoretical formalism, we can now straight-
forwardly devise an algorithm to construct a canonical ensem-
ble of a finite but large number of configurations Nc targeting a
particular functional form for the structure factor. Specifically,
we minimize the squared difference for Nc configurations but
simultaneously, i.e., minimize


(rN ) =
∑
k∈K

[〈S (k)〉 − S0(k)]2, (46)

where N = NNc. Thus, compared to the standard collective-
coordinate procedure [31,32,39,40], which has available num-
ber of degrees of freedom dN , the canonical-ensemble-
average generalization enables us to substantially increase the
number of degrees of freedom to dNNc. Thus, in practice,
the range of wave vectors over which we can constrain the
structure factor to have a prescribed functional form can be
made to be larger and larger by increasing the number of
configurations.

Our algorithm involves minimizing a target function that
is a sum over all k vectors within a wave number K from
the origin. The number of such k vectors scales as KdV ,
where V = N/ρ is the volume of the system. For each such
k vector, we need to calculate Nc structure factor values,
each involving a summation over N particles. Thus, the
computational cost scales as KdV NNc = Kdρ−1N2Nc. As N
grows, the computational cost grows quadratically and can
become very large. However, the calculations for different
k vectors can be carried out in parallel, and we can thus
employ multiple GPUs to overcome the high computational
cost. GPUs generally perform single-precision calculations
faster than double-precision calculations, but we discovered
that double precision is necessary for large system sizes
(N > 1000).
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For cases in which N > 2000, we found that the number
of iterations needed to minimize the target function becomes
computationally costly. By inspecting the intermediate con-
figurations during minimization, we discovered that S(k) near
the origin (k = 0) converges to S0(k) at much slower rate than
that of S(k) at other wave vectors. It is reasonable to assume
that this slow-up is caused by the fact that changing S(k) at
k ≈ 0 requires long-range particle motions. To improve the
convergence speed for small k when N > 2000, we introduce
a weight of w(k) = 1/k in the previous objective function and
then carry out the minimization


(rN ) =
∑
k∈K

w(k)[〈S (k)〉 − S0(k)]2. (47)

As a proof of concept of these modifications, we were able
to generate Nc = 100 configurations, each consisting of N =
20 000 particles, targeting the 1D fermionic target structure
factor (49), after five days of computation using four NVIDIA
Tesla P100 GPUs, as reported in Sec. III A. Minimizing the
objective function usually requires ∼104 iterations in one
dimension but only 102–103 iterations in two and three di-
mensions. Thus, we can generate higher-dimensional configu-
rations with N = 20 000 particles much faster (about 30 times
faster with our hardware).

In subsequent sections, we present results using Nc = 100,
which is large but still computationally manageable. Unless
otherwise stated, each configuration consists of N = 400 par-
ticles in a linear (1D), square (2D), or cubic (3D) simulation
box with periodic boundary conditions. As we will show in
Fig. 3, N = 400 is large enough to produce pair statistics
indistinguishable from N = 20 000 ones. The pair statistics
are average over 5000 configurations to reduce statistical
fluctuations. Since the weight w(k) = 1/k is necessary only
for sufficiently large configurations (N > 2000), we omit it
for simplicity. The set K contains half of all k vectors such
that 0 < |k| < K , where K is a constant cutoff. We can omit
one-half of the k vectors within the range due to the inversion
symmetry of the structure factor: S(−k) = S(k). Unless oth-
erwise stated, we use K = 30 in one dimension and K = 15 in
two and three dimensions. We use the low-storage Broyden-
Fletcher-Goldfarb-Shanno algorithm [46–48] to minimize 
,
starting from random initial configurations. After the mini-
mization, 
 is on the order of 10−4–10−6. Considering that 


is a sum over contributions from Nk = 103–104 wave vectors,
the difference between S(k) and S0(k) at a particular wave
vector is about

√

/Nk = 10−3.5–10−5. The efficiency and

accuracy of this algorithm is verified by applying it to a variety
of target structure factors described in Secs. III, V, and VI. We
present justifications of this algorithm and parameter choices
in the Appendix.

III. PROOF OF CONCEPT: TARGETING KNOWN
REALIZABLE S(k)

As a proof of concept, we test our ensemble-average algo-
rithm here by targeting several different structure factor func-
tions across dimensions that are known to be exactly realiz-
able. All of these examples are special cases of determinantal
point processes, which are those whose n-point correlation

functions are completely characterized by the determinant of
some function [10,33–36].

A. Dyson’s one-dimensional logarithmic Coulomb gases

Circular ensembles in the theory of random matrices [34]
are measures on spaces of unitary matrices introduced by
Dyson as modifications of Gaussian matrix ensembles. These
different ensembles are equivalent to one another when the
matrix size tends to infinity. Dyson showed that the distribu-
tion of eigenvalues can be mapped to systems of particles on a
circle interacting with a two-dimensional Coulomb potential
(logarithmic function) at positive temperatures. These systems
in turn can be mapped to logarithmically interacting particles
in R with an appropriately confining potential.

The structure factors that correspond to those of the cir-
cular orthogonal ensemble (COE), circular unitary ensemble
(CUE), and circular symplectic ensemble (CSE), respectively
[34,35,49,50] at unit density (ρ = 1) in the thermodynamic
limit are

S(k) =
{ k

π
− k

2π
ln(k/π + 1), 0 � k � 2π

2 − k
2π

ln
( k/π+1

k/π−1

)
, k > 2π,

(48)

S(k) =
{

k
2π

, 0 � k � 2π

1, k > 2π,
(49)

and

S(k) =
{

k
4π

− k
8π

ln |1 − k/2π |, 0 � k � 4π

1, k > 4π.
(50)

These ensembles correspond to the following values of the in-
verse temperature β = (kBT )−1: β = 1 (COE), β = 2 (CUE),
and β = 4 (CSE). In all cases, we see that the structure factor
S(k) tends to zero linearly in k in the limit k → 0 and hence,
according to (10) and (11), is hyperuniform of class II [18].
The case β = 2 has been generalized to higher dimensions
(detailed below) and found to possess identical distribution
with a spin-polarized fermionic system [35].

The corresponding pair correlations of the COE, CUE, and
CSE are, respectively,

g2(r) = 1 − sin2(πr)

(πr)2

+ [πr cos(πr) − sin(πr)][2 Si(πr) − π ]

2(πr)2
, (51)

g2(r) = 1 − sin2(πr)

(πr)2
, (52)

and

g2(r) = 1 − sin2(2πr)

(2πr)2

+ [2πr cos(2πr) − sin(2πr)]Si(2πr)

4(πr)2
. (53)

We now apply our algorithm by targeting these three struc-
ture factors for systems with N = 400. The target analytical
forms for the structure factor for β = 1, 2, and 4 and the
corresponding simulation data are plotted in Figs. 2, 3, and
4, respectively. We include in these figures the correspond-
ing pair correlation functions, both the analytical forms and
the simulation data, as obtained by sampling the generated
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FIG. 2. (a) Structure factor obtained by sampling ensembles of
1D configurations in which the target function S0(k) is taken to
be Eq. (48) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (51). Here it
turns out that our usual reciprocal-space cutoff of K = 30 is not large
enough and so we use K = 50 instead.

configurations. From all of these figures, we see that our
targeting algorithm enables us to realize these ensembles with
high accuracy, validating its utility and applicability. For the
β = 2 case, we also carried out the simulation results for a
much larger system with N = 20 000. We see from Fig. 3 that
the results for N = 400 are indistinguishable from those for
N = 20 000.

By a theorem of Henderson [51], a pair potential that gives
rise to a given pair correlation function is unique up to a
constant shift, although this cannot apply at T = 0 [52–54].
The fact that our methodology yields ensembles of configu-
rations with targeted pair statistics (whenever realizable) that
are determined by effective pair potentials means that those
interactions in the case of Dyson’s one-dimensional COE,
CUE, and CSE must exactly be given by the two-dimensional
Coulombic potential.

B. One-dimensional Lorentzian target

Costin and Lebowitz [10] showed that there exists a one-
dimensional determinantal point process at unit density in
which the total correlation function is the simple exponential
function

h(r) = − exp(−λr), (54)

0 10 20 30 40
k

0

0.5

1

1.5

Simulation, N=400
Simulation, N=20000
Target

0 5 100

0.5

1

1.5

2

Simulation, N=400
Simulation, N=20000
Analytical

FIG. 3. (a) Structure factor obtained by sampling ensembles of
1D configurations in which the target function S0(k) is taken to be
Eq. (49) at ρ = 1. We use two different system sizes and show here
that their pair statistics are indistinguishable. For N = 20 000, we
generate 100 configurations instead of the usual 5000 configurations.
(b) Corresponding pair correlation function sampled from simula-
tions and the analytical formula (52).

where λ � 2. This corresponds to a structure factor with a
Lorentzian form

S(k) = λ(λ − 2) + k2

k2 + λ2
. (55)

This result implies that the system is hyperuniform at the
borderline case of λ = 2, since the structure factor S(k) =
k2/(4 + k2) tends to zero quadratically in k in the limit k → 0
and hence, according to (10) and (11), are hyperuniform of
class I [18]. We have targeted the λ = 2 target and success-
fully realize it. The results for the pair correlation function
and the structure factor are presented in Fig. 5.

C. Fermi-sphere targets in higher dimensions

The 1D CUE point process with a structure factor given
by Eq. (49) has been generalized to so-called Fermi-sphere
point processes in d-dimensional Euclidean space Rd [35].
Specifically, such disordered hyperuniform point processes
correspond to the spatial distribution of spin-polarized free
fermions in Rd , which are special cases of determinantal
processes. In particular, the structure factor in R at unit
density is given by

S(k) = 1 − α(k, κ ), (56)
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FIG. 4. (a) Structure factor obtained by sampling ensembles of
1D configurations in which the target function S0(k) is taken to
be Eq. (50) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (53).

where α(k, κ ) is the volume common to two spherical win-
dows of radius κ whose centers are separated by a distance
k divided by v1(κ ), the volume of a spherical window of
radius κ = 2

√
π [�(1 + d/2)]1/d , which is known analytically

in any dimension [2]. This result implies that the structure
factor S(k) tends to zero linearly in k in the limit k → 0 and
hence is hyperuniform of class II [18]. The corresponding pair
correlation function of such a point process is given by

g2(r) = 1 − 2d�(1 + d/2)2
J2

d/2(κr)

(κr)d
, (57)

where Jν (x) is the Bessel function of the first kind of order ν.
We have applied our algorithm to target the structure factor

(56) in two and three dimensions using K = 15. The results
are presented in Figs. 6 and 7 along with the corresponding
pair correlation functions sampled from the generated config-
urations as well as the analytical forms obtained from (57).
Consistent with the known realizability of these targets, we
see excellent agreement between the targeted structure factors
and those obtained from our ensemble-average formulation. A
two-dimensional configuration is shown in Fig. 8.

Unlike the one-dimensional COE, CUE, and CSE deter-
minantal point configurations, the interaction potential for
general determinantal point processes must contain at least
up to three-body potentials (see the Appendix of Ref. [35]).
Thus, for the 2D and 3D Fermi-sphere targets as well as
the 1D Lorentzian target (Sec. III B), we show that there
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FIG. 5. (a) Structure factor obtained by sampling ensembles of
1D configurations in which the target function S0(k) is taken to be
Eq. (55) with λ = 2 at ρ = 1. (b) Corresponding pair correlation
function sampled from simulations and the analytical formula as
obtained from (54) [g2(r) = 1 − exp(−2r)]. Here it turns out that
our usual reciprocal-space cutoff of K = 30 is not large enough and
so we use K = 50 instead.

exist effective pair interactions that mimic the higher-order n-
body interactions corresponding to these determinantal point
processes.

D. Gaussian target in two dimensions

An example of a 2D determinantal point process that
exhibits hyperuniform behavior is generated by the Ginibre
ensemble [55], which is a special case of the two-dimensional
one-component plasma [55]. A one-component plasma is an
equilibrium system of identical point particles of charge e in-
teracting via the logarithmic Coulomb potential and immersed
in a rigid uniform background of opposite charge to ensure
overall charge neutrality. For β = 2, the total correlation func-
tion for the OCP (Ginibre ensemble) in the thermodynamic
limit was found exactly by Jancovici [55]:

h(r) = − exp(−ρπr2). (58)

The corresponding structure factor is given by

S(k) = 1 − exp

(
− k2

4πρ

)
. (59)
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FIG. 6. (a) Structure factor obtained by sampling ensembles of
2D configurations in which the target function S0(k) is taken to
be Eq. (56) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (57).

This result implies that the structure factor S(k) tends to zero
quadratically in k in the limit k → 0 and hence is hyperuni-
form of class II [18].

Using our method, we targeted the OCP structure factor
(59) using K = 15. As shown in Fig. 9, it is seen that the
algorithm is able to realize this target with very high accu-
racy. The corresponding pair correlation function obtained by
sampling the resulting configurations agrees very well with
the exact g2(r) obtained from (58), as shown in Fig. 9. One
configuration is shown in Fig. 10. It it noteworthy that we
had previously employed a completely different algorithm to
generate these configurations as well as other determinantal
point processes [49], but the maximum attainable system sizes
were substantially smaller (N ≈ 100) in that study.

IV. ANOTHER PROOF OF CONCEPT: TARGETING A
KNOWN UNREALIZABLE S(k)

A severe test of our algorithm and another proof of concept
would be its application to hypothetical functional forms
for pair statistics that meet the explicitly known necessary
realizability conditions (1)–(3), i.e., non-negativity condi-
tions on g2(r) and S(k) as well as the Yamada condition,
but is known not to be realizable. Such examples are rare.
One particular two-dimensional example was identified by
Torquato and Stillinger [2] in which the point configuration
would putatively correspond to a packing of identical hard
circular disks of unit diameter with a pair correlation function

0 10 20 30
k

0

0.5

1

1.5

Simulation
Target

0 1 2 30

0.5

1

1.5

Simulation
Analytical

FIG. 7. (a) Structure factor obtained by sampling ensembles of
3D configurations in which the target function S0(k) is taken to
be Eq. (56) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (57).

given by

g2(r) = �(r − σ ) + Z

2πρ
δ(r − 1), (60)

where �(x) is the unit step function, δ(r) is a radial Dirac delta
function, σ = 1.2946, and Z = 4.0148. The corresponding

FIG. 8. Two-dimensional 400-particle Fermi-sphere configura-
tion drawn from ensembles in which the target function S0(k) is taken
to be Eq. (56) at ρ = 1.
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FIG. 9. (a) Structure factor obtained by sampling ensembles of
2D configurations in which the target function S0(k) is taken to
be Eq. (59) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (58).

structure is given by

S(k) = 1 − 8φσ 2

(kσ )
J1(kσ ) + ZJ0(k), (61)

where φ = 0.748 03 is the packing fraction. It turns out that
both g2(r) and S(k) are non-negative functions and the Ya-
mada condition is satisfied. However, Torquato and Stillinger

FIG. 10. Two-dimensional 400-particle OCP configuration
drawn from ensembles in which the target function S0(k) is taken to
be Eq. (59) at ρ = 1.

FIG. 11. (a) Structure factor obtained by sampling ensembles
of 1D configurations in which the target function S0(k) is taken to
be Eq. (61) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (60).

[2] observed that the test function (60) cannot correspond
to a packing because it violates local geometric constraints
specified by a distance σ and average contact number (per
particle) Z . Specifically, for Z = 4.0148, there must be par-
ticles that are in contact with at least five others. However,
no arrangement of the five exists that is consistent with the
assumed pair correlation function (step plus δ function with a
gap from 1 to 1.2946).

We use our standard procedure described in Sec. II C to
target the structure factor (61), but we change three param-
eters. We take Nc = 1000 (rather than Nc = 100) to ensure
that any failure is not due to lacking degrees of freedom and
use N = 100 (rather than N = 400) to compensate for the
increase in simulation time caused by the previous change.
Finally, we experimented with several values of K values
(shown in Fig. 11), instead of the standard usage of K = 15
in two dimensions.

We present results for three different reciprocal-space cut-
off values K = 10, 15, 20. For K = 10, the structure factor
can match the target inside the constrained region. Impor-
tantly, for the two larger K values, the optimizer finds local
minima and the final structure factor (at the end of the
minimization) does not match the target, even inside the
constrained region. Therefore, we conclude that the structure
factor (61) is not realizable, which speaks to the power of our
algorithm.
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V. TARGETING HYPERUNIFORM STRUCTURE FACTORS
WITH UNKNOWN REALIZABILITY

In this section, we apply our ensemble-average algorithm
to target several different hyperuniform functional forms for
structures factors across dimensions that satisfy the explicitly
known necessary conditions (1)–(3), but are not known to be
realizable. We show that all of these d-dimensional targets are
indeed realizable.

Before presenting these results, it is instructive to comment
on the effect of space dimensionality on realizing a prescribed
structure factor. It is generally known that the lower the space
dimension is, the more difficult it is to satisfy realizabil-
ity conditions [2]. This is consistent with the decorrelation
principle [2], which states that unconstrained correlations in
disordered many-particle systems vanish asymptotically in
high dimensions and that the n-particle correlation function
gn for any n � 3 can be inferred entirely from a knowledge of
ρ and g2. This in turn implies that the non-negativity of g2(r)
and S(k) is a sufficient condition for realizability. It was also
shown that the decorrelation principle applies more generally
to lattices in high dimensions [56].

A. Gaussian structure factor across dimensions

To begin, we ask whether a total correlation function with
the Gaussian form

h(r) = − exp[−(r/a)2] (62)

is realizable as a hyperuniform system across dimensions,
where a is a positive constant. The corresponding structure
factor is given by

S(k) = 1 − ρadπd/2 exp

(
− k2

4πρ

)
, (63)

which implies that S(k) tends to zero quadratically as k → 0
for all d . The hyperuniformity condition requires the unique
density to be given by ρ = (a

√
π )−d . Note that the case d = 2

is exactly the same as the two-dimensional OCP system in
which h(r) and S(k) are given by (58) and (59), respectively.

We target such structure factors in one and three dimen-
sions and find that they are realizable as hyperuniform sys-
tems at unit density. For d = 1, we find excellent agreement
between the simulated and target structure factors obtained, as
shown in Fig. 12. This strongly suggests that such systems are
realizable in one dimension, the most difficult dimensionality
case. Indeed, we also find the same excellent agreement
between the simulated and target structure factors in three
dimensions, as illustrated in Fig. 13. We conclude that such
targets are realizable as disordered hyperuniform systems of
class I [18] in any space dimension whenever ρ = (a

√
π )−d .

A 3D configuration is shown in Fig. 14.

B. The d-dimensional generalization of the OCP pair
correlation function

Consider the d-dimensional generalization of the total
correlation function of the OCP,

h(r) = − exp[−ρv1(r)], (64)

FIG. 12. (a) Structure factor obtained by sampling ensembles of
1D configurations in which the target function S0(k) is taken to be
Eq. (63) with a = 1/

√
π at ρ = 1. (b) Corresponding pair correlation

function sampled from simulations and the analytical formula (62).

where v1(r) is the volume of a sphere of radius r [cf. (4)].
It is noteworthy that such a total correlation function auto-
matically satisfies the hyperuniformity requirement for any
positive density and any d , since h̃(k = 0) = ∫

Rd h(r)dr =
−1/ρ [cf. (2) and (5)]. Note that when d = 1, this is identical
to the realizable total correlation function (54) with λ = 2ρ.
Moreover, when d = 2, this is identical to the realizable OCP
function (58).

It is not known whether configurations corresponding to
(64) for d � 3 are realizable. We target the structure factor in
this case in three dimensions,

S(k) = 1 − 1

1080ρ4/3π2/3�
(

2
3

)
×

{
21/335/6π1/3

0F3

[
−;

4

3
,

3

2
,

11

6
; a(k)

]
k4

− 30(6ρ)2/3�

(
2

3

)2

0F3

[
−;

2

3
,

7

6
,

3

2
; a(k)

]
k2

+ 1080�

(
2

3

)
π2/3ρ4/3

1F4

[
1;

1

3
,

2

3
,

5

6
,

7

6
; a(k)

]}
,

(65)

where �(x) is the Gamma function, pFq(a1, . . . ,

ap; b1, . . . , bq; z) is the generalized hypergeometric
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FIG. 13. (a) Structure factor obtained by sampling ensembles of
3D configurations in which the target function S0(k) is taken to be
Eq. (63) with a = 1/

√
π at ρ = 1. (b) Corresponding pair correlation

function sampled from simulations and the analytical formula (62).
Here it turns out that our usual reciprocal-space cutoff of K = 15 is
not large enough and so we use K = 25 instead.

function, and

a(k) = k6

20 736π2ρ2
. (66)

FIG. 14. Three-dimensional 400-particle configuration drawn
from ensembles in which the target function S0(k) is taken to be
Eq. (63) at ρ = 1.

FIG. 15. (a) Structure factor obtained by sampling ensembles
of 3D configurations in which the target function S0(k) is taken to
be Eq. (65) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (64).

For small wave numbers, this 3D structure factor as well as
those for any other values of d goes to zero quadratically in k
as k tends to zero, specifically,

S(k) ∼ k2 (k → 0). (67)

This means that S(k) is analytic at the origin, which in turn
implies that h(r) decays to zero exponentially fast or faster
[18]. We find that this 3D structure factor is indeed realizable
for ρ = 1. The results depicted in Fig. 15 show excellent
agreement between the simulated and target structure factors.
One such configuration is shown in Fig. 16. Since (64) is real-
izable for d = 3, it should be realizable in higher dimensions
and hence such systems in Rd for any d are hyperuniform of
class I [18].

C. Fourier dual of relation (64)

Here we consider the Fourier dual of the function (64) in d
dimensions, namely,

ρh̃(k) = − exp[−v1(k)/(2π )dρ], (68)

which implies

S(k) = 1 − exp[−v1(k)/(2π )dρ]. (69)
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FIG. 16. Three-dimensional 400-particle configuration drawn
from ensembles in which the target function S0(k) is taken to be
Eq. (65) at ρ = 1.

Thus, the structure factor has the following asymptotic power-
law behavior for any d:

S(k) ∼ kd (k → 0). (70)

The realizability of such structure factors, which would be
hyperuniform for any density and d , has only been studied
in the space dimension d = 2, where it has the same form as
the OCP structure factor (59). It is crucial to note that unlike
the structure factor corresponding to (64), which is analytic at
the origin [cf. (67)], the structure factor (69) is nonanalytic
at the origin for any odd dimension. This attribute in odd
dimensions results in pair correlation functions that for large
r are controlled by a power-law decay 1/r2d ; see Ref. [18]
for a general analysis of such asymptotics. The corresponding
total correlation functions in the first three space dimensions
are given, respectively, by

h(r) = −1

(πρr)2 + 1
, (71)

h(r) = − exp(−πρr2), (72)

h(r) = f (r) − 1, (73)

where

f (r) = S(k = 2πρ2/3r) (74)

with S(k) the structure factor for the 3D generalization of
OCP, given in Eq. (65).

We target such structure factors in one and three dimen-
sions and find that they are realizable as hyperuniform systems
at unit density. Excellent agreement between the simulated
and target structure factors are obtained, as shown in Figs. 17
and 18. A three-dimensional configuration is shown in Fig. 19.
For aforementioned reasons, this means that the function (69)
is realizable for higher dimensions (d � 4) and hence for all
positive dimensions. Therefore, we see from (10), (11), and
(70) that such systems are hyperuniform of class II for d = 1
and of class I for d � 2.

FIG. 17. (a) Structure factor obtained by sampling ensembles
of 1D configurations in which the target function S0(k) is taken to
be Eq. (69) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (71). Here it
turns out that our usual reciprocal-space cutoff of K = 30 is not large
enough and so we use K = 50 instead.

VI. TARGETING NONHYPERUNIFORM STRUCTURE
FACTORS WITH UNKNOWN REALIZABILITY

In this section, we apply our ensemble-average algorithm
to target two different nonhyperuniform functional forms for
the structure factor in two and three dimensions. As before,
they both satisfy the explicitly known necessary conditions
(1)–(3), but are not known to be realizable. We show that all
of these targets are indeed realizable.

A. Hyposurficial structure factors in two
and three dimensions

As we have discussed in the Introduction, a hyposurficial
state of matter has A > 0 and B = 0 in Eq. (6). Hyposur-
ficiality may be considered the opposite of hyperuniformity
because the latter implies A = 0 and B > 0. Although there is
numerical evidence of B vanishing at a particular pressure in
a model amorphous ice [38], a rigorous proof of the existence
of hyposurficial point configurations is lacking.

Here we design and realize hyposurficial structure factors
in two (Fig. 20) and three dimensions (Fig. 21). Since B is
proportional to the dth moment of h(r) [see Eq. (8)], we
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FIG. 18. (a) Structure factor obtained by sampling ensembles
of 3D configurations in which the target function S0(k) is taken to
be Eq. (69) at ρ = 1. (b) Corresponding pair correlation function
sampled from simulations and the analytical formula (73).

design the well-behaved hyposurficial h(r) targets

h(r) = exp(−r)

4
− exp(−r) sin(r)

r
, (75)

h(r) = exp(−r)

4π
− exp(−r) sin(r)

r
(76)

FIG. 19. Three-dimensional 400-particle configuration drawn
from ensembles in which the target function S0(k) is taken to be
Eq. (69) at ρ = 1.

FIG. 20. (a) Structure factor obtained by sampling ensembles of
2D configurations, in which the target function S0(k) is numerically
computed from Eqs. (2) and (75), at ρ = 0.5. (b) Corresponding
pair correlation function sampled from simulations and the analytical
formula (75).

in two and three dimensions, respectively. We choose re-
alizable densities ρ = 1

2 in two dimensions (Fig. 22) and
ρ = 1

4π
in three dimensions (Fig. 23). The 3D target can be

analytically transformed into an S(k) target

S(k) = 6k8 + 12k6 + 19k4 + 24k2 + 16

6(k2 + 1)2(k2 − 2k + 2)(k2 + 2k + 2)
, (77)

but the 2D h(r) target has no corresponding analytical S(k).
We target a numerically obtained tabulated S(k) instead.

We have successfully realized these targets with tuned pa-
rameters N = 1000, Nc = 200, and K = 20 in two dimensions
and N = 4000, Nc = 1000, and K = 12 in three dimensions.
We increase the system size N because in both cases, S(k)
possesses a small kink near the origin, and we need large
systems to access smaller k values. Our success in realizing
these targets demonstrates that hyposurficial point configura-
tions indeed exist.

Reference [38] observed that hyposurficiality appears to be
associated with spatial heterogeneities and so it is interesting
to see if our configurations also exhibit such characteristics.
We present these configurations in Figs. 22 and 23, which
indeed show spatial heterogeneities that are manifested by
significant clustering of the particles.
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FIG. 21. (a) Structure factor obtained by sampling ensembles of
3D configurations, in which the target function S0(k) is taken to
be Eq. (77), at ρ = 1

4π
. (b) Corresponding pair correlation function

sampled from simulations and the analytical formula (76).

B. Antihyperuniform structure factors in two dimensions

As discussed in the Introduction, an antihyperuniform con-
figuration is one for which S(k) diverges at k = 0. Although
this behavior has been observed at various critical points, it is
still interesting to challenge our algorithm to generate such
configurations. We designed the following target structure

FIG. 22. Two-dimensional 1000-particle hyposurficial configu-
ration drawn from ensembles in which the target function S0(k) is
numerically computed from Eqs. (2) and (75) at ρ = 0.5.

FIG. 23. Three-dimensional 4000-particle hyposurficial configu-
ration drawn from ensembles in which the target function S0(k) is
taken to be Eq. (77) at ρ = 1

4π
.

factor in two dimensions:

S(k) = 1 + 1√
k2 + κ2

. (78)

Such a system, if realizable, would achieve antihyperunifor-
mity at κ = 0. The corresponding pair correlation function is

g2(r) = 1 + exp(−κr)

2πr
. (79)

We have indeed successfully realized this target at ρ = 1
and κ = 0, 0.3, and 1. We show the antihyperuniform case
κ = 0 in Figs. 24 and 25. In realizing this target, we used the
parameters N = 1000, Nc = 3000, and K = 100. We used a
large value of N to provide sufficient resolution to determine
S(k) at small k, and an extremely large value of K , since this
target S0(k) decays very slowly to unity as k increases. Since
K is large, we also need a sufficiently large value of Nc to
provide ample degrees of freedom.

VII. CONJECTURE REGARDING THE REALIZABILITY
OF EQUILIBRIUM AND NONEQUILIBRIUM
CONFIGURATIONS VIA EFFECTIVE PAIR

INTERACTIONS

Our equilibrium ensemble-average formalism to solve the
realizability problem in Rd raises a profound fundamental
theoretical question: Can any realizable g2(r) or S(k) asso-
ciated with either an equilibrium or nonequilibrium ensemble
be attained by an equilibrium systems with effective pairwise
interaction? Currently, there is no rigorous proof that the
answer to this question is in the affirmative in the implied ther-
modynamic limit. However, there are sound arguments and
reasons to conjecture that such an effective pair interaction can
always be found, perhaps under some mild conditions. First,
our theoretical formalism strongly supports this conjecture,
since it exploits the fact that an equilibrium ensemble of
configurations in Rd offers an infinite number of degrees of
freedom to attain a realizable g2(r) or, equivalently, S(k) in
the thermodynamic limit with an associated pair potential v(r)
at positive temperatures. While our procedure is not suited for
ground states (T = 0), such targeted structures are even easier
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FIG. 24. (a) Structure factor obtained by sampling ensembles of
2D configurations, in which the target function S0(k) is taken to
be Eq. (78) at ρ = 1 and κ = 0. (b) Corresponding pair correlation
function sampled from simulations and the analytical formula (79).

to achieve by pair interactions in light of the high degeneracy
of pair potentials consistent with a ground-state structure [52].
Second, for finite-size systems of particles that are restricted
to lie on lattice sites in Rd , it has been proved, under rather
general conditions, that any realizable g2(r) can be achieved
by a pair potential v(r) at positive temperatures [15]. Third,

FIG. 25. Two-dimensional 1000-particle antihyperuniform con-
figuration drawn from ensembles in which the target function S0(k)
is taken to be Eq. (78) at ρ = 1 and κ = 0.

FIG. 26. (a) Structure factor obtained by sampling ensembles of
2D configurations in which the target function S0(k) is taken to be
equal to the numerically measured S(k) of a perfect-glass system
at ρ = 0.003 906 25. (b) Corresponding pair correlation function
sampled from targeted configurations, compared with that of an
actual perfect glass.

the success of our algorithm in all of the known realizable
target cases with nonadditive interactions supports this con-
jecture, even if the simulations were necessarily carried out
on finite systems under periodic boundary conditions.

As a highly stringent test of our affirmative answer, we
now target nonequilibrium perfect-glass structure factors [40],
which are the glassy nonequilibrium state of a many-particle
system interacting with two-, three-, and four-body poten-
tials. Counterintuitively, the classical ground state of this
many-body interaction is unique and disordered [57]. By
construction, it banishes crystals and quasicrystals from the
ground-state manifold. We have previously investigated the
quenched states from infinite temperature to zero temperature
for this model with various parameter choices and numerically
computed their structure factors. Here we target the numeri-
cally measured structure factor of a perfect-glass model with
the parameters d = 2, ρ = 0.003 906 25, χ = 5.10, α = 2,
and γ = 3 (see Ref. [40] for the definition of the last three
parameters). We use targeting parameters Nc = 1000 and K =
5. This seemingly small value of K is actually relatively
large considering that ρ is much smaller than unity, since
the real-space length scale is inversely proportional to the
k-space length scale. Figure 26 shows the excellent agreement
between the targeted and simulated structure factors and pair
correlation functions. This is a remarkable suggestion that
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FIG. 27. (a) Two-dimensional configuration of 400 particles
drawn from ensembles in which the target function S0(k) is taken to
be equal to the numerically measured S(k) of a perfect-glass system
at ρ = 0.003 906 25. (b) Actual perfect-glass configuration with the
same pair statistics g2(r) and S(k).

the answer to our question above is affirmative because a
perfect glass is a nonequilibrium system with two-, three-, and
four-body interactions while our reconstructed system is an
equilibrium state of a pair potential.

It is interesting to compare configurations produced by the
actual perfect-glass interaction and the effective pair inter-
action visually, as is done in Fig. 27. Although these pairs
of configurations look strikingly similar to one another, we
know that since one system involves three- and four-body
interactions and the other does not, their higher-order statistics
(g3, g4, . . .) must be different [2,3,58], even if such distinc-
tions cannot be detected visually.

The realizability of a perfect glass using our formalism as
well as the findings reported in Secs. III–VI leads us to the
following conjecture: Given the pair correlation function g2(r)
of any realizable statistically homogeneous many-particle en-
semble (equilibrium or not) in Rd at number density ρ, there

is an equilibrium ensemble (Gibbs measure) involving only an
effective pair potential v(r) that gives rise to such a g2(r).

Note that statistical homogeneity implies that thermody-
namic limit has been taken. The rigorous validity of this
conjecture is an outstanding open problem.

VIII. CONCLUSION AND DISCUSSION

To address the realizability problem, we introduced a the-
oretical formalism that provides a means to draw disordered
particle configurations at positive temperatures from canon-
ical ensembles with certain pairwise-additive potentials that
could correspond to disordered targeted analytical functional
forms for the structure factor. This theoretical foundation
enabled us to devise an efficient algorithm to construct sys-
tematically canonical-ensemble particle configurations with
such targeted pair statistics whenever realizable. As a proof of
concept, we tested algorithm to target several different struc-
ture factor functions across dimensions that are known to be
realizable and one hyperuniform target that meets all explic-
itly known necessary realizability conditions but is known to
be nontrivially unrealizable. Our algorithm succeeded for all
realizable targets and appropriately failed for the unrealizable
target, demonstrating the accuracy and power of the method
to numerically investigate the realizability problem. Having
established the prowess of the methodology, we targeted sev-
eral families of structure-factor functions that meet the known
necessary realizability conditions but were not known to be
realizable, including d-dimensional Gaussian structure fac-
tors, d-dimensional generalizations of the 2D one-component
plasma, d-dimensional Fourier duals of the previous OCP
cases, a hyposurficial target in two and three dimensions,
and an antihyperuniform target in two dimensions. In all of
these instances, we were able to achieve the targeted structure
factors with high accuracy, suggesting that these targets are
indeed truly realizable by equilibrium many-particle systems
with pair interactions at positive temperatures. This expands
our knowledge of analytical functional forms for g2(r) and
S(k) associated with disordered point configurations across
dimensions. When targeting hyposurficial structure factors,
we confirm a previous observation that hyposurficiality is
associated with spatial heterogeneities that are manifested
by significant clustering of the particles [38]. Our results,
especially perfect-glass realizability, led to the conjecture
that any realizable structure factor corresponding to either an
equilibrium or nonequilibrium system can be attained by an
equilibrium ensemble involving only effective pair interac-
tions in the thermodynamic limit.

It is worth stressing that we only constrain S(k) in a finite
range (0 < |k| < K) numerically for K as large as feasibly
possible, but do not enforce explicit constraints on g2(r).
Since g2(r) for small r is related to S(k) for large k, there
is no guarantee that the numerically sampled g2(r) matches
its analytical counterpart at very small pair distances, i.e.,
r < 2π/K . Nevertheless, we always find impressive consis-
tency between the simulated and analytical pair correlation
functions corresponding to the target S(k), which further
demonstrates the success of our algorithm.

Realizable particle configurations generated with a tar-
geted pair correlation function using our algorithm are
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equilibrium states of pairwise additive interactions at positive
temperatures. Such a pair potential is unique up to a constant
shift [51]. In the case of realizable hyperuniform targets with
the smooth pair correlation functions considered here, such
interactions must be long ranged [18], which is a consequence
of the well-known fluctuation-compressibility relation

lim
k→0

S(k) = ρkBT κT , (80)

where κT is the isothermal compressibility. Since
limk→0 S(k) = 0 and ρkBT > 0, one must have κT = 0.
Using the analysis that relates the large-r behavior of the
direct correlation function to that of the pair potential
function v(r) presented in Ref. [18], it immediately follows
that the asymptotic behavior of v(r) is Coulombic for the
Gaussian S(k) [cf. (47)] for d � 3, i.e.,

βv(r) ∼ 1/rd−2, r → ∞, (81)

which, of course, is a long-range interaction. The same
asymptotic Coulombic form for the pair potential for d � 3
arises in the d-dimensional generalization of the OCP pair
correlation function (64). It would be an interesting future
research direction to find the specific functional forms of such
pair interactions. For general determinantal point processes,
these would be effective pair interactions that mimic the two-
body, three-body, and higher-order intrinsic interactions [35].

Our study is also a step forward in being able to devise
inverse methods [59,60] to design materials with desirable
physical properties that can be tuned by their pair statistics.
Pair statistics combined with effective pair interactions, which
in principle can be obtained using inverse techniques [61,62],
can then be used to compute all of the thermodynamic prop-
erties, such as compressibility and energy and its derivatives,
e.g., pressure or heat capacity [1]. In instances in which the
bulk physical properties are primarily determined by the pair
statistics, such as the frequency-dependent dielectric constant
[63] and transport properties of two-phase random media [64],
our results are immediately applicable.

While applications of our ensemble-average methodology
were directed toward the realizability of target structure factor
functions that putatively could correspond to disordered hype-
runiform and nonhyperuniform (e.g., hyposurficial and anti-
hyperuniform) many-particle configurations, the technique is
entirely general and hence not limited to these systems. Future
work could apply the algorithm to discover realizable fami-
lies of pair correlation functions associated with other novel
configurations. Another interesting future direction would be
to analytically study how the single-configuration structure
factor at a particular k vector is distributed. We have proved in
the present work that it is exponentially distributed when there
is a single constraint or when there are up to d independent
constraints. When the number of k vectors is higher than d ,
we provided strong numerical evidence that the exponential
distribution still holds (see the Appendix). Whether such
behavior can be proved remains a fascinating open problem.
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APPENDIX: NUMERICAL TESTS ON THE THEORETICAL
FORMALISM AND JUSTIFICATION OF THE ALGORITHM

In this Appendix, we numerically verify the major con-
clusions and outcomes of our theoretical canonical-ensemble
formalism and justify our algorithm using the 1D fermionic
target structure factor (49) as an example. Specifically, we
show and verify that (1) to constrain the ensemble-average
structure factor at a single k vector, one can alternatively per-
form canonical-ensemble simulations at temperature kBT = 1
with energy given in Eq. (37) via the molecular dynamics al-
gorithm; (2) to constrain S(k) at multiple wave vectors in one
dimension, simply performing canonical-ensemble simula-
tions using (37) is inexact; (3) our algorithm given in Sec. II C
outputs configurations drawn from the canonical ensemble
of a pairwise additive interaction; and (4) when employing
our algorithm to reconstruct configurations in one dimension,
K = 30 is a reasonable cutoff value for the constrained region.
We proved that the single-configuration structure factors S (k)
at a single constrained wave vector is exponentially distributed
when there is one constraint. However, here we provide strong
numerical evidence that the same distribution holds even for
the multiple-constraint cases.

If we only need to constrain the structure factor at a
single wave vector, then (37) is exact, and one can per-
form molecular-dynamics simulations [with energy defined
in (36) at temperature kBT = 1] to meet this constraint. We
performed such a simulation and collected 5000 snapshots.
The simulation is performed on a 1D system with N = 400
particles. We let S0 = 0.5 and choose q to be the smallest k
vector. The resulting structure factor is presented in Fig. 28.
Indeed, the structure factor at q averages to S0.

We now move on to constraining the structure factor at
multiple nonindependent wave vectors in order to realize
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FIG. 29. Structure factor for the 1D system with energy given in
Eq. (A1), in which S0(k) is given in Eq. (49), at temperature kBT = 1.

the structure factor of the 1D fermionic system. Since the
structure factors at multiple wave vectors are constrained,
Eq. (37) is inexact due to correlations between structure-factor
values at different wave vectors. To find out how inexact it
is, we again performed molecular dynamics simulations. We
define the energy

E =
∑

|k|<2π

ṽ(k)S (k), (A1)

where ṽ(k) is given in (37). Here the summation beyond
|k| = 2π is unnecessary because for such k vectors, S0(k) =
1 and ṽ(k) vanishes. As previously discussed, we performed
a molecular dynamics simulation with N = 400 particles at
kBT = 1. The resulting structure factor, shown in Fig. 29,
exhibits a noticeable deviation from its target S0(k).

FIG. 30. (a) Analytical three-body correlation function g3(r1, r2)
of the 1D Fermi-sphere system. (b) Difference in g3 between the
targeted system and the 1D Fermi-sphere system �g3(r1, r2) =
gfermionic

3 (r1, r2) − gtargeted
3 (r1, r2). (c) and (d) Same as (a) and (b) but

for the 1D Lorentzian target.
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FIG. 31. Probability density function of the structure factor, nor-
malized by the target, at two different wave vectors for four different
targets. The two wave vectors are kmin, the minimum wave vector
in the x direction, and 10kmin. The targets are 1D COE [Eq. (48)],
1D Lorentzian [Eq. (55)], 2D Gaussian [Eq. (59)], and 3D hyposur-
ficial [Eq. (77)]. Since the structure factor is always exponentially
distributed, the normalized plot for different cases falls on a single
straight line on a plot on a semilogarithmic scale.

Since we were not able to derive an appropriate ṽ(k) for the
general case of multiple nonindependent k vectors, we could
not meet these constraints by simply performing molecular
dynamics simulations. We must therefore use the method
presented in Sec. II C [minimizing 
 in Eq. (46) for Nc = 100
configurations simultaneously].

One conclusion of our theoretical formalism is that our
reconstructed configurations are drawn from the canonical
ensemble of a pairwise additive interaction at some posi-
tive temperature. We can test this conclusion because the
fermionic systems in one dimension also correspond to an
equilibrium state of a logarithmic pairwise-additive potential
with β = 2. By Henderson’s theorem [51], our targeted sys-
tem and the fermionic system are both equilibrium states of
the same pair potential, and thus the two systems should have
the same higher-order statistics (g3, g4, . . .). To check this
conclusion, we computed the three-body correlation functions
of our targeted system and compare them with the analytical
result of the fermionic system in Fig. 30. In general, g3 is a
function of three vectors r12, r13, and r23. However, in one
dimension, we can set r12 = r1, r13 = r2, and r23 = r1 + r2,
and then g3 becomes a function of two scalars r1 and r2.
The difference between the numerically found g3(r1, r2) of
the targeted system and the analytical g3(r1, r2) of the Fermi-
sphere system is two orders of magnitudes smaller than unity
and appears completely random with no systematic trend,
consistent with our reasoning.

By contrast, the one-dimensional Lorentzian S(k) target
is also realized by a determinantal point process with an
analytically known g3 [10], but it is not an equilibrium state
of a pairwise additive potential [35]. Therefore, the difference
between the analytic g3 for the determinantal point process
and the numerical g3 of the reconstructed system exhibits a
peak much stronger than statistical noise at around r1 = r2 =
0.3. The statistically significant difference is consistent with
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FIG. 32. Pair correlation function and structure factor obtained
by targeting Eq. (49) at various values of K .

our theory that the reconstructed configurations are drawn
from an equilibrium state of a pair potential and therefore
must be different from determinantal point processes not
realizable by pair potentials. We have similarly verified that
the exact analytical expression for g3 of the 2D fermionic
system differs from the numerically determined g3 of the
reconstructed system with the same pair statistics, which is
expected since 2D fermionic systems also involve n-particle
interactions with n � 3 [35].

We now show numerical evidence that the structure factor
at a constrained k vector is exponentially distributed. In
Fig. 31 we plot the distribution of single-configuration struc-
ture factors at two different wave vectors for four different
targets. After normalizing S(k) by its mean S0(k), all results
collapse onto a single straight line in a semilogarithmic plot,
demonstrating that S(k) is indeed exponentially distributed in
all cases.

Finally, we explore the effect of changing the cutoff value
K . The results are presented in Fig. 32. With K = 10, the
structure factor develops a discontinuity at the cutoff. How-
ever, as we increase K to 30, the discontinuity diminishes.
We have also explored many other targets, detailed in the rest
of the paper, and always find that when K is sufficiently
large, the structure factor is continuous at the cutoff. In
summary, except for some special cases discussed in the
paper, cutoff value of K = 30 is generally suitable for the
one-dimensional targets that we examined and K = 15 is gen-
erally suitable for two- and three-dimensional targets reported
here.
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