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Diffusion in a biased washboard potential revisited
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The celebrated Sutherland-Einstein relation for systems at thermal equilibrium states that spread of trajectories
of Brownian particles is an increasing function of temperature. Here, we scrutinize the diffusion of underdamped
Brownian motion in a biased periodic potential and analyze regimes in which a diffusion coefficient decreases
with increasing temperature within a finite temperature window. Comprehensive numerical simulations of
the corresponding Langevin equation performed with unprecedented resolution allow us to construct a phase
diagram for the occurrence of the nonmonotonic temperature dependence of the diffusion coefficient. We discuss
the relation of the later effect with the phenomenon of giant diffusion.
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I. INTRODUCTION

In the Sutherland-Einstein relation [1,2], the diffusion co-
efficient D of the Brownian particle moving in the viscous
medium of temperature T is a linear function of T , D ∼ T ,
i.e., it increases as temperature grows. This relation is in
accordance with our intuition as thermal fluctuations of the
medium grow with T and in consequence fluctuations of
the Brownian particle position increases as well. The obvi-
ous question is whether diffusion can ever slow down with
temperature increase. Recent progress in the nonequilibrium
statistical physics demonstrates that many phenomena which
are forbidden in equilibrium may emerge in nonequilibrium
states. Prominent examples include noise-assisted transport
[3], negative mobility [4–6], and anomalous diffusion [7].

Both experimental data and theoretical studies show that
the diffusion coefficient can exhibit nonmonotonic depen-
dence on temperature meaning that there is a temperature
window in which D decreases when T increases. To the best
of our knowledge, the first experimental demonstration was
done in 1988 showing that the diffusion of nickel atoms in
alloys (chromium-nickel steels) is faster at liquid nitrogen
temperature than at room temperature [8]. In the subsequent
paper [9], the diffusion coefficient in solid 3He – 4He mixtures
at low temperature exhibits a nonmonotonic temperature de-
pendence. This nonmonotonicity may be associated with the
influence of the nonuniform field of elastic stresses in the crys-
tal due to the difference in the molar volumes of the phases.
Similar behavior has been found in setups including zeolite-
guest systems [10], cytoplasmic proteins [11], and polymer
nanocomposites [12]. It has also been revealed for quan-
tum systems. The spreading of quantum excitations coupled
to spatially extended nonlinear many-body systems displays
nonmonotonic temperature dependence which is related to
the presence of long-wavelength acoustic modes [13]. Other
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examples are diffusive transport in disordered systems in the
presence of quantum phonon modes [14] and nonuniform
twisted vortex states in rotating superfluids [15].

In the paper we revisit the problem of diffusion of an
inertial Brownian particle in a biased periodic potential.
This setup plays a central role in many physical systems
[16]. It models the dynamics of the phase difference across
Josephson junction [17], rotating dipoles in external fields
[18], superionic conductors [19], charge density waves [20],
and cold atoms dwelling in optical lattices [21], to mention
only a few. Various aspects of diffusion of an underdamped
Brownian particle in a washboard potential have been stud-
ied [22–28]. In some regimes, the system can exhibit two
interesting behavior: giant diffusion [22] and nonmonotonic
temperature dependence of the diffusion coefficient [23]. The
study of these phenomena has been continued [24,26–28] and
explained by bistable velocity dynamics, i.e., in terms of two
classes of trajectories for the deterministic counterpart: locked
and running. Analysis has been focused on the phenomenon
of giant diffusion to determine for all values of the friction
coefficient the range of bias force value for which the diffusion
coefficient apparently diverges in the zero temperature limit
and explained this effect in terms of transition between the
locked and running states. Moreover, some regimes in which
apparently there is a pronounced maximum of the diffusion
coefficient as a function of temperature have been determined.

In contrast, here we concentrate on the effect of non-
monotonic temperature dependence of diffusion in this setup
to present several complementary results. Most importantly,
with the help of numerical simulations of unprecedented
resolution we deliver a phase diagram for the occurrence of
the nonmonotonic temperature dependence of diffusion. We
discuss its relation with the corresponding one for the giant
diffusion effect and it turns out that it significantly extends
the previous predictions. Moreover, we report a parameter
regime for which the velocity dynamics is not bistable, but
multistable, thus demonstrating the failure of the bistable
velocity dynamics and the approximation by a Markovian
two-state process [26,27]. Last but not least, we highlight
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the long-lasting transient anomalous diffusive regimes in low
temperature region.

The remaining part of the paper is organized as follows.
In Sec. II we describe the model and recall quantifiers for
the description of diffusion. In Sec. III we present a brief
history and the state of art of the problem of diffusion in a
washboard potential. In Sec. IV we analyze the phenomenon
of nonmonotonic dependence of the diffusion coefficient on
temperature. In particular, we present there a phase diagram
for occurrence of this phenomenon. Last but not least, Sec. V
contains a summary and conclusions.

II. MODEL

In this paper we reexamine a diffusion process of a clas-
sical Brownian particle of mass M, moving in a spatially
periodic and symmetric potential U (x) = U (x + L) of period
L, and subjected to a constant biasing force F . The dynamics
of such a system is described by the following Langevin
equation

Mẍ + �ẋ = −U ′(x) + F +
√

2�kBT ξ (t ), (1)

where the dot and the prime denote differentiation with re-
spect to the time t and the particle coordinate x, respectively.
The parameter � is the friction coefficient and kB is the
Boltzmann constant. We assume the simplest form of the
symmetric potential, namely,

U (x) = −�U sin

(
2π

L
x

)
, (2)

where �U is half of the barrier height and L is the spatial
period. Thermal fluctuations due to the coupling of the particle
with the thermal bath of temperature T are modeled by δ-
correlated Gaussian white noise ξ (t ) of zero mean and unit
intensity, i.e.,

〈ξ (t )〉 = 0, 〈ξ (t )ξ (s)〉 = δ(t − s). (3)

The noise intensity factor 2�kBT in Eq. (1) follows from the
fluctuation-dissipation theorem [29].

As the first step of our analysis we transform Eq. (1) into
its dimensionless form. This can be done in several ways
depending on the choice of the timescale. Here we define the
dimensionless coordinate x̂ and dimensionless time t̂ in the
following manner:

x̂ = 2π

L
x, t̂ = t

τ0
, τ0 = L

2π

√
M

�U
. (4)

The characteristic time τ0 = 1/ω0 is the inverse of frequency
ω0 of small oscillations in the well of the potential U (x)
defined in Eq. (2).

Under the above scaling, Eq. (1) is transformed to the form

¨̂x + γ ˙̂x = cos x̂ + f +
√

2γ θ ζ (t̂ ), (5)

where now the dot denotes differentiation with respect to the
dimensionless time t̂ . We note that the dimensionless mass is
m = 1 and the remaining rescaled parameters are

γ = τ0

τ1
= 1

2π

L√
M�U

�, f = 1

2π

L

�U
F. (6)

The second characteristic time is τ1 = M/� which for a free
Brownian particle defines the velocity relaxation time. The
rescaled temperature θ is given by the ratio of thermal energy
kBT to half of the activation energy the particle needs to
overcome the original potential barrier �U , i.e.,

θ = kBT

�U
. (7)

The dimensionless thermal noise ζ (t̂ ) assumes the same sta-
tistical properties as ξ (t ), namely, it is a Gaussian stochastic
process with vanishing mean 〈ζ (t̂ )〉 = 0 and the correlation
function 〈ζ (t̂ )ζ (ŝ)〉 = δ(t̂ − ŝ). From now on we will use
only the dimensionless variables and shall omit the hat in all
quantities appearing in the Langevin equation (5).

Diffusion quantifiers

The basic quantity characterizing diffusion is the mean
square deviation (variance) of the particle coordinate x(t ),
namely,

〈�x2(t )〉 = 〈[x(t ) − 〈x(t )〉]2〉 = 〈x2(t )〉 − 〈x(t )〉2, (8)

where 〈·〉 indicates averaging over all thermal noise realiza-
tions as well as over initial conditions for the position x(0)
and velocity v(0) = ẋ(0) of the Brownian particle. The long
time evolution of the variance typically becomes an increasing
function of the elapsing time [7]

〈�x2(t )〉 ∼ tα. (9)

The exponent α specifies a type of diffusion behavior. Normal
diffusion is observed for α = 1. On the other hand, the case
0 < α < 1 is termed subdiffusion while for α > 1 we classify
this behavior as superdiffusion [7]. One can define the time-
dependent “diffusion coefficient” D(t ) as [30]

D(t ) = 〈�x2(t )〉
2t

. (10)

Note that the case of time-decreasing D(t ) corresponds to sub-
diffusion whereas superdiffusion occurs when D(t ) increases.
For D(t ) = const. we deal with normal diffusion. We stress
that only when the exponent α approaches unity we find a
properly defined diffusion coefficient D, i.e., [30]

D = lim
t→∞ D(t ) < ∞. (11)

If the diffusion process is anomalous then D(t ) either diverges
to infinity (superdiffusion) or converges to zero (subdiffusion)
when t → ∞. Therefore the diffusional behavior of a classical
Brownian particle is completely characterized only by both
the power exponent α and the diffusion coefficient D(t ).

III. STATE OF THE ART

The problem of Brownian motion in a periodic potential
has a long history. We refer the interested reader to the
well-known Risken book [16]. Although at the first glance
Eq. (5) may look simple, the Fokker-Planck equation for the
particle probability distribution P(x, v, t ) corresponding to
this equation is a second order partial differential equation
of the parabolic type. Moreover, from Eq. (5) it follows
that the parameter space of the model is three-dimensional
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{γ , f , θ} which is too large to explore in a systematic and
complete way, even with the help of various approximations.
Therefore, in particular the issue of diffusion in a periodic
potential remains vibrant topic of current research [31–40].
Below we briefly review the state of the art of the problem
of nonmonotonic temperature dependence of diffusion in this
setup.

A. Overdamped diffusion

The comparatively simpler regime that historically was
attacked first is an overdamped limit for which inertial effects
can be neglected. Such a case is represented by the following
Langevin equation:

γ ẋ = cos x + f +
√

2γ θ ζ (t ). (12)

In this situation the corresponding Fokker-Planck equation
for the particle probability density P(x, t ) can be handled
analytically and the diffusion coefficient given by Eq. (11) was
calculated exactly in a closed analytical form [41–43]. It has
been shown that the diffusion coefficient in a critically tilted
periodic potential may be arbitrarily enhanced as compared to
free diffusion D0 = θ/γ . Moreover, already in Ref. [41] the
authors reported the nonmonotonic temperature dependence
of the diffusion coefficient. They argued that this remarkable
result relies on the large ratio of relaxation to escape time at
the optimal noise intensity.

B. Underdamped diffusion

For the underdamped dynamics given by Eq. (5) in-
ertial effects play an essential role and make the regime
much more difficult to analyze. Solutions of the corre-
sponding Fokker-Planck equation for the particle probability
distribution P(x, v, t ) become unattainable. Therefore either
approximations or numerical simulations must be applied.
Nevertheless this last may be used only in some particular
regions of the parameter space of the model. Amplification
of underdamped diffusion was numerically observed due to
bistability of the velocity dynamics for the very first time
in Ref. [22]. In Ref. [23] it was shown that the maximum
of the diffusion coefficient increases rapidly with decreasing
friction. Moreover, the authors found that the diffusion coeffi-
cient grows with inverse temperature like a power law. This
result was discussed in Refs. [24,26], where the growth of
the maximal diffusion coefficient follows rather exponential
dependence on inverse temperature. Finally, the nonmono-
tonic temperature dependence of the diffusion coefficient for
the underdamped dynamics in a tilted periodic potential has
been demonstrated [27,28]. This salient feature has been re-
cently captured also in systems driven by time-periodic force
[44–47].

In this study we use extensive numerical simulations of
the underdamped Langevin dynamics (5) to construct a phase
diagram for occurrence of the nonmonotonic temperature
dependence of diffusion. In doing so we determine all values
of the friction coefficient γ as well as the bias f in the
numerically accessible parameters range for which the diffu-
sion coefficient display the abnormal dependence on temper-
ature.

100

101

102

10−1 100 101

θ

D
α

FIG. 1. Nonmonotonic temperature dependence of underdamped
diffusion. The diffusion coefficient D as well as the power exponent
α is plotted as a function of the dimensionless temperature θ ∝
T in the parameter regime corresponding to the bistable velocity
dynamics. Parameters are γ = 0.255, f = 0.52.

IV. NONMONOTONIC TEMPERATURE DEPENDENCE OF
UNDERDAMPED DIFFUSION

All numerical calculations have been done by the use of a
Compute Unified Device Architecture (CUDA) environment
implemented on a modern desktop Graphics Processing Unit
(GPU). This proceeding allowed for a speedup of factor of the
order 103 times as compared to present day Central Processing
Unit (CPU) method [48]. We employed a weak second order
predictor-corrector scheme to simulate stochastic dynamics
given by Eq. (5) with the time step h = 10−2. The initial posi-
tion x(0) and velocities v(0) were uniformly distributed over
the intervals [0, 2π ] and [−2, 2], respectively. The quantities
characterizing diffusive behavior of the system were averaged
over the ensemble of 105 trajectories, each starting with
different initial condition according to the above distributions.

A. Bistability of the velocity dynamics

In Fig. 1 we exemplify the nonmonotonic temperature
dependence of the diffusion coefficient D. There, the later
quantifier is plotted versus the dimensionless temperature θ ∝
T . The reader can note that already for the whole decade
the diffusion coefficient is decreasing with increasing θ . Its
minimum is attained for θ ≈ 1. Moreover, in the same panel
we also depict the asymptotic value of the power exponent
α defined in Eq. (9) to illustrate that indeed the diffusive
behavior is normal in the whole analyzed temperature range.
This last fact means that the system has reached its stationary
state. One needs to carefully check this for each parameter
regime separately to not confuse enhancement of normal
diffusion with the occurrence of superdiffusion [30]. It has
been suggested that the mechanism which was responsible
for this unconventional nonmonotonic diffusive dependence
had its roots in the bistability of the thermal noise driven
velocity dynamics [26,27]. In the following we complement
the previous analysis by demonstrating a direct numerical
proof for this statement.

First, let us study the corresponding probability distribution
for velocity of the Brownian particle in the long time limit,
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FIG. 2. Influence of temperature on bistability and its disappear-
ance visualized for the probability distribution P(v) of the particle
velocity in the long time limit, cf. Eq. (13), is depicted in the
parameter regime corresponding to Fig. 1, i.e., γ = 0.255 and f =
0.52. The dimensionless temperature reads θ = 0.1 (red), θ = 0.3
(green), and θ = 2 (blue).

namely,

P(v) = lim
t→∞ P(v, t ), P(v, t ) =

∫ ∞

−∞
dx P(x, v, t ), (13)

which is depicted in Fig. 2. Indeed, we note that for the model
parameters corresponding to Fig. 1 the velocity dynamics
is bistable at low to moderate temperature. There are two
solutions: the first describes the locked one in which the
particle is confined in a finite number of potential wells with
vl ≈ 0 whereas the second is running for which the motion
is unbounded in space with vr �= 0. In the presented case the
reader can observe a typical finite temperature effect, namely,
the broadening of the Gaussian peaks corresponding to each
solution. The higher temperature of the system is, the peak
corresponding to the locked state decreases and the peak cor-
responding to the running state increases. Nevertheless, still
we are able to distinguish between the locked solution vl = 0
and the running one vr ≈ 2. Finally, at high temperature,
thermal fluctuations destroy locked states and only running
states exist (the blue curve in Fig. 2).

In the bistability regime, the above analysis allows to
construct a two state Markov process which approximates
the Langevin equation (5). Jumps between the locked and
running states are driven solely by thermal fluctuations. The
diffusion coefficient is a measure of a spread of trajectories of
the system around its mean path. For our case of the bistable
velocity dynamics there are two contributions to it. The first is
associated with the spread coming from the relative distance
between the locked and running trajectories. The second is
related to the spread of trajectories following a given velocity
solution. This last is caused solely by thermal fluctuations.
The first contribution is much larger than the second, at least
for low to moderate temperature. From this reasoning it is
clear that the diffusive behavior of the system in the case of
bistable velocity dynamics is significantly impacted by the
fraction of locked trajectories. We now consider the stationary
probabilities pl and pr for the particle to reside in the locked
vl = 0 and running vr = 2 states, respectively. In Fig. 3 we
depict these quantities as a function of temperature θ of the
system in the parameter regime corresponding to Fig. 1 for

10−1 100 101

θ

pl
pr

FIG. 3. Temperature dependence of the stationary probabilities
pl and pr for the particle to reside in the locked vl = 0 and running
vr = 2 state, respectively. Parameter regime corresponds to Fig. 1,
i.e., γ = 0.255 and f = 0.52.

which the diffusive behavior displays nonmonotonic charac-
ter. We note that the temperature dependence of the probabil-
ity pl for the particle to be in the locked state resembles very
much behavior of the diffusion coefficient depicted in Fig. 1.
In particular, the overall spread of trajectories is large when
there are many locked trajectories. The diffusion coefficient
attains its minimum when the fraction of the locked solutions
is minimal, cf. Fig. 1. Further growth of temperature causes
an increase of pl which immediately enlarges the diffusion
coefficient. For high enough θ both stationary probabilities
are expected to be equal pl = pr . However, in such a limit
the spread of a group of running trajectories dominates the
diffusion coefficient and the last of these follows the well-
known Sutherland-Einstein relation D ∝ θ .

B. Multistability of the velocity dynamics

In this section we demonstrate that care needs to be taken
as one could encounter in the parameter space regimes for
which the velocity dynamics can be multistable, meaning that
there exists more than one running solution pointing into the
positive direction. Moreover, among these parameter sets one
may also discover a nonmonotonic temperature dependence of
the diffusion coefficient. We exemplify this feature in Fig. 4
where we depict the diffusion coefficient D as well as the
power exponent α versus temperature θ . In the subsequent
panel, i.e., Fig. 5, we present the corresponding probability
distribution P(v) for the Brownian particle velocity in the long
time limit for different temperature θ . The reader can clearly
distinguish two running states transporting the particle into
the positive direction which differ by the velocity magnitude.
Additionally there is also the locked solution so that the
overall velocity distribution is multistable. Moreover, one can
note that this behavior is characteristic for low temperature
as for increasing thermal noise intensity the distribution first
becomes bimodal and then, for sufficiently high temperature,
unimodal. This complexity is characteristic feature of the
noisy system as for its deterministic counterpart it is already
well known that the velocity dynamics is at most bistable [16].
It has been overlooked in the previous research, especially in
Ref. [27], where the authors represented the dynamics as a
Markovian two-state process in the velocity space. Clearly,
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FIG. 4. Nonmonotonic temperature dependence of underdamped
diffusion. The diffusion coefficient D and the power exponent α is
shown versus temperature θ in the parameter regime corresponding
to the multistable velocity dynamics. Parameters are γ = 0.6366,
f = 0.91.

the parameter regime reported in Fig. 5 demonstrates the
failure of this approximation. To understand the mechanism
standing behind the nonmonotonic temperature dependence
of diffusion in this regime most likely one needs to carefully
investigate temperature influence on all transitions between
the observed three states. We expect that still the pivotal role
is played by the jumps between the running solutions and the
locked one. However, since such investigation does not lay in
the main context of the present paper we leave this problem
open for near future research.

C. Transient anomalous diffusion

In Fig. 6(a) we depict the time-dependent diffusion coef-
ficient D(t ) for selected values of the dimensionless tempera-
ture θ in another parameter regime for which γ = 0.1 and f =
0.3. The only reason for such a choice of the parameter values
is a more pronounced visualization of transient effects of the
system dynamics associated with an investigated nonmono-
tonic temperature dependence of the diffusion coefficient.
This last is extremely important to understand the technical
limitations of the numerical study of this system. In Fig. 6(a)
one can observe two regimes: (i) the first is for high temper-
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θ = 0.2

FIG. 5. Multistability of the probability distribution for the ve-
locity of the Brownian particle P(v) in the long time limit is pre-
sented in the parameter regime corresponding to Fig. 4 for different
temperature θ .
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FIG. 6. (a) Evolution of the diffusion coefficient D(t ) depicted
for different values of the dimensionless temperature θ ∝ T . (b) Life-
time τ1 of the ballistic diffusion versus temperature θ . Other param-
eters are γ = 0.1, f = 0.3.

atures for which at the initial stage superdiffusion (ballistic
diffusion) occurs in the time interval (0, τ1) where the diffu-
sion coefficient D(t ) increases as a function of time and next
normal diffusion is approached for t > τ1. For these regimes
D(t ) monotonically tends to its time-independent stationary
value D; (ii) the second is for lower temperatures for which the
reader may detect a characteristic nonmonotonic relaxation
of the diffusion coefficient D(t ) towards its stationary value
D. Initially D(t ) grows with time (ballistic diffusion), then
it decreases (subdiffusion), and finally it reaches its steady
state D (normal diffusion). This last relaxation pattern of
D(t ) is a characteristic feature of a nonmonotonic temperature
dependence of the diffusion coefficient.

The duration of this transient anomalous diffusive behavior
is extremely sensitive to temperature variation. In particular,
as it is shown in Fig. 6(b) of the same figure, if the temperature
decreases the period τ1 of ballistic diffusion rapidly increases
and tends to infinity τ1 → ∞ when θ → 0. Therefore, from
the technical point of view, smaller temperatures require expo-
nentially larger simulation times until the diffusion coefficient
settles. Transitions between velocity states are driven by ther-
mal noise. Its intensity reads Q = γ θ . For smaller intensity
jumps between the velocity solutions are less probable. There-
fore the above reasoning applies also to the dimensionless
friction coefficient γ , meaning that to be able to reach a
stationary state in the time span of numerical simulations one
has to avoid the limit of small θ and/or γ . Another critical
point occurs for f = 1 for which velocity bistability is no
longer observed. The limit f → 1 is also hard to tackle with
direct numerical simulations since then the transition rates
describing the locked solution become vanishingly small and
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FIG. 7. Phase diagram for occurrence of the nonmonotonic tem-
perature dependence of diffusion presented in the parameter plane
(γ , f ) together with Risken plot with the three critical forces f1, f2,
and f3.

one again needs an exponentially longer time span of the
simulation to sample the state space of the system reliably.

D. Phase diagram of the nonmonotonic temperature
dependence of diffusion

We have taken into account the above constraints and con-
structed the phase diagram of occurrence of the nonmonotonic
temperature dependence of diffusion in the system described
by the Langevin equation (5). This is an essentially new result
which has not been presented in the literature. It was possible
solely thanks to the use of our innovative computational
method which allowed to explore the parameter space with
sufficient resolution [48]. We performed scans of the follow-
ing area of the parameter space γ × f ∈ [0.1, 1] × [0, 1] at
a resolution 100 points per dimension. For each pair (γ , f )
we calculated the temperature dependence of the diffusion
coefficient D(θ ; γ , f ) in the interval θ ∈ [0.1, 10]. In each
case we checked that asymptotically diffusion is normal, i.e.,
its coefficient is constant D = const. and the power exponent
α = 1. For the most parameter regimes the span of 105 dimen-
sionless units of time was sufficient to reach the steady state
of the system, c.f. Fig. 6. Then we computed the characteristic
∂D/∂θ and verified whether there is a finite interval for
which the diffusion coefficient is a decreasing function of
temperature, i.e., ∂D/∂θ < 0. The result is shown in Fig. 7.
Each cyan dot represents a pair (γ , f ) for which the diffusion
behavior of the system displays a nonmonotonic dependence
on temperature.

According to the state of the art there are two regimes of the
later effect. The first one is associated with the phenomenon
of giant diffusion for which the diffusion coefficient D is
enhanced and exceeds the bare diffusion coefficient D0 = θ/γ

of a free particle by orders of magnitude if the biasing force
is close to a critical value [25,27,41,42]. This amplification is
particularly evident for low temperatures θ → 0 for which the
diffusion coefficient apparently diverges D → ∞. This is in-
deed an example of a nonmonotonic temperature dependence.
This effect occurs due to bistability of the velocity dynamics.
This last phenomenon is well known since the seminal work
by Risken et al. [16] who predicted that, for a fixed value of
the friction coefficient γ , the locked and running solutions
coexist in the deterministic θ = 0 counterpart of the system
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FIG. 8. The diffusion coefficient D versus the constant bias f is
plotted for γ = 0.4 and different values of temperature θ . The power
exponent α is plotted versus bias f for θ = 0.1. The colored region
corresponds to the bias interval f for which the diffusion coefficient
D displays nonmonotonic character. The orange color indicates the
area where according to Ref. [27] the giant diffusion occurs.

if the constant force is in the range

f1(γ ) < f < f3 = 1, (14)

which is also indicated in Fig. 7. The force f1(γ ) is a solution
of the deterministic system as the minimal value f for which
a running state vr �= 0 starts to appear. Similarly, f2(γ ) is
determined as a force at which the mean velocity 〈v〉 jumps
from zero to a value corresponding to a running solution
vr in the limit of vanishing noise θ → 0 [16]. On the line
f2(γ ) the locked vl = 0 and running vr �= 0 states are equally
probable in the deterministic limit of zero temperature. Above
f2(γ ) the running state is more stable than the locked
state and below f2(γ ) the locked state is more stable than the
running state. The second class of nonmonotonic temperature
dependence of the diffusion coefficient which apparently is
not associated with the occurrence of the giant diffusion effect
has been reported in Ref. [27], see Fig. 6(b). In contrast
to the divergence of the diffusion coefficient D → ∞ with
decreasing temperature θ → 0 in this second class the later
quantity goes to zero D → 0 with temperature drop θ →
0. Therefore, apparently the diffusion coefficient possesses
distinct local maximum as a function of temperature.

E. Relation with the giant diffusion effect

In Ref. [27] the authors presented the phase diagram for the
occurrence of the enhancement of diffusion (sometimes called
giant diffusion)

D > D0, D0 = θ/γ , (15)

in the limit of vanishing thermal noise intensity, see the
orange region in Fig. 4(b) of Ref. [27]. The last area is
included in our diagram of the nonmonotonic temperature
dependence of diffusion, c.f. Fig. 7. However, it contains
essentially new intervals where the nonmonotonic behavior is
visible. To demonstrate this fact in Fig. 8 we directly compare
results depicted in Fig. 4(a) of Ref. [27] with the region of a
nonmonotonic temperature dependence of diffusion indicated
in our diagram presented in Fig. 7. In the panel we plot
the diffusion coefficient D versus the constant bias f for
γ = 0.4 and different values of temperature θ . In particular,
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FIG. 9. The diffusion coefficient D versus temperature θ is
shown for γ = 0.4 and several values of the bias f . The power
exponent α is depicted for f = 0.79.

the colored interval of the force f ≈ [0.62, 0.8] corresponds
to the interval where the diffusion coefficient D becomes
a nonmonotonic function of temperature. The force interval
f ≈ [0.68, 0.78] ⊂ [0.62, 0.8] marked by the orange color
indicates the bias range for which the effect of giant diffusion
occurs. It apparently means that the diffusion coefficient
diverges D → ∞ as temperature goes to zero θ → 0. The
cyan region corresponds to the second class of nonmonotonic
behavior in which diffusion apparently goes to zero D → 0
with temperature drop θ → 0 [27]. In the phase diagram
depicted in Fig. 7 we do not distinguish these two scenarios
as such classification would require low or extremely low
temperatures which are not accessible numerically due to
extremely long transient anomalous diffusion occurring in
such regimes, c.f. Fig. 6(a). The last classification may or
may not be done depending on the duration of these transient
effects even for a single parameter regime, not to mention the
whole plane (γ , f ). Nevertheless the main conclusion is that
the set S1 of the parameter regimes for which giant diffusion
occurs is contained in the set S2 of the parameter values where
the nonmonotonic dependence is detected, i.e., S1 ⊂ S2. Addi-
tionally, in Fig. 9 we demonstrate the temperature dependence
of the diffusion coefficient D for three different values of the
bias f and γ = 0.4, c.f. Fig. 8. The magnitude f = 0.65 as
well as f = 0.79 correspond to the cyan colored area in Fig. 8
whereas f = 0.73 lies in the giant diffusion region marked
with an orange color. In the considered parameter θ range
for values below and above the giant diffusion threshold we
observe for increasing temperature first a maximum and then a
minimum in characteristic D(θ ). In contrast, for f = 0.73 we
note only a local minimum. For sufficiently high temperature
θ → ∞ all curves overlap and are expected to recover the
Sutherland-Einstein relation. The very low temperature limit
θ → 0 is not presented here, but apparently in the giant diffu-

sion region D is decreasing function of temperature whereas
outside this region D increases as temperature grows.

V. SUMMARY

In this work we revisited the problem of underdamped
Brownian motion in a biased periodic potential. We explain
the mechanism responsible for the recently communicated
peculiar diffusive behavior when the diffusion coefficient dis-
plays nonmonotonic dependence on the system temperature.

As the mechanism standing behind this counterintuitive
diffusive characteristic we identify temperature dependence of
stationary probabilities for the particle to reside in the locked
and running state both forming bistable velocity dynamics. In
particular, the overall spread of trajectories, i.e., also diffusion
coefficient is large when for the biased potential there are
many locked trajectories. The diffusion coefficient assumes
its minimum when the stationary probability to reside in
the locked state is minimal as well. However, we revealed
a regime in the parameter space of the model exhibiting
nonmonotonic diffusive behavior where velocity dynamics is
multistable and possesses two running solutions and a locked
one. This complexity of the noisy system has been overlooked
in previous research on this topic. The role which is played by
this additional running state in the temperature dependence of
diffusion lies beyond the scope of this paper so we leave this
problem open for future research.

Most importantly, our innovative computational method
allowed us to construct a precise phase diagram for occurrence
of the nonmonotonic temperature dependence of diffusion in
the parameter plane (γ , f ). We confronted the resulting plot
with the phase diagram of the giant diffusion effect published
in Ref. [27]. It turned out that it significantly extends the
previous prediction.

Last but not least, we highlight several controversies con-
cerning the low temperature dependence of the diffusion co-
efficient. Due to extremely long transient anomalous diffusive
behavior they may never be numerically resolved at all and
asymptotic analytical methods should be applied (which now
are not yet elaborated). Current technical facilities allow to at-
tack these problems at most for a single parameter regime and
therefore we think that our diagram is still a significant step
forward to complete understanding of underdamped diffusion
in a biased washboard potential.

Summarizing, we pointed out an unexpected property of
the relatively simply, yet paradigmatic model of nonequilib-
rium statistical physics. The presented phase diagram may
trigger experimental investigations aiming at corroboration of
the nonmonotonic temperature dependence of diffusion.
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