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Universal distributions from non-Hermitian perturbation of zero modes
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Hermitian operators with exact zero modes subject to non-Hermitian perturbations are considered. Specific
focus is on the distribution of the former zero eigenvalues of the Hermitian operators. The broadening of these
zero modes is found to follow an elliptic Gaussian random matrix ensemble of fixed size, where the symmetry
class of the perturbation determines the behavior of the modes. This distribution follows from a central limit
theorem of matrices and is shown to be robust to deformations.
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I. INTRODUCTION

The microscopic spectrum and the zero modes of a Hermi-
tian Hamiltonian matrix are of particular interest since these
are usually closely linked to the symmetries and topology
of the system. Studies of the smallest eigenvalues and zero
modes therefore allow us to extract fundamental information
about the system. This fact also extends to the Dirac operator
in quantum chromodynamics (QCD), where the average spec-
tral properties of the microscopic eigenvalues are intimately
linked to chiral symmetry breaking [1] and the zero modes by
the Atiyah-Singer index theorem follow from the topology of
the gauge field.

Because of universality [2], the average properties of the
microscopic spectrum of the QCD Dirac operator may be
studied either by random matrix theory [2–4] or by means of
effective field theory [5]. Similarly, the smallest eigenvalues
of the Hamiltonian for solid-state systems carrying Majorana
modes may be described either by random matrix theory or
the associated σ -model [6,7].

In physical realizations, the symmetries and the topology
of the ideal system is often perturbed, causing the zero modes
to move slightly away from the origin. This poses a question:
Is it possible in the presence of the perturbation to distinguish
modes that have their origin in the topological zero modes
of the unperturbed system? This question is highly relevant
for the study of Majorana modes [6,8–14] as well as in QCD
[15–19]. A first answer was found in Refs. [15–17] in the
context of QCD, where it was realized that indeed it is possible
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to distinguish would-be zero modes, since their distribution
have very specific spectral statistics and scale differently with
the volume than the rest of the small eigenvalues. Surprisingly,
it was found that the spectral statistics of the would-be zero
modes is given by finite-size Gaussian random matrix theory.
This at first came as a surprise as random matrix universality
is usually only established in the limit of infinite matrix
dimension. This new form of universality was shown [20] to
have its origin in a kind of matrix-valued central limit theorem
that applies to the perturbation matrix for the zero modes. The
new finite-size Gaussian random matrix universality for the
would-be zero modes is reached in the limit where the size of
the remaining system is taken to infinity. In Ref. [20], Her-
mitian perturbations of the original ideal Hermitian system
were considered, and it was possible to show that universal
distributions of perturbed zero modes exist for all universality
classes.

In the present work, we generalize this statement to
weakly non-Hermitian perturbations. Systems with weak non-
Hermiticity have been subject to several studies previously,
both in the context of solid state physics [21–23] as well as
for the strong interactions [24–28]. These studies for instance
provided new insight into the nature of Andreev and Majorana
modes, [23], and into the sign problem in QCD with chemical
potential, see for instance [28]. Two examples of applications
are given in Sec. II. We are in particular interested in non-
Hermitian perturbations which violate the conditions respon-
sible for the presence of exact zero modes in the original ideal
system. The general matrix model we will consider is of the
form

K = A + P, (1)

where A is a Hermitian matrix describing the ideal system
with exact symmetries and exact zero modes. The non-
Hermitian perturbation is given by P.
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We restrict our study to two classes of perturbations. In the
first case, the perturbation Punc takes the form

Punc = αRURSRU †
R + iαIUI SIU

†
I , (2)

where SR and iSI are Hermitian and anti-Hermitian respec-
tively and the real constants, αR and αI , are chosen to be
small such that the first-order correction dominates. Their
ratio will determine the ellipticity of the level density for
the broadened zero eigenvalues. We will consider the average
spectral properties of the smallest eigenvalues of K where the
average is over the unitary matrices UR and UI . The average is
taken over the respective Haar measure dμ(U )dμ(V ), where
the two matrices UR and UI are considered to be statistically
independent and there are therefore no correlations between
the Hermitian and anti-Hermitian part.

The second class of perturbations Pc that we consider are
of the form

Pc = αUSV †. (3)

The operator S is fixed and complex-valued. The unitary
matrices U and V are drawn from the deformed Haar measure

ezReTr[UV †]dμ(U )dμ(V ), (4)

where z > 0 is a fixed number setting the eccentricity of the
limiting elliptic support of the level density. This freedom of
alignment in the complex plane is missing in the first model
where the spectrum is either elongated along the real or imagi-
nary axis. Note that the Hermitian and the anti-Hermitian parts
of this perturbation are now correlated. For z → ∞ and fixed
matrix size, the two unitary matrices become almost the same
U ≈ V .

We find that the finite-size universality of the would-be
zero modes extends to both types of non-Hermitian pertur-
bations. The universal distributions are given by finite-size
non-Hermitian Gaussian elliptic random matrix ensembles.
We also demonstrate numerically the validity of the universal
finite-size distributions for two specific random matrix real-
izations.

Because of the specific structure of the non-Hermitian
perturbation in Eqs. (2) and (3), we may take advantage of
the symmetry classification of Hermitian matrices done by
Altland and Zirnbauer [29,30]. Those non-Hermitian symmet-
ric matrix spaces are classified in [31–34]. We will consider
all those symmetry classes in a unified way for both of our
models. Surprisingly, both models yield the same limiting el-
liptic Gaussian ensemble whose joint matrix distribution have
the same formal structure. They only differ in the symmetries
of the matrices. Thus, we dub all of these ensembles elliptic
Ginibre ensembles.

The presentation of these results is organized as follows.
As a start in Section II we introduce two physical realizations
of the matrix model, which we will later analyze numerically
and compare to our analytical findings. Then follows the main
proof, which comes in two steps. The first step is to establish
the conditions under which first-order degenerate perturba-
tion theory applies. We establish this in Sec. III, where we
derive the conditions under which the characteristic equation
of the perturbation factorizes. The second step is to determine
the distribution of the perturbation matrices. In Sec. IV we
show that they are distributed according to an elliptic Ginibre

ensemble with size determined by the number of zero modes.
The conditions under which this holds are derived in Sec. IV.
In Sec. V we compare this analytical result with numerical
analyses of the two ensembles, which were introduced in
Sec. II. In Sec. VI the universality of the distribution of the
former zero modes is considered. Finally, in Sec. VII we
conclude and discuss our results.

II. SYMMETRY CLASSES—TWO REALIZATIONS

To motivate the study and exemplify the results, we con-
sider two realizations of physical interest. A chiral ensemble,
being of relevance to QCD, and an ensemble with particle-
hole symmetry relevant for solid-state systems with Majorana
zero modes.

A. Chiral ensemble

The QCD Dirac operator for vanishing quark masses ex-
hibits a chiral symmetry and the spontaneous breaking hereof
induces a nonzero eigenvalue density of the Dirac operator
at the origin [1]. Furthermore, the winding number of the
gauge field gives rise to eigenvalues exactly at the origin; see,
e.g., Ref. [35]. However, when simulating QCD on the lattice
in the Wilson approach, the influence of the nonzero lattice
spacing breaks both the chiral symmetry and also perturbs
the zero modes. This affects the distribution of the small-
est eigenvalues of the Dirac operator in a highly nontrivial
manner [15–17]. When a chemical potential is introduced,
we break Hermiticity [26,27] as well. It therefore becomes
interesting to study the effect of a chiral ensemble perturbed
by a non-Hermitian one.

This motivates us to study the following general non-
Hermitian perturbation of the chiral random matrix model

K (N ) =
(

0 M
M† 0

)
+ αRURSRU †

R + iαIUI SIU
†
I , (5)

where the initial Hamiltonian has dimensions N × N with
N = 2n + ν, and M has dimensions (n + ν) × n. Thus, for
αR = αI = 0 the model exhibits ν zero modes. This allows us
to control the exact number of zero modes, we wish to study.
The matrices SR and SI have dimensions N × N , are Hermitian
and have otherwise no further symmetries. The only average
is performed over the unitary matrices UR and UI , which are
drawn via the Haar measure from the group determined by
the symmetries of the ensemble. The real coupling constants
αR and αI control the magnitude of the Hermitian and the
anti-Hermitian part of the perturbation, respectively.

We will show that the perturbation matrix for the
former zero modes is distributed according to a Gaus-
sian in the complex plane with standard deviations σl =
αl

√
Tr(S( jl )

l )2/(γ̃ ( j)
l (N ( j)

l )2) where l = R, I is the real and
imaginary direction respectively. The parameters γ̃

( j)
l depend

on the symmetry class [see Eq. (28)]. It is basically the
exponent of the determinant when performing a multivariate
Gaussian integral, see Table II in Ref. [20]. Because the
elements are Gaussian, the statistics of the broadening of
the former zero eigenvalues are those of the elliptic Ginibre
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ensemble, the one-point function of which is known [36],

R1(λ) =
√

ωτ (λ)ωτ (λ∗)
ν−1∑
n=0

τ n

2nn!
Hn

(
λ√
2τ

)
Hn

(
λ∗

√
2τ

)
,

(6)

where

ωτ (λ) = 1

π
√

1 − τ 2
exp

[
− |λ|2

1 − τ 2
+ τ (λ2 + λ∗2)

2(1 − τ 2)

]
, (7)

and the factor τ is defined as
√

1 + τ√
1 − τ

= αR

√
Tr(SR)2

αI

√
Tr(SI )2

. (8)

B. Majorana ensemble

In the study of superconductors carrying topological zero
modes, see for instance Refs. [6,9,12,14,37–40], it becomes
relevant to study the spectral properties of a Hamiltonian
consisting of the direct sum of two antisymmetric Hermitian
ensembles (Class D in the Cartan classification) that are the
same up to a sign. This corresponds to particle-hole-symmetry
[7,12,40], and the antisymmetric matrices are of odd size,
which gives the system two identical zero modes. It has been
pointed out that it is difficult to experimentally distinguish
such an ensemble where the zero modes have been perturbed
from an ensemble with an accumulation of eigenvalues around
the origin [10]. It is therefore advantageous to study per-
turbations arising from thermal fluctuations that couple the
two sectors. We here consider a generalization where the
perturbation is non-Hermitian. Such a non-Hermiticity may
arise from a coupling to an environment; see Ref. [23] for a
relevant example.

In terms of a random matrix model this ensemble is

K (N ) =
(

iM 0
0 −iM

)
+ αROR

(
0 iWR

−iW T
R 0

)
OT

R

+ iαI OI

(
0 iWI

−iW T
I 0

)
OT

I , M = −MT , (9)

where M is real antisymmetric and has dimensions 2n + ν.
WR and WI also have dimensions 2n + ν, are real but have no
further symmetries. This ensemble is defined for all ν, but we
need only ν = 0, 1. The average is done over the orthogonal
matrices OR and OI drawn from the Haar measure of the
orthogonal group. As above, αR and αI are real and control
the magnitude of the Hermitian and anti-Hermitian part of the
perturbation, respectively.

As mentioned above, we will show that the perturba-
tion matrix of the zero modes has a Gaussian distribu-
tion in the complex plane with standard deviations σl =
αl

√
Tr(S( jl )

l )2/[γ̃ ( j)
l (N ( j)

l )2], where l = R, I . This ensemble
exhibits two exact zero modes when αR = αI = 0, hence, for
ν odd the perturbation matrix is of dimension (4n + 2ν) ×
(4n + 2ν) and therefore N = 4n + 2ν. The full ensemble
matrix K (N ) is antisymmetric, KT = −K , which makes the
perturbation matrix antisymmetric as well. If the perturbation
matrix is distributed according to a Gaussian, then the broad-
ened zero modes will be as well; see the ensuing example with

a 2 × 2 antisymmetric matrix:

0 = det

[
i

(−λ x
−x −λ

)]
⇒ λ2 − x2 = 0. (10)

The probability density for elements with Gaussian weights is
defined as

P(λ) =
∫ ∞

−∞
dx δ(λ − x)

1√
πσ 2

e−x2/σ 2 = 1√
πσ 2

e−λ2/σ 2
.

(11)

Therefore, the broadened zero modes are compared to Gaus-
sian distributions in both the real and imaginary direction with
the shown standard deviations,

p(λ) = exp
[−(Re[λ])2/σ 2

R − (Im[λ])2/σ 2
I

]
πσRσI

. (12)

Note that our result for the model (2) holds for all non-
Hermitian classes. This is clear because we will show that
our results hold for SR and SI in any Hermitian symmetry
class. This will certainly give an overcounting, but we are
guaranteed to cover all classes with noncorrelated Hermitian
and anti-Hermitian part.

For the model (3), this is less clear, primarily because
the non-Hermitian matrices have not yet been unambiguously
classified [31–34]. We still conjecture that they hold in full
generality, because symmetry constraints will merely give
conditions on U and V . It is likely that the integrals with
substructure may be solved the same way as for the different
Hermitian classes.

III. FACTORIZATION OF THE CHARACTERISTIC
EQUATION

First we show that, for sufficiently weak perturbation, the
spectrum of the former zero modes decouples from the bulk.
This corresponds to focusing on the part of the perturbation
which corresponds to first-order degenerate perturbation the-
ory. The approach here follows closely the one in Ref. [20].
We may deal with both forms, Eqs. (2) and (3), in a unified
fashion. Our starting point is the following:

T = αUSV †, (13)

with

U =
(

U1

U2

)
, V =

(
V1

V2

)
(14)

unitary and divide it into the sectors

T =
(

T1 T2

T4 T3

)
. (15)

We have organized the basis such that T3 will correspond to
the zero modes of A that is given in this basis as follows:

A =
(

A′ 0
0 0

)
. (16)

The notation is chosen in such a way to line up with S3, SR3,
and SI3, as in Ref. [20].

Although the form (13) resembles the second model (3)
instead of the first one (2), both can be dealt here in the
same way. One needs to keep in mind that the result in
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Ref. [20] gives a bound on α‖S‖op, where ‖ · ‖op is the
operator norm (the largest singular value). As we shall see,
the corresponding bound here will depend on ‖αRURSRU †

R +
iαIUI SIU

†
I ‖op or ‖αUSV †‖op = α‖S‖op. We underline that the

operator norm is invariant under left and right multiplication
of unitary matrices. Thus, when defining Ũ = U †

RUI we can
identify S = αRSR + iαIŨ SIŨ †. Since Ũ is Haar distributed,
we can have any combination of the eigenvalues of the real
eigenvalues of αRSR and the imaginary eigenvalues of iαI SI .

Therefore, we have the inequality ‖αRSR + iαIŨ SIŨ †‖op �√
α2

R‖SR‖2
op + α2

I ‖SI‖2
op. The equality is given by the worst

case when SR, SI , and Ũ are diagonal and the eigenspaces of
the largest eigenvalues of SR and SI are the same. In practice,
this will not be the case, and the inequality will hold instead.
Hence, we need to replace the operator norm by the norm√

α2
R‖SR‖2

op + α2
I ‖SI‖2

op for the estimates in the first model.
We consider the characteristic polynomial

det(K (N ) − λ1N ) = det

(
A′ + T1 − λ1N−ν T2

T4 T3 − λ1ν

)
= det(A′ − λ1N−ν ) det(1N−ν + (A′ − λ1N−ν )−1T1)

× det[T3 − λ1ν − T4(1N−ν + (A′ − λ1N−ν )−1T1)−1(A′ − λ1N−ν )−1T2], (17)

where we first pulled out the factor A′ − λ1N−ν and then the factor 1N−ν + (A′ − λ1N−ν )−1T1. Next, we use T1 = U1αSV †
1 and

express the inverse as a Neumann series

(1N−ν + (A′ − λ1N−ν )−1U1αSV †
1 )−1 =

∞∑
j=0

[−(A′ − λ1N−ν )−1U1αSV †
1 ] j,

which can be exploited as follows:

U2αS(1N−ν − V †
1 (1N−ν + (A′ − λ1N−ν )−1U1αSV †

1 )−1(A′ − λ1N−ν )−1U1αSV †
2 )

= U2αS

⎛⎝1N−ν +
∞∑
j=1

[−V †
1 (A′ − λ1N−ν )−1U1αS] j

⎞⎠V †
2 = U2αS[1N−ν + V †

1 (A′ − λ1N−ν )−1U1αS]−1V †
2 .

Here, we have made use of T2 = U1αSV †
2 and T4 = U2αSV †

1 . Inserting this result into Eq. (17), the characteristic polynomial
becomes

det(K (N ) − λ1N ) = det(A′ − λ1N−ν ) det(1N + αSV †
1 (A′ − λ1N−ν )−1U1) det(U2[1N + αSV †

1 (A′ − λ1N−ν )−1U1]−1αSU †
2 −λ1ν ),

(18)

which is in full analogy to the Hermitian case in Ref. [20].
The same analogy carries even further. To make the first-order perturbation theory exact, we need the smallest eigenvalues of

A′, given by ‖(A′)−1‖−1
op , to not interact with the broadened spectrum of the zero modes. The latter is represented by the operator

in the third derterminant of Eq. (18). Hence, we need

‖(A′)−1‖−1
op 
 ‖U2[1N+αSV †

1 (A′−λ1N−ν )−1U1]−1αSU †
2 ‖op = α‖[1N + αSV †

1 (A′ − λ1N−ν )−1U1]−1S‖op. (19)

We underline that λ is of the order of the operator on the right hand side so that we can drop it in every combination of the form
A′ − λ1N−ν . This simplifies the characteristic polynomial to

det(K (N ) − λ1N ) ≈ det(A′) det(1N + αSV †
1 (A′)−1U1) det(U2[1N + αSV †

1 (A′)−1U1]−1αSV †
2 − λ1ν ). (20)

Furthermore, we would like to suppress the operator αSV †
1 (A′)−1U1 compared to the identity matrix 1N . In particular, we need

‖αSV †
1 (A′)−1‖op � 1. To understand of what order the generic value of ‖αSV †

1 (A′)−1‖op is, we choose an arbitrary vector |χ〉 ∈
CN and consider the m’th moments of the squared norm of V †

1 (A′)−1U1αS|χ〉, which gives the conditions∫
K

dμ(U )(〈χ |αS†U †
1 (A′)−2U1αS|χ〉)m � cm

(
α2Tr(A′)−2〈χ |S†S|χ〉

N

)m

� 1. (21)

Here cm is some constant of order 1 and K is the Haar measure of the appropriate unitary group. Since the vector |χ〉 is arbitrary,
we can also choose the eigenvector to the largest singular value ‖S‖op of S. Combining Eqs. (19) and (21), we need to assume

α

√
Tr(A′)−2‖S‖op√

N
� 1 (22)
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for the second model, which indeed also implies ‖A−1‖−1
op 
 α‖S‖op, and√

Tr(A′)−2‖αRURSRU †
R + iαIUI SIU

†
I ‖op√

N
�

√
Tr(A′)−2

(
α2

R‖SR‖2
op + α2

I ‖SI‖2
op

)
N

� 1 (23)

for the first model. These two conditions allow us to restrict the discussion to first order perturbation theory. In practice this
means that we only need to study the spectrum of

αRSR3 + iαI SI3 = αRUR2SRU †
R2 + iαIUI2SIU

†
I2 or αS3 = αU2SV †

2 , (24)

as these matrices determine the distribution of the former zero
modes. We will derive the distribution of these matrices in the
next section.

Before coming to calculating this distribution, we would
like to emphasize the following. Although first order pertur-
bation theory of the first model may dictate that the spectrum
of a purely real or imaginary perturbation only spreads in
the according direction, eventually the spectrum will start to
invade the whole complex plane.

IV. DISTRIBUTION OF S3—A MATRIX-VALUED
CENTRAL LIMIT THEOREM

We move on with a derivation of the distribution of the
perturbation matrix and how this broadens the zero modes of
our Hamiltonian. We consider the two classes, Eqs. (2) and
(3), in turn.

A. Perturbation with uncorrelated Hermitian and
anti-Hermitian parts

We start by considering perturbations of the form Punc of
Eq. (2). Since the Hermitian and anti-Hermitian parts are
uncorrelated the result from the Hermitian case [20] can be
exploited for the two parts independently. To apply this result
we need the additional conditions

lim
N→∞

√
Tr(SR/I )2

‖SR/I‖op
= ∞ (25)

and

Tr(SR/I ) = 0. (26)

These essentially state that a big portion of the singular values
have to be of the same order as the largest one. Looking into
the proof of the Hermitian case in Ref. [20], this condition
guarantees that the distributions of SR3 and SI3 converge to
Gaussians. Without it, deviations from the Gaussian behavior
are quite likely.

For the sake of generality, we choose SR and SI being inde-
pendently a direct sum of operators in one of the ten symmetry
classes rather than just a single one. The direct sum is highly
important because some ensembles in the Magnea–Bernard–
LeClair classification [31–33] have real and imaginary parts
that decompose in direct sums, e.g., the Wilson–Dirac op-
erator [[15–17], [19]]. This happens exactly then when S
has a pseudo-Hermiticity property, meaning S† = γ5Sγ5 with
γ5 = γ

†
5 = γ −1

5 . Then there is a basis where the Hermitian
part is block diagonal and the anti-Hermitian part is chiral,
meaning the direct sum has maximal two components in the
standard symmetry classification by Magnea [32]. The role
of Hermitian and anti-Hermitian part may be reversed when
having S† = −γ5Sγ5. The notation of γ5 is reminiscent of the
γ5 matrix in the four dimensional Dirac theory, like the QCD
Dirac operator.

The dimension of the subspaces for the decomposi-
tions SR = ⊕

jR
S( jR )

R and SI = ⊕
jI

S( jI )
I are N ( jR )

R and N ( jI )
I ,

respectively. The corresponding unitary matrices UR and
UI have an according decomposition UR = ⊕

jR
U ( jR )

R and

UI = ⊕
jI

U ( jI )
I , where S( jR )

R → U ( jR )
R S( jR )

R (U ( jR )
R )† and S( jI )

I →
U ( jI )

I S( jI )
I (U ( jI )

I )† keeps the respective global symmetries in-
variant and generates the largest compact groups distributed
along the corresponding Haar measure. Then, the distribution
of each matrix S′

l, j = U ( j)
l S( j)

l (U ( j)
j )† with l = R, I is for large

N given by [20]

p(S′
l, j ) = exp

[ − γ̃
( j)

l

(
N ( j)

l

)2
Tr(S′

l, j )
2/Tr

(
S( jI )

I

)2]∫
dS̃ exp

[−γ̃
( j)

l

(
N ( j)

l

)2
TrS̃2/Tr

(
S( jI )

I

)2] , (27)

with the denominator properly normalizing the distribution
and γ̃

( j)
l a parameter of order one that depends on the cho-

sen symmetry class of the Altland–Zirnbauer classification
[29,30], i.e.,

γ̃
( j)

l =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
4 , nonchiral and an antiunitary symmetry,

1, nonchiral and no antiunitary symmetry or one of the two Boguliubov–de Gennes operators,
p( j)

l n( j)
l(

N ( j)
l

)2 , chiral and no antiunitary symmetry,

p( j)
l n( j)

l

2
(

N ( j)
l

)2 , the remaining two chiral operator classes.

(28)

For the standard chiral ensembles we have the operator di-
mensions p( j)

l , n( j)
l ∝ N ( j)

l 
 1 with p( j)
l + n( j)

l = N ( j)
l . To be

precise, we need to assume limN→∞ N ( j)
l = ∞, TrS( j)

l = 0 as

well as limN→∞
√

Tr(S( j)
l )

2
/‖S( j)

l ‖op = ∞ for each l = R, I ,
and j to find this result. The traceless condition is a nontrivial
restriction for a decomposition into a true direct sum. This
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has to be seen in contrast to when no direct sum is present.
Here the whole operator is only shifted by a scalar times the
identity matrix. This is not true for a direct sum, where we get
a shift by a diagonal matrix consisting of blocks of different
scalars in front of the identity matrix when we do not have
the trace condition. This has indeed physical effects as known
from the Wilson–Dirac random matrix model [15–17], [19]
and its corresponding lattice QCD-operator [41].

In total, the distribution of the full perturbation S′
3 =

αRSR3 + iαI SI3 = αR
⊕

jR
S( jR )

R + iαI
⊕

jI
S( jI )

I converges in
the large N-limit to the joint Gaussian probability density

p(S′
3) =

∏
l=R,I

∏
jl

p
(
S′

l, jl

)
. (29)

This constitutes the matrix central limit theorem for the
perturbation matrices S′

3 mentioned in the introduction.
When assuming that for both l = R, I there is a σl =
αl

√
Tr(S( jI )

I )2/[γ̃ ( j)
l (N ( j)

l )2] for all j, then we have the simpli-
fication of the distribution to the elliptic Ginibre ensemble for
one of the non-Hermitian ensembles [31,31],

p(S′
3) = exp

[−Tr(SR3)2/σ 2
R − Tr(SI3)2/σ 2

I

]∫
dS̃R3dS̃I3 exp

[−Tr(S̃R3)2/σ 2
R − Tr(S̃I3)2/σ 2

I

] .

(30)

Let us summarize and underline once again that the ho-

mogeneity σl = αl

√
Tr(S

( jI )
I )2

γ̃
( j)
l (N ( j)

l )2
and being traceless TrS( j)

l = 0

are for the single components of a direct sum of opera-
tors not always guaranteed, e.g., for the Wilson–Dirac op-
erator [[15–17], [19]]. Thus, the Gaussian distribution be-
comes noncentered and has a nontrivial covariance matrix.
Nevertheless, the joint distribution of S′

3 = αRUR2SRU †
R2 +

iαIUI2SIU
†
I2 remains Gaussian as long as the conditions

limN→∞
√

Tr(S( j)
l )

2
/‖S( j)

l ‖op = ∞ for all l = R, I, and j as
well as Eq. (23) are satisfied.

B. Perturbation with correlated Hermitian and anti-Hermitian
parts and deformed Haar measure

We now turn to the second form where the perturbation is
given by Eq. (3). The condition that corresponds to Eq. (25)
reads

lim
N→∞

q(N ) = ∞, (31)

where

q(N ) =
√

TrSS†

‖S‖op
. (32)

We again also assume TrS = 0 to simplify the problem. As
introduced in Eqs. (3) and (4), we consider the perturbation

K = A + αUSV †. (33)

This time the perturbation does not need to decompose into
a direct sum since we always consider the sum of the Her-
mitian and anti-Hermitian part as a whole. This detail can
be implemented in S = eiϕ[cos(ϑ )SR + i sin(ϑ )SI ], where SR

and SI are the two Hermitian components in one of the non-
Hermitian symmetry classes [32] and ϑ, ϕ ∈ [−π, π ] embed

the perturbation somehow in the complex matrices. Since the
phase eiϕ is only a scalar rotation, we can set it to 1 for the
computation and later multiply it to the matrix again.

To understand the nature of the unitary matrices U and V ,
we need to consider different cases that concerns the global
symmetries. One symmetry is a possible pseudo-Hermiticity
like S† = γ5Sγ5. Here we have the relation V = γ5Uγ5. In
the case of pseudosymmetry like ST = ±γ5Sγ5, this relation
reads V = γ̃5U ∗γ̃5 with a different γ̃5 = γ̃

†
5 = γ̃ −1

5 . Certainly,
S may fulfill none or both. In the latter situation S as well
as U satisfy reality conditions, S∗ = ±γ5γ̃5Sγ̃5γ5 and U ∗ =
γ5γ̃5U γ̃5γ5.

To simplify the situation and not to discuss all four cases,
separately, we exploit the fact that operators which do not
satisfy one or both of these symmetries can be embedded
always in those where this is indeed the case. To this aim we
consider instead of K = A + αUSV † the enlarged matrices,

diag(K, K∗, K†, KT )

= diag(A, A∗, A†, AT ) + αdiag(U,U ∗,V,V ∗)

×diag(S, S∗, S†, ST )γ̂ (N )
5 diag(U †,U T ,V †,V T )γ̂5, (34)

with

γ̂
(N )

5 =
(

0 12N

12N 0

)
. (35)

We relabel the dimension 4N = N̂ , diag(K, K∗, K†, KT ) =
K̂ , diag(S, S∗, S†, ST ) = Ŝ, diag(U,U ∗,V,V ∗) = Û , and so
forth. We can therefore, without restriction of generality,
assume that S or better Û Ŝγ̂

(N )
5 Û †γ̂

(N )
5 satisfies a pseudo-

Hermiticity condition with the matrix γ̂5 and a pseudosym-
metry condition with the matrix

γ̃
(N )

5 =

⎛⎜⎝ 0
0 1N

1N 0
0 1N

1N 0 0

⎞⎟⎠, (36)

and, therefore, also a reality condition which may lead to one
of the three number fields. Indeed, S may additionally satisfy
commutation relations with fixed matrices. This is usually
the case when it has a block-diagonal or chiral structure or
when it has had already a pseudo-Hermiticity and/or pseu-
dosymmetry condition before the embedding (34). Moreover,
the unitary matrix Û might be real, complex or quaternion
keeping the symmetry under the complex conjugation as well
as block-diagonal or a full matrix that keeps the possible chiral
or block structures invariant. Those choices still reflect the
Altland–Zirnbauer classification [29,30].

Once this is settled, we can go over to the distribution of
the unitary matrix U , which is

dμ̃(Û ) = exp
(
zTr

[
Û γ̂

(N )
5 Û †γ̂

(N )
5

]/
4
)
dμ(Û )∫

exp
(
zTr

[
Û γ̂

(N )
5 Û †γ̂

(N )
5

]/
4
)
dμ(Û )

with z > 0.

(37)

In the case when neither a pseudo-Hermiticity or pseudo-
symmetry originally existed, this measure agrees with Eq. (4)
after employing the embedding (34). In any case, the de-
formation of the Haar measure in Eq. (37) has the effect
that for z → ∞, the unitary matrix starts to align to the
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relation Û = γ̂
(N )

5 Û γ̂
(N )

5 . Employing the original model with
the embedding (34), this would translate to U = V . When z
is correlated with the angle ϑ such that ϑ → 0 or ϑ → π/2
for z → ∞, the perturbation becomes essentially a Hermitian
matrix. In comparison, the limit z → 0 yields the unmodified
Haar measure which always corresponds to the full non-
Hermitian case. Since we have now two parameters, z and τ ,
which have the same impact, we can eliminated one of those.
Therefore, we choose S to be in one of the ten symmetry
classes of the Altland–Zirnbauer scheme [29,30], meaning
ϑ = 0, π/2. Then, we select one non-Hermitian symmetric
space in the Magnea scheme [32], where S is either the
Hermitian or anti-Hermitian part. Afterwards, we employ the
embedding (34). The unitary matrix space for Û is then the
maximally compact subgroup of the invariance group of these
symmetric spaces.

Let us give three examples to illustrate this construction:
(1) The first one is the choice of S being a real symmetric

matrix and embedded in the complex symmetric matrices. The
invariance group of the complex symmetric matrices is given
by the map P → GPGT with G ∈ Gl(N,C) and, therefore, the
general linear complex group. The corresponding maximally
compact subgroup are the unitary matrices with the map P →
UPU T . Thus, V = U ∗ and U is a unitary matrix. The enlarged
unitary matrix is Û = diag(U,U ∗,U ∗,U ). In the limit for
z → ∞, U becomes a real orthogonal matrix.

(2) For the second example we again choose S to be
real symmetric but now embedded in the real matrices. The
invariance group of the real matrices is given by the map P →
G1PGT

2 with (G1, G2) ∈ Gl(N,R) × Gl(N,R). This time the
maximally compact subgroup is the product of two real

orthogonal groups O(N ) × O(N ) with the map P → UPV T

with the enlarged unitary matrix Û = diag(U,U,V,V ). When
we take z → ∞, the two matrices reduce to a single one via
U = V .

(3) The last example is given by the choice of S be-
ing the direct sum of two Hermitian matrices of dimen-
sions n × n and (n + ν) × (n + ν) embedded in the γ5 =
diag(1n,−1n+ν )-Hermitian matrices, i.e., P† = γ5Pγ5. The
invariance group of these pseudo-Hermitian matrices is de-
termined by the map P → GPγ5G†γ5 with G ∈ Gl(N,C) and
its maximally compact subgroup is the unitary group U(N ).
Thence, the matrix U is unitary and V = γ5Uγ5 and Û =
diag(U,U ∗, γ5Uγ5, γ5U ∗γ5). In this case, the limit z → ∞
leads to a block-diagonal form of U = γ5Uγ5.

The derivation of the large N limit follows closely the one
for the Hermitian case, see Ref. [20]. The normalized Haar
measure dμ(Û ) for Û over the compact group K can be
expressed in terms of a Dirac δ function in the matrix group
G ⊃ K which keeps the non-Hermitian matrices invariant,
i.e., ∫

K
f (Û )dμ(Û ) =

∫
G f (Û )δ(1N̂ − ÛÛ †)dÛ∫

G δ(1N̂ − ÛÛ †)dÛ
, (38)

for an arbitrary suitably integrable function f . As we have
seen in the three examples and can be readily checked in
general, the closure of these matrix groups are always vector
spaces, in particular some kind of embeddings of Cartesian
products of one of the three general linear groups. The Dirac
δ function may, however, be expressed as a Fourier–Laplace
transform on the Hermitian matrix space H = span(GG†) =
span{GG†|G ∈ G}, where span is the linear span, i.e.,

∫
K

f (Û )dμ(Û ) = lim
ε→0

∫
G dÛ

∫
H dQ̂ f (Û ) exp[εTr(1N̂ − iQ̂)2 + ξTr(1N̂ − ÛÛ †)(1N̂ − iQ̂)]∫

G dÛ
∫
H dQ̂ exp[εTr(1N̂ − iQ̂)2 + ξTr(1N̂ − ÛÛ †)(1N̂ − iQ̂)]

. (39)

The matrix Q̂ has the form diag(Q1, Q∗
1, Q2, Q∗

2 ) with Q1 and Q2 Hermitian matrices which may satisfy some relations if U
and V do. The auxiliary variable ε > 0 renders the integrals absolutely integrable and the parameter ξ > 0 will be chosen
appropriately when performing the saddle point analysis. The variable ξ is independent of ε but depends on N , z as well as the
chosen symmetry class as we will see later on.

The function f in the denominator is the deformation of the Haar measure ezTr[Û γ̂
(N )
5 Û †γ̂

(N )
5 ]/4 and in the numerator we have

additionally the Dirac δ function,

δ
(
Ŝ′

3 − κÛ2Ŝγ̂
(N )

5 Û †
2 γ̂

(ν)
5

) = lim
ε→0

∫
M dH exp

[−εTr
(
Ĥ γ̂

(ν)
5

)2 + iTrĤ
(
Ŝ′

3 − κÛ2Ŝγ̂
(N )

5 Û †
2 γ̂

(ν)
5

)]∫
M dS′

3

∫
M dH exp

[−Tr
(
Ĥ γ̂

(ν)
5

)2 + iTrĤ Ŝ′
3

] , (40)

with κ > 0 again a parameter that has to be appropriately chosen. The matrix Ĥ depends on H like Ĥ = diag(H, H∗, H†, HT )
and the same holds for Ŝ′

3 and S′
3. Already in the first model we have seen that it is proportional to N/

√
TrSS† which is also true

here. The matrix space M is one of the symmetric non-Hermitian matrix spaces given in Magnea’s work [32] (note that with
the embedding all classes have pseudo-Hermiticity). We would like to point out that we need the matrix γ̂

( j)
5 in two different

dimensions, see Eq. (35), namely, j = N for the symmetry of S and j = ν for the projected subspace of the broadened zero
modes.

We write U2 = �2U with �2 the projection onto the last ν rows and denote the embedded matrices by Û2, �̂2, and Û .
Plugging Eq. (40) into Eq. (39), the integral over Û becomes Gaussian. As already mentioned, Û might be in one of the three
number fields as well as have a block-diagonal structure that certainly contains U and U ∗ but never U T or U † (this follows from
the group multiplication property) as we know from the embedding. Thus, Û ∈ G can be understood as a very large real vector
whose real entries may appear multiple times. The multiplicity can only be 1,2,4,8 when restricting P = αUSV † to one of the
standard non-Hermitian symmetry classes [31,32].
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Let dG be the dimension of G. Then, we have the following Gaussian integral∫
G dÛ exp

[
z
4 Tr

[
Û γ̂

(N )
5 Û †γ̂

(N )
5

] − iκTrĤ�̂2Û Ŝγ̂
(N )

5 Û †�̂
†
2γ̂

(ν)
5 − ξTrÛÛ †(1N̂ − iQ̂)

]∫
G dÛ

∫
H dQ̂ exp

[
z
4 Tr

[
Û γ̂

(N )
5 Û †γ̂

(N )
5

] + εTr(1N̂ − iQ̂)2 + ξTr(1N̂ − ÛÛ †)(1N̂ − iQ̂)
]

=
det−dG/(2N̂2 )

[
1N̂ ⊗ (1N̂ − iQ̂) + i κ

ξ
�̂

†
2γ̂

(ν)
5 Ĥ�̂2 ⊗ Ŝγ̂

(N )
5 − z

4ξ
γ̂

(N )
5 ⊗ γ̂

(N )
5

]∫
H dQ̂ det−dG/(4N̂ )

[
(1N̂ − iQ̂)2 − z2

16ξ 2 1N̂

]
exp[εTr(1N̂ − iQ̂)2 + ξTr(1N̂ − iQ̂)]

. (41)

We exploited here that half of the eigenvalues of γ̂
(N )

5 are +1 and the other half is −1.
The saddle point analysis of the Q̂ integral for large N is dominated by the Lagrangian

L(Q̂) = ξTr(1N̂ − iQ̂) − dG
4N̂

Tr ln

[
(1N̂ − iQ̂)2 − z2

16ξ 2
1N̂

]
. (42)

The ε dependent term is tiny because ε will be sent to 0. Moreover, we can read off the scaling of ξ which has to be linear in
N . We note that dG = O(N2). Due to the singularity of the integrand at (1N̂ − iQ̂)2 = z2/(16ξ 2) preventing us from shifting the
contour to other saddle points, we have a unique solution at

1N̂ − iQ̂0 =
dG +

√
d2
G + z2N̂2

4N̂ξ
1N̂ = q1N̂ . (43)

When expanding the integrand in Q̂ = Q̂0 + δQ̂/
√

N , the integral over the massive modes δQ̂ becomes a Gaussian and can be
carried out. When choosing κ appropriately as we will do soon, the remaining determinant in the numerator will not change this
saddle point approximation. We are left with

p(S′
3) = lim

ε→0

∫
M dH exp

[−εTr
(
Ĥ γ̂

(ν)
5

)2 + iTrĤ Ŝ′
3 + L̃(H )

]∫
M dS′

3

∫
M dH exp

[−Tr
(
Ĥ γ̂

(ν)
5

)2 + iTrĤ Ŝ′
3

] , (44)

with

L̃(H ) = − dG
2N̂2

Tr ln

[
q1N̂2 + i

κ

ξ
�̂

†
2γ̂

(ν)
5 Ĥ�̂2 ⊗ Ŝγ̂

(N )
5 − z

4ξ
γ̂

(N )
5 ⊗ γ̂

(N )
5

]
+ dG

4
ln

(
q2 − z2

16ξ 2

)

= − dG
2N̂2

Tr ln

[
1N̂2 + i

4κ

16ξ 2q2 − z2
�̂

†
2γ̂

(ν)
5 Ĥ�̂2 ⊗ Ŝγ̂

(N )
5

(
4ξq1N̂2 − zγ̂ (N )

5 ⊗ γ̂
(N )

5

)]
. (45)

When choosing κ of the order O(1/
√

TrSS†), we can expand the logarithm in Ŝ. The first term vanishes exactly because TrŜ =
4ReTrS = 0 and TrŜγ̂

(N )
5 = 0. The higher-order terms asymptotically vanish in the large N limit because of the estimate∣∣∣∣∣Tr

[
Ŝ
(
c11N̂ + c2γ̂

(N )
5

)] j

(TrSS†) j/2

∣∣∣∣∣ � 4(|c1| + |c2|) j

( ‖S‖op√
TrSS†

) j−2

= 4(|c1| + |c2|) j (q(N ) )2− j N→∞→ 0, (46)

with two constants c1 and c2 of order one or smaller, as it is the case for us. For the limit we exploited the assumption (31).
Summarizing the Lagrangian L̃(H ) asymptotes to the quadratic term

L̃(H )
N
1≈ − 4dGκ2

N̂2(16ξ 2q2 − z2)2

[
16ξ 2q2Tr

(
γ̂

(ν)
5 Ĥ

)2
Tr

(
Ŝγ̂

(N )
5

)2 + z2TrĤ2 TrŜ2]. (47)

The mixed term vanishes because TrŜ2γ̂
(N )

5 = 0, and we have employed �̂2γ̂
(N )

5 �̂
†
2 = γ̂

(ν)
5 . Since we now have a integration-

guaranteeing term we can perform the limit ε → 0, exactly. Hence, we end up with the distribution

p(S′
3) =

∫
M dH exp[iTrĤ Ŝ′

3 + L̃(H )]∫
M dS′

3

∫
M dH exp

[ − Tr
(
Ĥ γ̂

(ν)
5

)2 + iTrĤ Ŝ′
3

] = exp
[ − ãTr

(
γ̂

(ν)
5 Ŝ′

3

)2 + b̃Tr(Ŝ′
3)2

]∫
M dS′

3 exp
[ − ãTr

(
γ̂

(ν)
5 Ŝ′

3

)2 + b̃Tr(Ŝ′
3)2

] , (48)

with

ã = N̂2((4ξq)2 − z2)2

16dGκ2

(4ξq)2Tr
(
Ŝγ̂

(N )
5

)2

(4ξq)4
(
Tr

(
Ŝγ̂

(N )
5

)2)2 − z4(TrŜ2)2
, b̃ = N̂2((4ξq)2 − z2)2

16dGκ2

z2TrŜ2

(4ξq)4
(
Tr

(
Ŝγ̂

(N )
5

)2)2 − z4(TrŜ2)2
. (49)
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FIG. 1. The eigenvalue distribution of the chiral ensemble. Shown are the distributions of the smallest eigenvalues in a narrow bin either
along the real or the imaginary axis. In the first case (left) the perturbation is of equal magnitude in the real and imaginary direction, αR =
αI = 0.01, while in the second case (right) the perturbations are of different magnitude, αR = 0.015 and αI = 0.01. In both figures the matrix
dimension is N = 2n + ν with n = 40 and the number of zero modes is ν = 3. The numerical points are obtained from an ensemble of 106

matrices. The eigenvalue density in the neighbourhood of the real and the imaginary axis follow the parameter free theoretical prediction given
by the circular and the elliptic Ginibre ensemble, respectively.

To find the second line, we have shifted as follows:

Ĥ → Ĥ + 2iãγ̂
(ν)

5 Ŝ′
3γ̂

(ν)
5 − 2ib̃Ŝ′

3, (50)

in the integrand in the denominator, which canceled the cou-
pling term between Ĥ and Ŝ′

3.
To bring the result (48) into the well-known form of an

elliptic Ginibre ensemble [36], we define the ellipticity

τ = z2TrŜ2

(4ξq)2Tr
(
Ŝγ̂

(N )
5

)2

= 16N2z2(
dG +

√
d2
G + 16N2z2

)2

Re[TrS2]

TrSS†
∈] − 1, 1[ (51)

and fix the width of the ensemble

κ2 = N̂2[(4ξq)2 − z2]2

4dG (4ξq)2Tr
(
Ŝγ̂

(N )
5

)2 = dG
TrSS†

. (52)

Then, the distribution simplifies to

p(S′
3) = exp

[− 1
1−τ 2 TrS′

3S′
3

† + τ
1−τ 2 Re

[
Tr S′

3
2]]∫

M dS′
3 exp

[− 1
1−τ 2 TrS′

3S′
3

† + τ
1−τ 2 Re

[
Tr S′

3
2]] .

(53)

We would again like to emphasize that this formula holds for
all non-Hermitian symmetry classes. The subtle differences
are encoded in the specific structure of S′

3. In all cases the
distribution again has the form of a matrix-valued central limit
theorem.

In the perturbation Pc we can reintroduce the width κ and
the complex phase eiϕ as well as the coupling constant α so
that we finally arrive at the limiting perturbation Pc = αeiϕκS′

3
where S′

3 is distributed along Eq. (53). The ellipticity vanishes
when z or Re[TrS2] does, while the spectrum becomes quasi-

one-dimensional when τ → ±1, this means we need both
|z| → ∞ and that Re[TrS2] = ±TrSS†. The latter is only
achieved when S is almost Hermitian or anti-Hermitian in the
large N limit otherwise the ensemble only tends to an elliptic
Ginibre ensemble with a fixed eccentricity.

The spectral density of Eq. (53) for the case of M =
Gl(N,C) can be found in Eq. (6).

V. NUMERICAL ANALYSIS

Below we verify numerically that in the neighborhood of
the real and imaginary axis of the eigenvalue density of the
broadened zero modes follow the form given by the elliptic
Ginibre ensemble. We begin with the chiral ensemble,

K (N ) =
(

0 M
M† 0

)
+ αRURSRU †

R + iαIUI SIU
†
I . (54)

In this case, the distribution of the smallest eigenvalues is
compared to the one-point correlation function (6) with the
factor τ determined by the standard deviations found in
Sec. IV.

The average is performed over the unitary matrices UR and
UI . The Hermitian matrices, SR and SI , are kept fixed (the i.i.d.
elements drawn from a normal distribution and the matrices
are then diagonalized). The matrix M is generically complex
and of dimension (n + ν) × n, such that the full initial matrix
is of dimension N = 2n + ν. The perturbation matrices are
complex too, and have no further symmetries.

Figure 1 shows the results for n = 40, ν = 3 and an en-
semble of size 106. Shown is the smallest eigenvalues in a
narrow bin along the real and imaginary axis. Left panel shows
the symmetric case αR = αI = 0.01 while the right panel
shows αR = 0.015 and αI = 0.01. Also shown along with the
numerical points are the parameter free analytic predictions
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FIG. 2. The eigenvalue distribution of the Majorana ensemble. As for the chiral ensemble we plot the smallest eigenvalues in a narrow bin
close to respectively the real (left) or the imaginary (right) axis. In both figures the numerical results are for matrix dimension N = 4n + 2ν

with n = 20 and ν = 1 and ensemble size 105. The perturbation is of equal magnitude in the real and imaginary direction, αR = αI = 0.001.

and we observe complete agreement. Note that in this case the
factorization of the characteristic equation, which ensures the
application of leading-order perturbation theory, is realized
even though the smallest bulk eigenvalues of the unperturbed
operator are on the order of 1/n.

The second ensemble considered is the Majorana ensem-
ble,

K (N ) =
(

iM 0
0 −iM

)
+ αROR

(
0 iWR

−iW T
R 0

)
OT

R

+ iαI OI

(
0 iWI

−iW T
I 0

)
OT

I ,

M = −MT , (55)

where, again, the only average performed is over the or-
thogonal transformations OR and OI . The elements of the
matrices M and W are drawn only once as i.i.d. from a

uniform distribution on the interval [−1, 1] and are then kept
fixed. M and W are real and of dimension 2n + ν, and M is
antisymmetric. In Fig. 2 the broadening of the zero modes
are compared to Gaussian distributions, see Eq. (12), in both
the real and imaginary direction. Again complete agreement
is found with the parameter free prediction.

VI. BOUNDS AND GENERALIZATIONS

It is natural to ask the question how universal the result (29)
is. The main possible generalization is either a deformation of
the Haar measure of Û or restricting to a subset of the original
group. Both kinds of deformations can be implemented by
a distribution g(Û ), in particular we consider the measure
g(Û )dμ̃(Û ) instead of the measure (37). The impact of this
deformation in the calculation appears when we want to
integrate over the Gaussian; see Eq. (41). This integral has
now g(Û ) as a prefactor,

ĝ

(
1N̂ ⊗ (1N̂ − iQ̂) + i

κ

ξ
�̂

†
2γ̂

(ν)
5 H�̂2 ⊗ Ŝγ̂

(N )
5 − z

4ξ
γ̂

(N )
5 ⊗ γ̂

(N )
5

)

=
∫
G dÛg(Û ) exp

[
z
4 Tr

[
Û γ̂

(N )
5 Û †γ̂

(N )
5

] − iκTrH�̂2Û Ŝγ̂
(N )

5 Û †�̂
†
2γ̂

(ν)
5 − ξTrÛÛ †(1N̂ − iQ̂)

]∫
G dÛ exp[−ξTrÛÛ †]

. (56)

We can still exploit the factorization

ĝ

(
1N̂ ⊗ (1N̂ − iQ̂) + i

κ

ξ
�̂

†
2γ̂

(ν)
5 H�̂2 ⊗ Ŝγ̂

(N )
5 − z

4ξ
γ̂

(N )
5 ⊗ γ̂

(N )
5

)

= det−dG/(4N̂ )

[
(1N̂ − iQ̂)2 − z2

16ξ 2
1N̂

]
ĝ

(
1N̂2 + i

κ

ξ
�̂

†
2γ̂

(ν)
5 H�̂2 ⊗ Ŝγ̂

(N )
5

[
1N̂ ⊗ (1N̂ − iQ̂) − z

4ξ
γ̂

(N )
5 ⊗ γ̂

(N )
5

]−1
)

. (57)

This result can be achieved by rescaling Û as follows:

Ûkl →
N̂∑

k′,l ′=1

Ûk′l ′

{(
1N̂ ⊗ (1N̂ − iQ̂) − z

4ξ
γ̂

(N )
5 ⊗ γ̂

(N )
5

)−1/2
}

k′k,l ′l

. (58)
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In Eq. (57), we see a sufficient condition for not influencing
the result apart from a rescaling of the width κ . We need to
assume that the transform ĝ of the function g(Û ) remains finite
and differentiable in the vicinity of the identity matrix 1N̂2 .
The dependence on N can be weak as it is in the case for
the determinant in our computation above. Then, the Taylor
expansion of ln(ĝ) about 1N̂2 can be carried out up to the
second order. The N-dependence of higher order coefficients
should not interfere with the behavior of the ratio 1/q(N ) → 0,
see Eq. (31), so that those terms still vanish in this limit. As
a by-product of this calculation, we can read off the rescaling
of the width κ which is the factor 1/

√
ĝ(1N̂2 ).

Though the discussion above has been only for the second
model (3), a similar analysis can be expected for the first
model (2), as well. As already mentioned, both computations
follow along the same steps.

VII. CONCLUSION

The remarkable fact that perturbed zero modes distribute
themselves according to finite-size Gaussian random matrix
theory has been shown to apply also for non-Hermitian
perturbations. In the non-Hermitian case, the distribution of
the perturbed zero modes follows the one point function of
the elliptic Ginibre ensemble. At first, it may appear highly
surprising that finite-size Gaussian random matrix theory
can provide universal distributions for would-be zero modes.
Usually random matrix theory only yields universal results for
infinite-size matrices and the Gaussian in the weight can be
replaced by some other weight without altering the universal
distribution as long as the support of the eigenvalue density
is still a single cut. For the perturbed zero modes, however,

the Gaussian weight in the universal distribution can not be
changed. As shown, the Gaussian form results from a matrix
version of the central limit theorem which applies to the finite-
size perturbation matrix as the size of the full Hamilton goes
to infinity. We have derived explicit bounds where the results
are applicable. In physical terms, the bounds correspond to
the regime where first-order degenerate perturbation theory
dominates.

As physical examples, we have shown that the broadened
zero modes of both a chiral matrix, with the same symmetry
properties as the Dirac operator of QCD, and of a matrix
modeling topological superconductors with Majorana parti-
cles, follow an elliptic Ginibre ensemble, when perturbed by
a non-Hermitian perturbation.

We have demonstrated the universality of the results by
considering two different forms of the non-Hermitian per-
turbation, both leading to the same universal form for the
perturbed zero modes. Furthermore we have discussed the
stability of the results when restricting the manifold over
which the average is performed. It would be most interesting
to generalize these universality considerations.
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