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Starting from the Bogoliubov diagonalization for the Hamiltonian of a weakly interacting Bose gas under
the presence of a Bose-Einstein condensate, we derive the kinetic equation for the Bogoliubov excitations.
Without dropping any of the commutators, we find three collisional processes. One of them describes the
1 < 2 interactions between the condensate and the excited atoms. The other two describe the 2 <> 2 and 1 <> 3

interactions between the excited atoms themselves.
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I. INTRODUCTION

Classical Boltzmann kinetic theory is the way to connect
the macroscopic properties of gases of many particles to the
fundamental interaction by collisions between those particles.
Shortly after the establishment of quantum mechanics for
bosons and fermions, Nordheim (cf. [1]) wrote the kinetic
equations for dilute gases of quantum particles, which takes
into account statistical effects linked to the possibility or not
of overlaps of wave functions after a two-body interaction,
relying on the assumption that the strength of the interaction
is small. The resulting Boltzmann-Nordheim kinetic theory
is correct in principle for describing dilute quantum gases.
However, it has to be changed for Bose gases at low tem-
peratures to include a condensate. As being shown long ago
by Bogoliubov [2], the existence of this condensate changes
the fundamental notion of what a particle is. Because of the
interaction with the condensate, the notion of particles has
to be modified by one of the quasiparticles, as guessed by
Landau before. Even at equilibrium (see Ref. [3]) a fully
coherent theory of quasiparticles is already a fairly nontrivial
issue. Of course, it is even harder to derive a valid kinetic
equation for quasiparticles. However, this kinetic theory is
not too strongly changed if the difference between particles
and quasiparticles is restricted to a relatively small population
of those particles, which is the case if the kinetic energy per
particle is still much larger than its interaction energy with
the condensate. If the average kinetic energy per particle is of
the order or less than the interaction with the condensate, we
must take fully into account the Bogoliubov renormalization
of the particle energy, that brings a lot of terms in the kinetic
equation. A major issue then is to derive what was called
by Gust and Reichl [4] the 1 <> 3 interactions between the
excited atoms, which is the main purpose of the present work.
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In the works [5,6], Kirkpatrick and Dorfman started to
tackle the complex problem of writing the kinetic equa-
tion for the gas of particles out of the condensate, coupled
with those inside the condensate, something that began with
Refs. [7,8]. In this work, the authors derived a mean-field
kinetic equation for a dilute condensed Bose gas that describes
the relaxation in terms of “collisions” between excitations.
The work of Kirkpatrick and Dorfman was then extended by
Zaremba et al. [9], where they introduced the full coupling
system of a quantum Boltzmann equation for the density
function of the normal fluid and thermal cloud and a Gross-
Pitaevskii equation for the wave function of the Bose-Einstein
condensate (BEC). Independently, the same model was also
derived by Pomeau et al. [10], using the quantum Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy argument. In a series
of papers [11-13], Gardiner and collaborators introduced a
different model, which, at the limits, becomes the model of
Zaremba et al. and Pomeau et al. We refer to [3,14] for further
discussions on the topic. In all of these kinetic equations, there
are two types of collisional processes:

(1) The Cj; collision operator describes the 1 <> 2 interac-
tions between the condensate and the excited atoms.

(2) The Cy, collision operator describes the 2 <> 2 interac-
tions between the excited atoms themselves.

In [4], Gust and Reichl proposed the third, previously
missing, collisional process, which takes into account 1«3
type collisions between the excitations, in addition to the 1<>2
and 2<>2 type collisions already known to occur. They called
it the collision operator Cs;.

However, the derivation of the new collision operator Cs; is
very complicated, since the process generates around 40 000
individual terms and one will need to do a combinatorics
problem for all of them. As a result, a concise mathematical
justification for the existence of the missing collision oper-
ator C3; remains to be a challenging open problem over the
years.

The aim of our work is to verify the validity of the collision
operators Cjy, Cy, C31 by a fairly simple framework. To this
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end, we focus only on the spatial homogeneous system. Our
spatial homogeneous kinetic equation for the evolution of the
density function f (¢, p) of the thermal cloud takes the form

O f(p) = Cl f1(p) + Coa[ f1(p) + Ca1[f1(p), (D

and the forms of Cy,, Gy, G5 are given explicitly below:

471@

Calfl, p) = v

> Bp—p)—8(p—p2)

P1.p2,p370
—8(p — p3)lslw(p1) — w(p2) — w(p3)]
x (K!'2,)%8(p1 — p2 — U () f (p3)
x [f(p1) + 11— f(pOlf(p2) + 1]
x [f(p3) + 11}, (2)

czz[fl(z,p)=% Y. Bip—p)+8(p—p)

P1,P2,p3,pa#0
—8(p—p3) — 8(p — pI(K}3 54)
X 8(p1+ p2 — p3 — pa)dlw(p1) + w(p2)
—w(p3) — o(p){f(p3)f (pOLf (p2) + 1]
x[f(p1)+ 1= f(pOf(p)lf(p3) + 1]
x [f(pa) + 11}, 3)

2

and

3
Calf1, p) = % >

P1.p2.P3,p4#0

[6(p— p1) —8(p— p2)

—8(p—p3) —8(p— pa)l

X (K13,'21$3,4)23(P1 —P2—P3—P4)

x 8[w(p1) — w(p2) — w(p3) — w(pa)]

x{f(p3)f(p)f(p)Lf (p1) + 1]

— f(pOLf (p2) + 1S (p3) + 111f (pa) + 11},
“4)

in which n is the density of the condensate, ¢ € R is the time
variable, p € R?\{0} is the d-dimensional nonzero momen-
tum variable, V' is proportional to the volume of the periodic
box [—%, £]9, w is the Bogoliubov dispersion relation defined
in (24), and g is the interacting constant. We have normalized
the Planck constant to be 1.

In the above collision operators, the kernels are defined as
follows:

12 _
K53 = tp Up,Up, — Vp, Up,Upy — Up, Up, Up,

(&)

+ Up, UpyUpy — Up, Up,Up, + Up Up, Ups,»

22
Ki5 34 = Up Up,UpUp, + Up Vp,llp, Vp, + Up Vp, Up, Up,

+ Vp, Up, Ups U, + Vp Up, Up, Uy = VUp Up, Ups Uy,

and
K>! = 2[u Up, V. Up, + Uy Uy Uy, U ] (7)
1,2,3,4 P17 P2 ¥ P3™ipa P1YP27"pP3 ¥ ps |

with u, and v, being defined later in (23).

To derive (1), we start with the Bogoliubov diagonalization
process for the Hamiltonian of a weakly interacting Bose
gas under the presence of a BEC, then focus on the deriva-
tion of the kinetic equation for the Bogoliubov excitations.
In this process, we compute all of the commutators of the
Bogoliubov excitations and do not drop any of them. We
discover special mathematical structures of the commutators
that allow us to reduce significantly the number of terms and
the amount of computations. In particular, the computations of
(31 reduce from 40 000 to only around 30 terms. Therefore,
the combinatorics problem can simply be done and checked
by hand.

Moreover, our framework provides a unified point of view
for the different models, as it gives a simple explanation for
the origins of the different collision operators based on the
Bogoliubov diagonalization. To see this, we note that after
the Bogoliubov transformation, the nonlinearity &'a'aa of the
Hamiltonian of the quantum system contains several types of
nonlinearities including the following three special ones: (i)
b'btb and b'bb; (ii) b'b' bb; and (iii) b'HT b b and bt bbb, where
at, & are bosonic creation and annihilation operators and
b", b are their Bogoliubov transformations. The three types of
collision operators then appear naturally as combinations of
commutators of each type as follows.

(1) The Cy; collision operator arises fAroIn ‘commutators of

(2) The Cy; (Boltzmann-Nordheim and Uehling-Ulenbeck)
collision operator arises from commutators of the type

(3) The C5; collision operator arises from commutators of
the types [6'bb1h, (b, bTbbb]] and [b'bbb, [b'b, bThTH'h)).

The above argument provides a concise mathematical
confirmation of the existence of Cs;. For the experimental
confirmations of Cs;, we refer the readers to [3,15].

To conclude the introductory section, we remark that, when
the temperature of the system is lower but close to the Bose-
Einstein condensation transition temperature, the Bogoliubov
dispersion relation can be approximated by the Hatree-Fock
energy. In this case, u, -~ 1 and v, -~ 0. As a result, the
kernel 1(11,’22,3 «~ 1 and the kernel Klzz2 3.4 > 1. On the other

hand, the kernel K13 21 5.4 0. As a result, in this temperature
regime, the two collision operators Cj, and C,; dominate the
collisional processes. The contribution of the third collision
operator C3; becomes significant when both u, and v, are
large, corresponding to lower temperature regimes.

II. THE QUANTUM SYSTEM AND THE BOGOLIUBOV
TRANSFORMATION

To begin our quantum description, since we are studying
an interacting many-body quantum system, in which, dealing
with the wave function for each individual particle becomes
cumbersome, we introduce the boson field operator W (x), and
its conjugate W' (x). These operators satisfy the the commuta-
tion relation

W), ¥ = [P, ') =0
and  [P(x), U] =8(x —x).
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The Hamiltonian of the system is now written

. . i
H =/ dxqﬁ(x)[——vz
Ti[ 2m

9
+ U@+ %/ dx/\iﬁ(x)wx,x/)xi/(x’)]xi/(x),
T{

where Tf is the d-dimensional periodic torus [—%, %]d; his
the Planck constant, m is the mass of the particle, U is an
externally applied potential, and V(x, x') is the interaction po-
tential between two particles at locations x, x". To simplify our
settings, we will not discuss particles in an external trapping
potential, and set U = 0. We also take V(x, x') = gd(x — x'),
where g is the interacting constant. Inserting these two forms
for the external and interaction potentials into (9), we find

3 [ R 85t ()t ()W ()8 ]
H= | dx|——¥ ")V ¥Ix) + 28 )b o) bbb |.
Tg 2m 2

(10)
Writing the wave function W in terms of annihilation and
creation operators, we obtain

~ - - —ipx.\§,
ap(t) = Ly /Tg dxe "P*U(t, x) (11D
and
o 1 .
\Ij(t,X) = W Z €lpx£lp(l‘), (12)
pef

where Z¢ = (Z/L)". For the sake of simplicity, we employ
the shorthand notations

f f >y = Z and V =QrzL)Y. (13)
¢ peZi

The annihilation and creation operators &, and 21; then satisfy
the commutation relations

a,]=38(p—p). (14)
The Hamiltonian of the above system is then
At A &
H = Z €pa,ay + V Z

p.P1.P2,P3

P2 — P3)asal ay,ay,, (15)

[ay, ay] =[a}, a1 =0 and [a,a

x8(p+p1—
in which €, = % and the function §(p + py — p» — p3)
means that we sum over p, pi, p2, p3 € ZZ such that p +
p1 = p2 + p3. We set h = 1, for the sake of simplicity.

The Bose-Einstein condensation occurs when a large num-
ber of cold bosons enter the same quantum state having zero
momentum. According to the Bogoliubov theory [2], since
the lowest energy state is occupied by a macroscopic number
of particles in the condensate, one can neglect the quantum
fluctuation of this state and replace its annihilation operator
with a ¢ number \/N , with N being the number of condensate
atoms:

ap = +/N. (16)

We now split ag and &, (p # 0) and decompose the Hamil-
tonian H as

H=H +H+H;, (17
with
S Atata
Z epa ap + aoaoaoao
p#0

A AT A A ATA A
23[4510 aoap—l—aT aoao—i—a( a(',apa,p],

paéO
(18)
, &N At A
Hy == > 81 = p2 — p3)a}, iy,
P1.02,p370 (19)

- [73)&:,' &;2&1’3]’

3(p1+p2—p3

+3(p1+ p2

m:% 3

P1.p2.P3,p4#0

_ AT AT oA A
p4)ay, a, ayap,.

(20)
Defining the density n = IVV, we then find
= epdla, +
P Q1)

n
+ % Z[Za a, + a al »t+ apa_,l,
p#0

which can be diagonalized using the Bogoliubov transforma-
tion

&p = Mpl;p — Upi?\-r_p, &; = upg; b—[}v (22)
with
€,+gn 1 172
Up, vp = (—”Zw + 5) : (23)
p

where w, is the Bogoliubov dispersion relation

g” p 1/

2
w, = —D + —_— . 24
p m ( 2)”) ( )

After being diagonalized, H; takes the form

Ay =" w,b'b, + Eo, (25)
p#0
with
gnN 1 P’ m(gn)?
Ey=>"—+ - —gn—— 26
0= +2§[a}p o T TR (26)

III. NEW FORMS OF H, AND H;
A. New form of H,

By the calculations to be detailed in Appendix A, we arrive
at the following form of H, in terms of the new operators b
and b':

Hy, =H,+ Hs, 27
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where

Y.

P1,p2,p37#0
x (BY, bp,bp, + b}, B by,). (28)

H,=g —P2—P3)K11,'22,3

1,2
K 2,3 =Up Up,Up; — Up Up, Ups — Up Up, Ups

+ Up, UpyUpy — Up, Up, Up, + Up, Up, Ups

and
Hyo=g > 81 +p2+p3)

P1,p2,p3#0
(29

X [K?g (B B bt Bm[;pzi’m)]a

P2 [71
K13§3 = Up Up,Upy — Vp lp,lhp, .

The Hamiltonian 1-71,2 contains strings of annihilation and
creation operators of the types b'bb and b'b' b, which indicate
the processes of one/two Bogoliubov excitations being cre-
ated while two/one Bogoliubov excitations are annihilated.
On the other hand, the Hamiltonian I—L,O contains strings
of annihilation and creation operators of the types bbb and
b*h'h', representing the process of the creation or annihilation
of three excitations simultaneously. From a physical point of
view, we can see that I-A13,0 does not contribute to the collision
integrals, while the main contribution comes from 1-71,2. We
will show later in Sec. IV, by explicit computations, that this
is indeed the case.

B. New form of H;

Similarly, we also find a new form for ﬁ3 (the details of
this computation will be given in Appendix B):

Hg = 1‘72,2 + 1‘71,1 +[‘A12/72 +H3'1 +I‘73,’1 +1:14,0, 30)

5 8
B =55 > spitp

P1.p2.p3,p47#0
ApoAp oA a
X bp]bpszgb

2,2
—P3— P4)K1,2,3,4

pa>
K>2., = u, uy uy u + Uy Uy Uy Uy, + Uy Uy, Uy U
1,2,3,4 — “p1¥p2"p3¥ps P1Yp2"p3 ¥ ps P1YpP2Yp3¥ps

+ vpl ul’z UP3 uﬂ4 + UP] uP2 ”pa UP4 + UP] UPz Ups UP4 )

(31
Hiv=50 >0 Kizbyby, (32)
P1,p2#0
K11’~21 = 41)2 v1272 + 4”21 v1272 + 4”1’1 Up Up, Upy s (33)
Y/ 8
H2,2 = ﬁ Z [ul’l Up, Up, Vp, + va vpz] (34)
P1.p2#0
A 8
Hy1 =50 > 8(pi—pa—ps— K5,
P1,D2,p3,pa#0
(35)

x [BY, bp,by,by, + B}, 5% B by, ]

Psp3p2

3,1
Kl 2,3 4 - 2[”171 Up, UpsUp, + Up, Up, Up, UP4]

5 8 ~on 20 L jt pT o g20
H3.l - ﬁ [bplb—PlKl,Z +bp1b—p1 ] (36)
P1,p270
2,0
K1,2 = uf,] Up,Vp, + vf,] Up,Vp, + 4y, vplvlz,z, 37
and
5 8
Hio =55 Z 8(p1+p2+p3+ps)
P1,P2,P3,pa#0 (38)
40 T4 A
Y AR
with
4,0
Kl 2,34 7 = Up,Up, v[’% vm (39)

‘We remark that the Hamiltonian 1-72’2 contains strings of anni-
hilation and creation operators of the types b'h'bb, indicating
the processes of two Bogoliubov excitations being created
while two Bogoliubov excitations are annihilated. Similarly,
the Hamiltonian Hs | represents the processes of three/one
Bogoliubov excitations being created while one/tree Bogoli-
ubov excitations are annihilated. From a physical point of
view, the main contribution to the collision integrals comes
from 1-72,2, ﬁ3,1 since the effects of ﬁ4,0, ﬁz/,r ﬁé’l,ﬁl,l are
similar with that of the Hamiltonian H3,0 discussed above and
can be ignored. In Sec. IV, this prediction will be shown by a
more precise mathematical argument.

IV. THE QUANTUM LIOUVILLE EQUATION AND
ASSUMPTIONS

The full state of the system is described by the full density
matrix p(t) which obeys the quantum Liouville equation

p = —ilH, pl. (40)

In order to derive the quantum Kkinetic equation, there are
two key points:

(1) First, due to the uncertainty principle, we cannot spec-
ify exactly the number of particles at positions and momenta.
We can only describe the number distribution of particles in
a quantum state. As a consequence, the average number of
quantum particles in quantum states with wave vectors can be
considered to be analogous to the average number of classical
particles with momenta.

(2) Second, in order to derive the quantum Boltzmann
equation, we impose the Bogoliubov assumption that for a
system that is out of equilibrium, the relaxation to equilibrium
can occur in many different stages in which the stages’
timescales are totally different from one stage to another.
During the relaxation process, in each successive stage, the set
of relevant parameters (expectation values and mean fields)
used to describe the evolution is reduced. The Bogoliubov
assumption is very similar to the molecular chaos assumption
which implies that the system can be described by a reduced
number of parameters, for example, the single-particle phase
space distribution function.

Employing the standard elimination process (cf.
[7,8]), we get the following spatial homogeneous
equation for the single-particle phase space distribution
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function f(p) = (b7b,) = Tr(pob’b,):
0 X
o f =/ ds Tr(polH, [f, H()1D), 41

where A has exaActlAy the same form W_ithAH (s), except that
all the operators b, b are replaced by ¢”*“b and e~*b’. And
following [7,8]

Do = exp <— > &,bib, - Q) (42)
4

with @ = log Trlexp(— }_, ,67b,)].
We set £y = 0 and H2”2 = 0 since they are constants, and
approximate the right-hand side of (41) as

0
| asteautdian. 7). A
—0o0
AL+ L0+ Lo + L3104+ Lao+ Lo+ Lo
(43)
Notice that in [6], the authors used an equivalent process, but
only kept £, » to get the 1 <> 2 collision operator for the low-
temperature regime, while we keep all of the seven terms.
The forms of £; 2, £3.0, £2.2, £3.1, £4.0, £1.1, and £, ¢ are
computed as follows.
The form of £, 5. This quantity comes from H, ,,

O x
g / dsTe(polBr o, U ra()D, (44)

where I-?l,z has exactAlyAthe same form with 1'21,2(5), except
that all the operator b, b" are replaced by ¢**“b and e “b'.
Adapting the procedure in [6-8], we write

g 0

n .

L1, ~ § f ds eBlep—w(p2)—w(ps)]
, V o0

P1.P2:D3: D) Ph D370 "

x K12 K2 8(p1 = pa — p)S() — ps — py)

x Tr[,@o([l;;E;zlSp/l 153y, by, b,y

b\ b b, [bth bt bt b
+ [bp’l by,by; [beP’ bpsbpzbl’l]])]'
(45)
Kll,’722,’3, has the same formulation with Kll”zz’ 4, in which

p1, p2, p3 are replaced by p), p,, p5. We approximate (cf.
[7.8])

0
[ aseter-emam & i) - aps) - wlpol
—00

(46)
and write

e~ gnm Z

%

1,2 1,2
K1,2,3K1’,2’,3’

P1,P2:D3: D) Ps: D370
x 8[w(p1) — w(p2) — w(p3)16(p1 — p2 — p3)
x 891 = pr=ps) e[ (B, 5}, b (B35 B}, by ]]

AL A
|

+ (B, by by [B by B, 5,55, 1])]- @7

The form of £3¢. Similarly, this quantity comes from Hj o:

0 X
Cyo = f ds Tr(polBs 0, Lf s Fao(s)TD)

oo

Ngzmt
b Z

P1,D2:D3: P Pa s D370
x 8lw(p1) + w(p2) + w(p3)]
x 8(p1 + pa + pa)d(p) + py + ps)
X Tr[f)o([lal;gl;l;él};,l, (63D, by, bp,bp,1]

+ [by by, by, [B}by, B}, 57, 57, T])]- (48)

P27 D1

3,0 3,0
K1,2,3K1’,2’,3’

Kf,’g, 4 has the same formulation with Kf’g 5> in which

p1. P2, p3 are replaced by pi, pj, ph.

Since w(p) > 0 for p # 0, the equation w(p;) + w(pz) +
w(p3) = 0 does not have any solution. The quantity £3 is
then 0.

The form of £,5. This quantity comes from H> 5:

0 -
L2 = / ds Tr(polHaz, [f, Ha2 ()11
—o0
8T
~ w2 )
P1,D2,D3,P4> PPy Py Py 70
x §[w(p1) + w(p2) — w(p3) — w(p4)]
X 8(p1 + p2 — p3 — pa)3(pPy + P — Py — Ply)
~T5T T & 7 NI N N N A N A
X Te (o[B!, 51, by by, [5} by B}, 57, By ]]). (49)

2,2 2,2
K1,2,3,4K1’,2’,3’,4’

K1222 4 4 has the same formulation with Klzz2 54> In which

P1. P2, p3, ps are replaced by py, ph, ps, ply.
The form of £5 1. This quantity comes from H3 ;:

0 ~
£ = / ds Te(polBs 1. Lf s Fat ()1])
—00
&
~ e )
P1:P2:P3:P4: PPy P Py 7#0
x 8[w(p1) — w(p2) — w(p3) — w(pa)]
x 8(p1 — p2 — p3 — pa)S(py — Py — py — py)
N oTORT AT 7 A N X N N A
% Te[po([B5, 51, B, By [y B}, by, By]]

3,1 3,1
K1,2,3,4K1’,2’,3’,4’

MR T MRRTRT AT A
+ [b;; by, by, by, [bl’,b,,, bmbmbmbmu)]‘ (50)
Kfl23 o has the same formulation with K132]3 4» in which

P1. P2, p3, ps are replaced by py, p5, ps, pl.
The form of £4,. This quantity comes from Hy o:

0 _
L0 =/ ds Tr(polHao, [f, Hao()I1)

—00

.

~ e 2
P1,D2,P3: P4, D), Pas P3» Py 70

x 8[w(p1) + w(p2) + w(p3) + w(ps)]

x 8(p1 + p2 + p3 + pa)S(py + ph + s+ pl)

K4,0

4,0
K 1/’2/’3/’4/

1,2,3,4
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+ [by, by, by, by, [}, B, B b‘ b‘ Dl 6y

P> ¥ psTp3TpaTpr

Kf g, 34 has the same formulation with K1 23.40 in which

D1, P2, p3, p4 are replaced by p!, p), p5, pj. Since w(p) >0

for p # 0, the equation w(p;) + w(p2) + @(p3) + w(ps) =0

does not have any solution. The quantity £4 ¢ is indeed 0.
The form of £,. This quantity comes from H> o:

0 _
L0 = / ds Tr(polHao, Lf, Ha.o(s)11)

o0

4y? ~
P1,p2, P}, Py #0

S TR A
x Tr[po([bp,lbf .
+ [l; ,B_P, ’ [I;TE B 13:171]])]' (52)

K; g has the same formulation with K} 1.5+ in which py, p; are
replaced by P, Ph. Since w(p) > 0 for p # 0, the equation
w(p1) + w(—p1) = 0 does not have any solution. The quan-
tity £, o is again 0.

The form of £ 1. This quantity comes from I-AILI:

KPIKDS8lo(p1) + o(—p1)]

[BTbP’ bplbfpl]]

0 -
e = f ds Te(polBr 1. Ufs Bt (9)TD)

&
~ Z Kl 11(1, r
4y2 1.2
P1 ,szp/l ,p/z#O

0
x/ dsTe(po[ b}, by, [bbp. B}, 5, ]]). (53)

Kll, 12 has the same formulation with K1 2 , in which py, p, are
replaced by p), p,. This quantity is also 0 due to the fact that

[b,i;q by, [b;bpv b}a]l;pl]] =0.

We finally obtain the spatial homogeneous equation

B,f _ g2nn Z
P1:P2,P3: P} Py D370
X 8(p1 — p2 — p3)8(p — py — P3)8lw(p1) — w(p2)
—o(p)I([[[5},5}, by, [b*b b bt b,

P> 7 p17p

+ (b7, by by, [bby. B}, 57, By, 1]])

P> 7 p3Tp

1,2 1,2
KI,Z,SKI’,Z’,3’

8277 22
+m Z K1234K123,4,
P1,D2:P3: P4, PP D3 Py 70
x 8(p1 + p2 — p3 — pa)S(p + Py — ps — Pl
x 8[w(p1) + w(p2) — w(p3) — w(ps)]
5 5 b b 5. Bt B
< ([B1, B, by By [B16y. B3, 5], by ]])

P> ¥ pi1¥ps
.
a2 2

P1:D2:P3: P4} P P3Py 70

x 8[la(p1) — w(p2) — w(p3) — w(ps)]

3,1 3,1
K1.2,3,4K1’,2’,3/,4/

X 8(p1 — p2 — p3 — p1)S(p| — Py — Py — P}
x([[b},5},5), by, [6}by. B}, by, by, by, ]]
+[bp3bl”sz3bp2w [bTbP’ b:ub’mb;zg ]]]> (54)

V. THE KINETIC EQUATION

The left-hand side of (54) is split into three terms; each
contains special types of commutators. The first term in-
cludes AcoAmrAnllta}ors of the types [I;Tl;Tl; [5”3 BTI;I;]] and
that thls term is 1ndeed the Cj, collision operator. The second
term has commutators of the type [6Tb bb, [b*h, bTHbb)).
This term can be shown to be the collision operator
Cy. The explicit computations of this collision operator
are postponed to Appendix D. The Cs; collision operator
comes from the last term, which involves commutators of
the types [b'b'b'b, [b*h, b*bbb]] and [bTbbb, (b, bbb b)).
These computations are given in detail in Appendix E. In
conclusion, by computing explicitly the commutators on the
right-hand side of (54), we finally arrive at the kinetic equation
(1). We emphasize that the density of the thermal cloud f (¢, p)
is defined only for p # 0 due to the fact that the condensate
has been factored out in the Bogoliubov diagonalization (16).
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APPENDIX A

Let us expand 6(p; + p2 — p3 )a in terms of I;1

I’z a/’?

8(p1 + p2 = p3)ay, &, 8p, = 8(p1 + p2 = p3)[up, b},
=d(p1+p2— [
+ vl’lvpzupzb—mb b p3

+ Up, Vp, Upzb b—[”b

b, . bt b, b

P P2’ D2 p3°

D Lt

vl’l b—l’l ] [“szpz
Apoa

upzupsb lbpszS

— Uy, v,,3b bt bt

and b s

- vpzi’—pz][”pa[’pa - U]’%bT—p;]

. proa ~
Up] Up, uﬂ%b—Pl bp b — Up, vﬁz uﬁ%bpl b—szPz

(AD)

A
P27 D3 + v[’lup2v/’3b_]7lbpzb—px

~

ot
— Up, vpzvmb—mb—pzb ]

-3
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Similarly, we expand 8(p; — p2 — p3)&;]&p2&p3 in terms of l;; , 13,,1 , 13;2, 13p2, 13;3, and 13p3:

At A A ~ » ~ NI ~ £t
8(p1 —p2— p3)a;]ap2ap3 =8(p1 —p2— p3)[”1’1b;1 - vl’lb*l’l][upszz - vpzbfpz][upszz - Upsbl—p_;]

_ AN D roh AN

=38(p1 —p2— p3)[up1upzupsbp1bpsz3 — Up, Mpzupzbfplbpzbm — Up, UPz“mbplbfpszs (A2)
5 BB it b B bbb

+ UPl Upzupsbfplbfpzbﬁs - uPl upzvpsbplbpzbfpg + vplupzvpsbfplbpzbfps

B, B b ]

p1l—p2Y=p3 Up, Up, Ups
We perform the following change of variables, for the terms in (A1), taking into account the fact that py, p,, p3 # O:

5(P1 +p2— p3)up1up2up32;2225p3 _)8(]71 — P2 — p3)up1up2up35;35;25p1’
—8(p1 + P2 — p3)vp, uPz”Psl;*ml;;zl;m — —8(p1 — p2 — p3)up, Upzumépzl;;]BPs = —0(p1 — p2 — p3)uy, vpzuméz éngpz’

— — 8(p1 —p2 — p3)”p1upzv[73l;;1l;[72l;173’

8(p1+ P2 = P3)vp, Upyttpsbp b, bpy —8(p1 = p2 = P3)p, Upy Vpsb—p b, by,

—8(p1 +p2— p3)up| v[’zuml;;]l;*mgm

S(pr+p2— p3)vp1up2vp3l;—pll;;2l;1p3 —>38(p1 — p2 — p3)vplup2vp3l;pll;;2£j,3 =38(p1 — p2 — P3)vp, upzvpgl;j,3l;;21;pl )
8(p1 + P2 — P3)up, 0, v, B b, BT, — 8(p1 = pa = P3)p,up, 0y, B) by BT = 8(p1 — pa — P3)up, vp,up, B BT B,

—8(p1+p2 — p3)UP1 vavmlA’*PlE*mBim — —8(p1—p2— p3)U1,1 vp2v1,3131,213p313;1 =—8(p1 —p2— p3)UP1 Uszpzl;;l;le;m’
—8(p1+p2— p3)uplupzvpzl;;15;zl;1;p3 - = p1—p2— p3)UP1 upzupséjﬂsl;;r?zl;ipl :

(A3)
Notice that in the above computations, we used identities like §(p; — p2 — p3 )bmbT bp, =8(p1 —p2—p3 )b;lbmb,,3 +8(p1 —

P2 — p3)é(p1 — pz)l;p3 =68(p1 —p2— p3 )E;lépzlsm due to the fact that all p;, p», p3 are nonzero. Similar computations can also
be carried out for the terms in (A2):

—8(p1 = P2 — P3)up, vy, b, B, by — —8(p1 — pa — p3)up, vp,up, Y, B b,

8(p1 — P2 — P3)p, Vp,ttp,b_p BT, by — 8(p1 — pa — p3)Vp, Wyt by, B, by = 8(p1 — P2 — p3)Vp, Vp, 1, B, by, by
—8(p1 — P2 — P3)p,p, vy, bY, by BT, — —8(p1 — pr — p3)up,up,vp,B%, by b = —8(p1 — pa — p3)up,up,v,, b, B by
8(p1 — p2 — p3)vp, i, vp3l;7pll;pzé-‘;p3 —38(p1 — p2 — P3)vp, i, vp3];ngp3g;1 = 8(p1 — p2 — P3)Vp, U, Up33215p22p3a
8(p1 — pa — P3)tp, vy, b, BT, BT — 8(p1 — par — p3)up,vp,v,, B0 BY b

p27—p1’
—8(p1 — P2 — P, Upy Vb BT BT

-pO—p,0_py = — S(pr —p2— p3)UP1UP2UP35P1522523 =—=8(p1—p2— p3)vl71 Upzvmg;g;zl;m’
(A4)
We finally do the change of variables
S(Pl — P2~ p3)[(u171 UpyUps — vl’1u172up3)(l;;3l;;2l;ipl + B—mi’pzl;m)] (AS)
= 8(pr+p2+ p3)[(u171 Up, Ups — UPl“quP,w)(l;;sl;Lzl;L] + l;Pll;Pz APs)]'

Putting together all of the identities in (A1)—(AS) yields the new form (27) of H.

APPENDIX B

Let us now expand 8(p1 + p2 — ps — pa)al, a} a,,ap, in terms of bf, . b, b

~ A_‘_ ~ A_I_ A
1° pzabpza bp3’ bp3, bp4, andbp4.

8(p1 + p2 — p3 — P, &) 4y, ap,
=06(p1+p2—p3— P4)[Mp1b;1 - UPlb_pl][MPZb-;z - Usz—m][uPsst - Up3b)r—p3][up4bﬂ4 - UpszT—m]
= 5(191 +P2 —P3— p4)[”‘p1”qupsumg;l[;;zgpsgm - UP] ”1721"17314174?7*P1EJr l; 5P

p27P3
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B Aa A A foa s A ne b g
Up, ”pz”psumbplbfpszsbm + Vp, Up, Upyttp, b p b, b, by — 1, U, V), Mp4bp]bp2b7p3bp4
ioa

*psbpzt

~ ~ A~ ~

Anp g P B
+ Up Up, Up, ”p4bfp1bpzb7p3bp4 + Up, Vp, vP3uP4bp1b*P2b7p3bP4 Vp, Up, Ups Up,b—p b,

S

- Ar A
1

P4 + Up, Up, Up, UP4bT b—szpst—m (Bl)

_ pioae oA g N Ar oA A
uplupzupsvmbplbpzbmb +UP1“P2“P3UP4b b bpsb 1

—P4 P17 ps

A ~ A A Apope onp Ay
- vPl UPZMPS vP4b—P1b—P2bP3b—p4 + uplupz vl’s vp4bp1bp2b—p3b—p4 - vplupz UP3 vp4b

b, b

—P1¥pyY—=p3”—p4

—

NI ar g N A P,
— Up, vl’zvps vP4bp|b—P2b—p3b—p4 + vP] vpzvpz vp4b—171b—pzb—p3b—p4]'

Similarly as for A,, we perform several changes of variables, in combination with evaluating the commutators, to obtain

3(p1 + p2 — p3 — palup, vpzvpsupztl;;ll;—l?zl;'r—pggp4
= 8(p1+ P2 — P3 — Pa)Up, Vp, Up,Up, [i’;li’T—mE—mgm + 8(p2 — p3)i’;1i’l’4]
— 8(p1 + p2 — p3 — paup, Uy, Up3“p41;;1]3;2[;p3];p4 + “Zl ”;2:2[;;1[;171’
8(p1 + P2 — P3 — pa)up, Vp,Up, vmg;ﬁ—m[apsgim

= 5(p1 +pP2—p3— p4)upl Up, Ups Up, [l;;r)ll;lr—pz;b—ml;m + 8(172 - p4)l;;|l;l73 + 6(173 + [)4)5;]5_],2]

NN 2.2 o7
— 8(p1+ p2— 3 — paup, UP2”P3UP4bp1b;2bP3bP4 + (upl v, + “plvplupzvpz)b;bpw

3(p1 + p2 — P3 — Pa)Vp,Up, vpsup4b—Plé;251p3bP4
= 0(p1 + P2 — P3 = Pa)Vp, Up, U, Uy, [l;;zl;ip3l;—ﬂllgl’4 +8(p2 + PI)BT—mBm +(p1 — 173)];;2[71’4]

~

—>8(p1+p2—p3— p4)vp1upzvmumg;l@;zl;p}ém + (Ltf71 v,zj2 + up,vplupzvpz)l;;llspl,
8(p1+ P2 — P3 — Pa)Vp UpyUp,0p, by, B B, BT
= 8(p1 + P2 — Py — PV Up i, 0p, [B5, 60, D by + 8(p1 + p2)bp BT, + 8(p3 + )bl bp + 8(p1 — pa)b, by,
— 8(p1 4+ p2— p3 — p4)v,,1u,,zumvml;;ll;;zl;ml;m + (uf)l v]z]2 + up,v,,lumvm)l;;ll;pl + up, vp,u,,zvpzf)plf);l,
8(p1 + P2 — P3 — PaVp Uy UpUp, b b BT, BT — 8(p1 + P2 — P53 — Pa)Up, Vp, Uy, by B, B BT,
= 8(p1 + P2 — P3 — Pa)Vp, Vp, U V[ B0, B B by, + 8(p2 — p3)by,BY,, + 8(pa — pa)by, b, + 8(p1 — p3)b), by,
+8(p1 — pa)b}, by, |

Lt Lo 2 .27t 7 2 .24 1
—> 8(p1 + p2 — P3 — P4)Vp Up, Up, Up4bp1bp2bp3bp4 + 2Up1 Upzbl;lbpl + 2vp1 vabplb;l ’

(B2)
as well as
8(p1 + P2 — P3 — Pa)Vp i, Upytip,b_p B, by by, — 8(p1 — P2 — p3 = Paditp, VpyUpytip, by, BY, by,bp,
=38(p1 — P2 — P3 — Pa)Up, Vp,Up, Uy, [B;ll;pzlsml;m +3d(p1 — p2)2p32p4]
— 8(p1 — p2 — P3 — paup,itp, Upsup41;;11;p21;p31;p4 + “;2;, p, Vs b,
8(p1 + P2 — P3 — Paditp, VpyUptip, b% bbby,
—> 8(p1 — p2 — P3 — Pa)up Up, vps”ple;;,l;pzl;psl;pw (B3)

An A

+

8(p1+ p2 = p3 — pa)up, upzvm”ml;;]l;;zl;ipgl;m — 8(p1 — p2 — p3 — pa)uy, MP2UP3MP4Ep4bp3bpzl;Pw

oot

~

§(pr+p>—p3— p4)vp1 vavpsum];*Pl[;*PzBipsEm —>8(pr—p2—p3— p4)vp1 Uszpsumbpzl;Psl;L]l;m
=8(pr—p2—p3— p4)vP1 Up, UpsUp, [ELIBPZEP.%E[M +48(p1 — p3)5pzép4 +48(p1 — p2)5pzlap4]
— 8(p1 — P2 — P3 — Pa)Up, Up,Up, vml;;]l;pz[’m[’m + 2?71713—171 Up Up, viz,
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and

S(pr+p2—p3— p4)ul’1ul’zumvmb;lb;zbmbim —>8(p1 —p2—p3— P4)ul71uﬁzumvmb;gb;zbl)lb;4

=8(p1 — P2 — P3 — P4)lp, Up, Uy, Up, [b;b};;bzzbm +d(p1 — p4)b;3b;2]

A onE A n ) P
— 8(p1 — p2 — p3 — Pa)Up Up,Vpstip, by, by b by +wy upvp, b, b

S(pr+p2—p3— p4)v111uszmvmb—Pli);zI;T—mi)T—m — 8(p1 —p2—p3 — p4)vl71Mpzvp3vp4l;plbpgl;;3l;;4
=8(p1 — P2 — P3 — Pa)Vp,tp,Vp,Vp, [BF. BF BY by + 8(p1 — p2)b), B+ 8(p1 — p3)b bY + 8(p1 — pa)b] BT ]

KRt AT A NN 2 2
—>8(p1—p2—p3— p4)vl71 Up, Up; vl’4bp4b[73bl72bl’l + bPlb—Pl [vplupzvpz + 2“”‘ Upi UPZ]’

8(p1 + P2 — P3 — Pa)Vp, Vp,Up, vmi’—ml;—ml;psﬁ—m —> 3(p1 — p2 — P3 — P4)Vp, Up, Uy, vml;ml;pzi’ml;;l By
=08(p1 — P2 — P3 — Pa)Vp, Up,Up, Up, [B;lgp22p3gp4 +8(p1 — p2)byby, + 8(p1 — p3)bp,by, + 8(p1 — P4)5p25p3]
— 8(p1 — P2 — P3 — D4)Vp, Up, U, vml;;ll;pzlspﬁm + 131,113,1,] [vﬁl Up,Vp, + 2Up Uy, vlz,z]
8(p1 + p2 — p3 — paluy, vpzvpsvmgzll;_pzlaiml;im — 8(p1 — p2— p3 — p4)vp]umvmvml;;l;p]l;;l;;
= 8(p1 — P2 — P3 — Pa)Vp, p,Vp,0p [B), DY B by, + 8(p1 — p3)b}, b, + 8(p1 — pa)b), b} ]
— 8(p1 — P2 — P3 — P4y, vpzumvml;;l;;sl;;zl;pl + 232]l;iplupl Up, viz.
We finally perform the change of variables
S(p1+p2—p3— p4)[up1umvmvm@;]l;;@iml;im + v, v,,zumuml;_pl@_pzl;pﬁm] B5)
— 8(p1 + P2 + p3 + Pa)up, Up, Uy, Up, [BLIBLZIS;BIM + 13,,113,,25,,35,,4].
Combining (B1)—(B5), we find the new form (30) for H;.
APPENDIX C
Let us first compute
[61by. BY, bp,by,| = bib,bY, by,by, — b by, by, bYb, = (8(py — p1) — 8(p — p2) — 8(p — p3))b}, by, by, (CD)
We now perform the computation [523 13;,2 b s [13;5 I 13;113,,2 13,,3]]. To this end, we compute
(61,5, by B0, by ] = B, 51 by, B} By — B, By, B, by
— 800, = POBY B By — 8(pa — B, B, byby, — 803 — Ph)B) Bl by .

—8(ps — p/z)l;;l;;g bpby —8(pr — pg)éj,ﬁ;& bp,by — 8(p2 — Py)8(ps — py)b), by
— 8(p2 — Py)8(ps — P3)b}, by,
Taking into account the fact p; = p, + p3 and p| = p}, + pj, it now follows straightforwardly from Wick’s theorem that

([b;;b;/sz’,’ bl bp,by, 1)3(p1 — p2 — p3)3(py — Py — P5)

= 8(p1 — P))S(p2 — P)S(p3 — PS(p1 — p2 — PILF(P)f(p3) — F(p1)f(p2) — F(p1)f(p3) — f(p1)] (C3)
+8(p1 — P)8(p2 — P5)8(p3 — py)8(p1 — p2 — p)IF (p2)f(p3) — F(p)f(p2) — f(p1)f(p3) — f(p)],

which implies

<[Z;Lgl;;2]3p’w []3;1;17’ bipllspzl;ps]])‘s(pl — P2 = p3)8(py — Py — p3)
= [8(p1 — P))8(p2 — P2)8(p3 — ps) + 8(p1 — P8(p2 — P3)3(ps — ph)]
x [6(p—p1) —8(p— p2) — 8(p — p3)186(p1 — p2 — p3)
x [f(p2)f(p3) — f(p)f(p2) — f(p1)f(p3) — fF(p)].

In the above computation, for p| = pi, there are two choices of p}, and pj, p, = p», py = p3 and p, = p3, py = p>.

(C4
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A similar procedure also gives
(8], by by [Bbp. B3, 57, B, 11)8(p1 — P2 — p3)8(P, — Py — p3)
= [8(p1 — PS(p2 — PH)8(p3 — py) + 8(p1 — P8 (P2 — P38 (p3 — PH)] ©5)
X [8(p— p1) —8(p — p2) — 8(p — p3)16(p1 — p2 — p3)
x [f(p2)f(p3) — f(p)f(p2) — f(p1)f(p3) — fF(pD)].

Since in the above procedure, the nonlinearity f(p2)f(p3)Lf(p1) + 11— f(p1)[f (p2) + 11[f(p3) + 1] appears four times, we
multiply the factor 7w &~ gz " by 4 and obtain the first collision operator Clz.

APPENDIX D

We first compute

(b1, B%, BY, bp.bp,| = bib,bY, B, by by, — b B by, by, by o
=[8(p— p1) +8(p— p2) — 8(p — p3) — 8(p — p)IB}, BY by, by,
We now analyze the commutator [13;1 b b ,,3 ,, , [bT bp, plb 213,,3 13,,4]]. To this end, we compute
[b;', 5;’2b[73 Aﬁiw A;E;zl;ps Am] = i’;’] E;;Ep%l;ﬁil;;l;;zl;psgm - 13;113;2131,3131,413;, ET'E ’l; A
=8(py — pz)Bj;,IBj;,zéj,lépABmém +8(p, — pz)b,‘, b[‘, B!, by by, by,
+8(py — pl)bp e B! bbby, +8(py — pl)b; b; B!, by bp.by,
+0(ps = p8(Py = p2)byy B, by, by, + 8Py — pr)&(Ps — p2)b), b, by by, (D2)
— 8(ps — P, b;zb bbby, — 8(ps — py)b!, b;2b;lb,,313,, by,

— 8(ps — b} B B' by, by by, — 8(pa — PIBY, BY B By by by,

P27 p, P2 p
— 8(p3 — P)8(pa — DY BT by by, — 8(pa — P})8(p3 — py)bY b by by

Our next task is to perform Wick’s theorem to the 12 terms. We only analyze one of them below. The other terms can be done in
exactly the same way. We compute

_L/\

8(py — p2)(b; b; b;lbmb bP4) =3(py — P2)<B,Ia %)(BL’Z )(bT P4) +38(py — Pz)(?’;/l Ep;)@;
+ 8P — Pz)( 13 )(i’ by )b}, bp,) + (), — Pz)(lA’T/ l;p3><l;

+8(pl, — pz)(b;,l A,,A)(b;,z by b}, bp.) + 8(Ply — p2)(B], by (BT,
= 8(py — PSPy — P3)8(Ps — p3)8(p1 — p) fF(P)F (P (p1)

+ 8(pl, — p2)8 (P — PSP — p)8(p1 — p3) f(PDf (DY) (p1)

+8(py — P8P — p3)8(py — P3)8(p1 — pa) f (PP f(p1)

+ 8(pl, — p2)8 (P — p3)8(Py — p)8(p1 — P f(PDf DY) (1)

+ 8(py — p2)8(P) — pa)8(py — P3)8(p1 — P3) F(PDf (P f (p1)
+8(py — p2)8(Py — pa)S(py, — p3)8(p1 — P PP f(p1).

)
by)

@‘

(D3)

The six terms will be analyzed in detail below, with the notice that p; + p» = p3 + ps4 and p| + p’2 = ph+ P,
(i) The first term 8(pj, — p2)8(p — p3)3(Py — p3)8(p1 — pa)f(P))f (py)f (pr) appears when p) = ph = ps = p3, py = Ph,

and p; = ps4. This term will cancel with a similar term coming from §(ps — p/z)(bT b;sz by,byby,).

(i) The second term 8(pj, — p2)8(p — P3)8(py — pa)3(p1 — p3)f(P\)f (py)f (p1) appears When Pi=Dy=pr=ps, P =

Py, and p; = p3. This term will cancel with a similar term coming from 8(ps — p/z)(bT b;(hb; by,byby,).

(iii) The fourth term 8(p} — p2)3(p| — p3)3(Py — P3)3(p1 — pa)f (P S (Py)f (p1) appears When Pi=D)=Dpr=Dp3 Ps=

p1, and p, = p}. This term will cancel with a similar term coming from §(ps — p’z)(b; b;Zb; by,byby,).

(iv) The fourth term 8(p)y — p2)8(p — p3)3(ph — p4)é(p1 — P3)f (P f(P5)f(p1) appears When Py = D2, P4 = D), P = D3,
and p; = pj. This produces the nonlinearity §(p1 + p2 — p3 — pa)f(p1)f(p3)f (pa)-
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(v) The fourth term 8(p}, — p2)8(p| — p4)d(p, — p3)8(p1 — p3)f(P)f(Py)f (p1) appears when py, = p| = ps = p4, p3 =

p1-and py = p}. This term will cancel with a similar term coming from 8(ps — p4)(b!, bf, E;, bpbyby).
1 2

(vi) The fourth term 8 (p), — p2)8(p| — p4)d(py — p3)é(p1 — P5)f (P f(Py)f(p1) appears when p, = p2, p3 = p, P = pa,

and p; = pj. This produces the nonlinearity 8(p; + pa — p3 — pa)f(p1)f(P3)f(Pa)-

As a result, the quantity a(p;—pz)u};,] 13;,2 l;;]l;pgl;ml;m) produces two times the nonlinearity &(p; + p2 — p3 —

p) (P (p3)f (pa).

Finally, in the end, the nonlinearity f(p1)f(p2)(f(p3) + DLf (ps) + 11 = f(p3)f (po)Lf (p2) + 11[f (p1) + 1] appears four

times in the forms

8(p1 + p2 — p3 — pa)3(p1 — P1)8(p2 — P3)8(p3 — P3)8(pa — PO (P)f (p)Lf (p3) + 11 f (pa) + 1]
— f(p3)f(p)Lf (p2) + 1Lf(p1) + 11},

8(p1 + p2 — p3 — pa)3(p1 — p)8(p1 — P3)8(p3 — P8 (pa — PO (P f (p)Lf (p3) + 11f (pa) + 1]
— f(p3)f(p)Lf (p2) + 1Lf(p1) + 11},

8(p1+ p2 — p3 — pa)d(pr — p1)8(p2 — p)8(p3 — pS(pa — PO (p)f (P)Lf (p3) + 1ILf (pa) + 1]
— f(p3)f(p)Lf (p2) + 1Lf(p1) + 11},

and

8(p1 + p2 — p3 — pa)8(p1 — p)8(p2 — P8(p3 — P3)8(pa — PO (P)f (p)Lf (p3) + 111 (pa) + 1]
— f(p3)f (p)Lf (p2) + 111 f (p1) + 11}

We then multiply the factor 57”2 by 4 and obtain the collision operator Cy;.
APPENDIX E
Let us first compute
[b;bp’ bltl bPz bl’3 bm] = b;bl)bl;l bPz bP3 bP4 - bl-)l bPz st bP4 bj-)bp

=1[8(p— p1) — 8(p — p2) — 8(p — p3) — 8(p — pa)Ib), by, by, by,

We now analyze the commutator [13;413;3 13;2 by, . 1b7by, b, by,bp,bp,11. To this end, we compute

~ ~ A ~

by,by,by, — b bbb, b b b, b

A AL
T

[BT, b, B;r/zl;l"l’ 13;1131,251,3131,4] = IA)T’I;T’I;; by b

Py Pl Py Py P p p1UP2UPs P g Vp Y U
=~ [8(ps = PLIB], by, by, by, bpibys, + 8(pa — PS(ps — P3)B}, b3, by, by, + 8(ps — Pi)S(p2 — )b}, b, by, by,
+8(ps = P3(p2 — Pb}, b, by by + 8(ps — P83 — py)B, b, bybyy + 8(ps — P8 (p2 — P8 (3 — Py)b, by
+8(ps — P3(p3 — P3S(p2 — PO}, by, +8(p3 — PB} BT, B, by by by + 8(ps — P8 (ps — PY)IB], BT, by,
+38(p3 = P3(p2 — P)b}, BT, by, by + 8(ps — P82 — )b B, by,byy + 8(ps — P8 (ps — py)B], BT, by,

+8(ps — P3(p2 — PS(ps — PoIB] by, + 8(p3 — PS(ps — p3)S(p2 — )b}, by,
/NI A% AT 7 r 7 / / N 7 N N / /N7 7~ T 7~
+38(p2 = Py, b, b, by, by by, + 8(p2 — D8P3 — Py, by, bp by, + 8(p2 — PS(pa — P2}, b7, by,

AL A

+8(p2 — P8(pa — PBY BT, byby, + 8(pa — )8 (ps — PyIBY B, by, by + 8(p2 — P)S(ps — P3)S(p3 — Py)bY, by,

P17 py
+8(p2 = P3(p3 — P38(Pa — PR}, by, +8(p2 — P3)8(ps — PYBY, b7, by by, +8(p2 — P3)S(pa — )b}, b}, b

+38(p3 = P)3(p2 — P)b} B, by, by + 8(ps — P33 (ps — Py)B} B, Dby + 8(pa — p3)8(p3 — Py)IB], BT, by,

+ 8(ps — Py)8(p2 — p’z)l;;]l;;t bp,by + 8(p2 — pg)i;j,]z};;i;;z bbby, + 8(ps — pg)i;j,]i;;gl};,z bp,bp,by

P17 ph

/Nt T r r r r / 7~ AT 7~ 7~ 7~ 7~ / 7 7~ 7~ N 7~
+8(ps — Py)by, b, b, by by by, + 8(pa — P}, 07, b7, by by by, + 8(ps — Py}, B, b, by by, by,
8(ps = DB B Bl bbby + 81 — piB, B, B, bbby

In the above structure, we can see that there are totally 34 terms, classified into three categories:
(1) 10 terms of the type bjbjbj{)bb.

(ii) 18 terms of the type b'b"bb.

(iii) 6 terms of the type b'bTbb.
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We provide below the detailed analysis for all of the 10 terms in the first category. The treatment of the other terms can be
done in a similar manner. By Wick’s theorem applied to 8(p; — p/ )bT, bT, bT,  bpsbp; by, we have

8Py = B BY, b1 by, By) = 85, = p)(B] bpuB], B 81, 5yn) + 8P} = pB], BB, BB, B
+8(py - p1)(b;45 )( b )( p4)+5(p/1—pl)(BT,51,2)([;2,351,4)(3;,21;1,3)
+8(py = PONby b By, by b7, By} + 8Py — p){BY, by B, by B}, )

=8(py — P18 (py — pa)s (p3 — p3)8(py — p)f(p2)f (p3)f (p4)
+8(p} — p1)8(py — P3P — p2)3(psy — p3)f(p2)f(p3)f(pa)
+8(p) — p1)8(py — p2)3(Ps — p3)8(Psy — pa)f(p2)f (p3)f(pa)
+8(p} — p1)8(py — p2)3(Ps — p)S(Py — p3)f(p2)f(p3)f(pa)
+8(p) — p1)8(py — p3)3(ph — p2)8(ps — pa)f(p2)f (p3)f(pa)
+8(py — PSPy — p3)8(Ps — PSPy — pa) f(p2)f(p3)f (pa).-

Now, similar Wick’s theorem arguments can be used for §(ps — pﬁt)bT b b, b b b .. In this case, we get the sum of two

(E3)

Py
terms:
8(p1 = P8(p2 — p3)8(p3 — P2)8(pa — P (P (p2)f (p3) 4
+8(p1 — P1)8(p2 — P2)8(p3 — P3)8(pa — p)f (p1)f(p2) f(p3)
and
8(p1 — p2)8(ps + p)d(ps — P8(p3 — P f(P)f (p3)f(P)) -
+8(p1 — p3)8(p2 + pa)d(pa — P)3(p2 — P)f(p)f () f (P)),
where we have used the fact that p; = p, + p3 + ps and p} = p, + p5 + pi.
Taking the sum with respect to p}, p, p5, py and pi, p2, p3, ps the second term (E5), with the kernel Kll’32,3’ 4 we find
2 > K% 3 4K\ 3 48(p1r — pa — ps — pa)S(ph — Py — Py — p8(p1 — p3)
P1,P2,D3,P4 D) Py Py Py s 70 (E6)

x 8(p2 + pa)s(ps — P8(p2 — P3) f(p)f(P2)f (D).

where K|, 5, is K 5 4, in which py, ps, p3, ps are replaced by p|, p}. pj. p), and we have used the symmetry of p; and ps,
to get the factor 2 outside.

The other terms have exactly the same structure and by taking the sum of all of terms like (E4) and (E6), we arrive at two big
terms:

Ay = 8(py — p 3Py — PSP — p3)S(Py — p)If (P f(P3)f(pa) + f(p)f () f (p4) + F(p) S (p2)f(p3)]
+8(p) — p1)S(ply — pa)S(py — p2)8(ph — p)If (PO f(p3)f(pa) + fF(p1)f(p2)f(ps) + f(pD)f(p2)f(p3)]
+ 8(py — P8Py — p2)3(Ps — p3)S(Py — pOLf (P f(P3)f(pa) + f(p)f (P2 f (pa) + fF(p1) S (p2)f(p3)]

+8(p) — p)8(py — p)S(Ps — pa)S(py — pILf(Pf(P3)f (pa) + f(p)f (p2)f (pa) + f(p)f (p2)f (p3)] D
+8(py — p1)8(py — p3)8(Py — p2)8(P5 — p)Lf (P)f(P3)f (pa) + f(p1)f (p2)f (pa) + f(p1)f (p2)f (p3)]
+8(p) — p)8(py — p3)8(ps — p2)3(py — pOLf (PSS (P3)f (pa) + f(p)f (p2)f (pa) + f(p1)f (p2)f (p3)],
A = 12 > K% 3 4Ky 3 .48(p1 — pa — p3 — pa)d(Py — Py — s — PS(p1 — p3)
PL P23 D4 Py Dy Dy Py 70 (E8)

x 8(p2 4+ pa)S(ps — PS(p2 — P f(p)f(P)f(P)).

in which we have taken into account the symmetry of p;, p3, p4 to rearrange the terms and get the factor 12 in front of the sum
in 5. This term is indeed negligible due to the delta function 8(p — p;) — 8(p — p2) — 8(p — p3) — 8(p — p4) in (E1). To see
this, we apply this delta function to the left-hand side of (E8) and get

[8(p = p1) = 8(p—p2) = 8(p — p3) = 8(p — pa)]2A

= [8(p— p1)—8(p — p2) = 8(p — p3) — 8(p — pu)]12 > K% 54Ky 5
P1,D2,P3: P4, P} Phs D3> Py, 70

X 8(p1 — p2 — p3 — pa)S(P — Py — Py — p)S(p1 — p3)8(p2 + pa)d(ps — PS(p2 — P)F (P f(p)f(Py) =0. (E9)
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The first quantity 2(; can be combined with (E3), yielding

8(py — P3Py — p)S(P5 — p3)8(Ps — pIf (P2)f(p3)f(ps) — F(P)f(P3)f(pa) — F(P)f(P2)f (pa) — F(p1)f(p2)f (p3)]

+8(p) — PSPy — pa)S(p5 — p2)8(Ps — p)f () f(p3)f(ps) — F(POf(P3)f(pa) — fF(p)f(p2)f (pa) — f(p)f (p2)f(p3)]
+8(p) — P8Py — p2)8(Ps — p3)8(py — pOLf () f(p3)f(pa) — fF(p)f(P3)f(Pa) — fF(p)f (p2)f (Pa) — f(p)f (p2)f (P3)]
+8(p) — P8Py — p2)S(p5 — p)S(Ps — p)f () f(p3)f(ps) — fF(POf(P3)f(pa) — F(P)f(p2)f (pa) — f(p)f (p2)f(p3)]
+8(py — PSPy — PSPy — p2)8(Ps — p)Lf () f (P3)f (pa) — F(pD)f(P)f (pa) — F(P)Sf (p2) f(pa) — F(p)f (P2)f (p3)]
+8(p) — PSPy — p3)8(ps — p2)8(Py — pLf (P2)f(p3)f(ps) — fF(p)f(P3)f(pa) — fF(p)f(p)f(pa) — f(p1)f (p2)f(p3)].

(E10)
the nonlinearity [f(p2)f(p3)f(p4) — f(p)f(P3)f(P4) — fF(p)f(P2)f (pa) —

Notice that in the above procedure,
F(POf(p2)f (p3)] appears six times.

By similar arguments, applied to terms of the other two categories, we find the full nonlinearity {f(p3)f(p4)f(p2)Lf (p1) +
1] = f(plf(p2) + 1If(p3) + 11[f(pa) + 11}, which also appears six times. Now, due to the commutator

(5}, Dby by 16} by. B), B, B, by 11, the nonlinearity {f(p3)f (pa)f (P2)Lf (p1) + 11 = f(pOLf (p2) + 11(f (p3) + DLf (pa) +

1]} appears 12 times in total. We multiply the factor f—",’ by 12 and obtain the third collision operator Cs;.
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