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We study the sandpile model on three-dimensional spanning Ising clusters with the temperature T treated
as the control parameter. By analyzing the three-dimensional avalanches and their two-dimensional projections
(which show scale-invariant behavior for all temperatures), we uncover two universality classes with different
exponents (an ordinary BTW class, and SOCT =∞), along with a tricritical point (at Tc, the critical temperature of
the host) between them. The transition between these two criticalities is induced by the transition in the support.
The SOCT =∞ universality class is characterized by the exponent of the avalanche size distribution τ T =∞ =
1.27 ± 0.03, consistent with the exponent of the size distribution of the Barkhausen avalanches in amorphous
ferromagnets Durin and Zapperi [Phys. Rev. Lett. 84, 4705 (2000)]. The tricritical point is characterized by its
own critical exponents. In addition to the avalanche exponents, some other quantities like the average height,
the spanning avalanche probability (SAP), and the average coordination number of the Ising clusters change
significantly the behavior at this point, and also exhibit power-law behavior in terms of ε ≡ T −Tc

Tc
, defining further

critical exponents. Importantly, the finite-size analysis for the activity (number of topplings) per site shows the
scaling behavior with exponents β = 0.19 ± 0.02 and ν = 0.75 ± 0.05. A similar behavior is also seen for the
SAP and the average avalanche height. The fractal dimension of the external perimeter of the two-dimensional
projections of avalanches is shown to be robust against T with the numerical value Df = 1.25 ± 0.01.

DOI: 10.1103/PhysRevE.101.032116

I. INTRODUCTION

In the context of out-of-equilibrium critical phenomena,
self-organized critical (SOC) systems have attracted much
attention because of their role in a wide range of systems,
from finance [1] and biological [2] to granular matter [3], the
brain [4], and neural networks in general [5]. SOC systems
are characterized by their avalanche dynamics resulting from
slow driving of the system. Vortex avalanche dynamics in
type-II superconductors [6], earthquakes [7], solar flares [8],
microfracturing processes [9], fluid flow in porous media
[10], phase transitionlike behavior of the magnetosphere [11],
bursts in filters [12], phase transitions in jammed granular
matter [3], and avalanch dynamics in the rat cortex [13] are
some natural examples for SOC. This large class of natural
systems inspired theoretical models with the aim of capturing
the dominant internal dynamics that causes the avalanches.

Here we find evidence for a new nonequilibrium uni-
versality class that is reached by changing the geometry of
the underlying graph upon which the model is defined, and
analyze the transition point between SOC models. It might
be applicable to experiments with spatial flow patterns of
transport in heterogeneous porous media [14], which involve
the toppling of fluid [15]. Another example is the Barkhausen
effect in magnetic systems [16], for which the avalanches have
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been shown to exhibit scaling behavior with an avalanche
size exponent 1.27 ± 0.03 in amorphous ferromagnets (which
constitutes a disordered medium) [17,18]. From a theoretical
perspective there is also an interest in critical phenomena on
random geometries [19].

II. THE MODEL

We implement the dynamics of the Bak-Tang-Wiesenfeld
model (BTW) [20], also known as the Abelian sandpile
model, on a diluted cubic lattice. This lattice comprises sites
that are either active (through which sand grains can pass)
or inactive (completely impermeable to sand grains), which
are labeled by the quenched variable s (called spin) that is
+1 for the active case, and −1 for the inactive one. We
use the Ising model at finite temperatures (T ) to obtain the
spin configuration, which is expressed by the Hamiltonian
H = −J

∑
<i, j> sis j , where si is the spin on site i, J > 0 the

ferromagnetic coupling constant, and 〈i, j〉 means that i and
j are nearest neighbors. The three-dimensional (3D) Ising
model undergoes a magnetic phase transition at T = Tc ≈
4.51 for the cubic lattice [26]. Since there is at least one
spanning spin cluster at any temperature (two sites belong
to the same cluster if they are nearest neighbors and have
the same spin) of the 3D Ising model on the cubic lattice,
no percolation transition takes place at Tc. This can be un-
derstood by noting that the critical site percolation threshold
for the cubic lattice is around 0.32 < 0.5 (= occupancy
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FIG. 1. (a) The data collapse of the average magnetization ML (ε) in terms of ε ≡ T −Tc
Tc

with exponents βM = 0.34 ± 0.02 and νM =
0.63 ± 0.03. The bare graph (ML in terms of T ) is shown in the lower inset. (Top inset) | log M| in terms of log ε with the exponent βM .
(b) The average coordination number Z̄ (T ) in terms of T . It is seen that at T = Tc, Z̄ changes behavior in a power-law form with the exponents
βZ = 0.39 ± 0.04, νZ = 0.75 ± 0.05. (Top inset) The log-log plot of LβZ /νZ (Z̄ − Z̄∞) in terms of L1/νZ |ε|. (Lower inset) The log(Z̄ − Z̄∞) in
terms of log ε.

probability for T → ∞ of the Ising model). After construct-
ing an Ising configuration at a given temperature using Monte
Carlo, we implement the BTW dynamics on top of the span-
ning (majority) spin cluster (SSC), i.e., a cluster compris-
ing spins with the same orientation connecting two opposite
boundaries of the lattice. Free boundary conditions are im-
posed in all directions. In the BTW dynamics, we consider
on each site i a height hi (the number of sand grains) taking
initially randomly (independently and uncorrelated) with the
same probability one integer from {1, ..., Zi}, in which Zi is
the number of active neighbors of the ith site. Then we add
a sand grain at a random site i, so that hi → hi + 1. If this
site becomes unstable (hi > Zi), then a toppling process starts,
during which h j → h j − �i, j , where �i, j = −1 if i and j are
neighbors, �i, j = Zi if i = j, and is zero otherwise. After a
site topples, it may cause some neighbors to become unstable
and topple, and so on, continuing until no site is unstable
anymore. Then another random site is chosen and so on. The
average height grows with time, until it reaches a stationary
state after which the number of grains that leave the system
through the boundary is statistically equal to the number of
added ones. The dynamics can be implemented with either
sequential or parallel updating. Criticality of the 3D systems
is also manifest in two-dimensional (2D) observables, which
enables us to apply 2D techniques like critical loop ensemble
theory [21–24]. Here we consider 3D avalanches, as well as
their 2D projections on the horizontal plane.

III. RESULTS

Before analyzing the avalanches, it is worth discussing the
magnetic phase transition of the 3D Ising model at T = Tc

which is estimated to be 0.451(3) consistent with the previous
studies [26]. The finite-size scaling (FSS) analysis of the
magnetization per spin (M) is presented in Fig. 1 showing that

it fulfills the relation ML(ε) = L− βM
νM GM (εL

1
νM ) where βM =

0.34 ± 0.01, νM = 0.63 ± 0.03, and GM is a universal func-
tion, consistent with previous studies; see Ref. [25]. There-
fore a similar behavior change takes place for the fractional
number of sites in the majority-spin cluster [= 1

2 (1 + M(T ))].
Although the Ising model does not undergo a percolation
transition at Tc, the average coordination number Z̄ of the
majority spin cluster dramatically changes behavior at Tc.
From Fig. 1(b) we observe that Z̄ − Z̄∞ decays as a power
law with ε, where Z̄∞ is the average coordination number in
the T → ∞ limit. It similarly fulfills the FSS hypothesis, i.e.,
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FIG. 2. (a) The average height h̄(T, L) in terms of T for various
lattice sizes L. It exhibits power-law behavior around Tc as shown in
the lower inset: |h̄(T ) − h̄(Tc )| ∝ |T − Tc|σh̄ with an exponent σh̄ =
0.44 ± 0.03 for L = 200. (Top inset) The height fluctuation Var[h̄] ≡
〈h̄2〉 − 〈h̄〉2

showing a peak at Tc.
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0.19 ± 0.02 and ν = 0.75 ± 0.05. (Lower inset) χ (T ) ≡ ∂ζ/∂T in
terms of T , showing a peak at Tc.

Z̄ (T ) − Z̄∞ = L− βZ
νZ GZ (εL

1
νZ ) with βZ = 0.39 ± 0.04, νZ =

1.0 ± 0.05, where GZ is a universal function. These FSS be-
haviors are the fingerprint of the second-order phase transition
at T = Tc.

Our model undergoes a phase transition at T = Tc sepa-
rating two different SOC phases, which is induced by the
change of the geometry of the support. As the temperature
increases, the average height h̄(T ) undergoes a substantial
change as shown in Fig. 2. Close and below Tc it exhibits a
power-law decay h̄(T ) − h̄(Tc) ∝ |T − Tc|σh̄ with an exponent
σh = 0.44 ± 0.03, whereas above this temperature we observe
a gentle slow-varying function of T . All graphs (for various
system sizes L) cross each other right at T = Tc, at which a
pronounced peak arises for the variance of h̄, i.e., Var[h̄] ≡
〈h̄2〉 − 〈h̄〉2

.
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r3
(L → ∞) =

1.86 ± 0.03. (Lower inset) The same finite-size extrapolation of τr3

for all temperatures. The exponent undergoes a clear jump at Tc.

Contrary to fixed energy sandpiles, in which h̄ acts as a
tuning parameter [27], in our model the system organizes
itself in a critical state, experiencing additional dominant
fluctuations (for, e.g., h̄, see Fig. 2) at the transition point. To
characterize more precisely the two SOC phases, we analyze
the average number of topplings per site (toppling density)
in avalanches. We may define as the order parameter ζ (T ) ≡
fperc − f (T ), where f (T ) = m(T )

N (T ) , m(T ) being the number of
topplings, N (T ) the number of sites in the SSC, and fperc ≡
f (T = ∞). Figure 3 reveals that ζ (T ) is approximately zero
(is a weak function of T ) for T > Tc, and starts to grow
continuously in a power-law fashion when T is decreased
below Tc signaling a phase transition at T = Tc, at which
χ (T ) ≡ ∂ζ

∂T shows a distinct peak. It is notable that ζ is not
precisely zero at T > Tc, and has some fluctuations around
zero. However, these fluctuations diminish as the temperature
raises. The FSS relation for ζ is ζL(T ) = L−β/νGζ (εL1/ν ) (see
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(Inset) Distribution of r3 before collapse. The dashed line shows a fit
with the slope τr3 = 1.83 ± 0.04.
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upper inset of Fig. 3) in which ε ≡ T −Tc
Tc

, Gζ (x) is a scaling
function with Gζ (x)|x→∞ → xβ , and β = 0.19 ± 0.02 and
ν = 0.75 ± 0.05 are the resulting critical exponents. The case
T → ∞ corresponds to a site percolation cluster with occupa-
tion probability p = 1

2 . For T > Tc we will therefore call this
phase SOCp= 1

2
. The behavior in the T < Tc region, however,

is dominated by T = 0, i.e., the regular lattice, and therefore
we call this phase BTW. The transition between these phases
is driven by the connectivity inside the cluster. It becomes
clear if we note that Z̄ changes character at Tc (Fig. 1(b)). The
most direct effect of the strong variation of the local coordina-
tion number at Tc is the change in the range of avalanches.
Let us consider the spanning avalanche probability (SAP),
which is the ratio of the number of spanning avalanches (the
avalanches that connect two opposite boundaries) to the total
number of avalanches, i.e., the probability that an avalanche
percolates. This function is a convex monotonic function of
T in the T < Tc phase and a slow-varying function at high
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FIG. 9. The data collapse for hL (T ) − hL (∞) in terms of ε. The
exponents are βh = 0.2 ± 0.02 and νh = 2.0 ± 0.1.

temperatures (T > Tc) (Fig. 4). It shows a sharp peak at
T = Tc. We have found that SAP extrapolates to zero for
all temperatures, faster for T < Tc than for T > Tc. In the
upper inset of Fig. 4 we show this function for three cases:
T = 4.15 < Tc, T = Tc, and T = 4.80 > Tc which reveal a
power-law decay for all the cases. The increase in SAP when
diluting the system is to be expected, since reducing the active
channels through which the sand grains can pass increases the
range of the corresponding avalanches [28]. However, this is
not true in the vicinity of Tc in which case SAP decreases.
This is reminiscent of the subdiffusive dynamics of random
walkers (sand grains here) on the critical percolation cluster
[29]. Also the fact that the paths along which the avalanche
topples become more tortuous with T (and there are less
paths) has a competing effect, and can result in the decrease
of the spanning range. Also since the coordination number is
reduced, the local firings are less powerful for increasing T . In
the vicinity of Tc, SAP exhibits a power-law behavior in terms
of T , although it always exhibits power-law behavior in terms
of L. The corresponding exponent σS is shown in the lower
inset of Fig. 4 which is defined by |SAP(T ) − SAP(Tc)| ∼

FIG. 8. (a) A three-dimensional (3D) BTW sample, and (b) its two-dimensional (2D) projection on the X -Y plane (Z = 0). (c) External
perimeter of 2D shadow.
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FIG. 10. (a) The log-log plot of the distribution function of the gyration radius for L = 200. The temperature dependence of (b) γr2,m2 ,
(c) τr , (d) τm3 , (e) τm2 , and (f) τl . The corresponding exponents, along with finite-size analysis are shown in the insets.

|T − Tc|σS for T < Tc. It is shown that σS = 0.33 ± 0.03 for
L = 200.

The two phases (ordinary BTW, and SOC 1
2
) and the transi-

tion point (SOCTc ) can also be characterized in terms of geo-
metrical quantities. For 3D avalanches, we have m3 (the mass),
r3 (the gyration radius), and m2 (the number of sites in the
surface of 3D avalanches); for 2D projections of avalanches,
we have r (the gyration radius) and l (the total length of the

external perimeter). For these quantities we study two types of
exponents: the exponent of the distribution function P(x), i.e.,
τx in P(x) ∝ x−τx , and γxy in y ∝ xγyx (x, y = m3, r3, m2, r, and
l). At the transition point all of these exponents show a sharp
change (Fig. 10 in Appendix). For example, τr3 in the lower
inset of Fig. 5 abruptly changes its value from BTW to SOC 1

2

at T = Tc, its value being completely different for T < Tc and
T > Tc. It is steplike in the limit L → ∞ which is obtained
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by linear extrapolation in terms of 1/L. We observed that
for all temperatures T < Tc, τr3 extrapolates to 1.94 ± 0.04,
and for T > Tc it is 1.76 ± 0.04. At T = Tc, this exponent is
1.86 ± 0.03 which is different from both values.

To be more precise we used also the data collapse tech-
nique. Figure 6 shows that the distribution function for r3 (and
all other quantities that are analyzed here) fulfills a finite-size
scaling relation, i.e., p(x) = L−βx G(xL−νx ) in which βx and
νx are critical exponents and τx = βx/νx that can be used as
a check for consistency. Also note that the cutoff of power-
law behavior for the gyration radius (which is commonly
considered as the correlation length in sandpile models) as
well as the cutoff for the other observables do not practically
change with T (see Fig. 10(a) in Appendix for details). The
exponents for r3 and m3 for two universality classes (T = 0
and T = ∞) and the transition point T = Tc, along with the
exponents of m2, r, l at T = Tc are gathered in Table I (for a
complete set of exponents see Tables I and II in Appendix).
We have observed that for T < Tc all the exponents are within
the error bars equal to the exponents in the T = 0 system,
whereas for T > Tc they are consistent with T = ∞. Most
of the exponents are different for two universality classes,
and also some exponents for the transition point T = Tc

are different from both of them. We note that the size and
mass exponent (τ T =∞

m3
= 1.27 ± 0.03) in SOC 1

2
is consistent

with the exponent of size distribution of the Barkhausen
avalanches in amorphous ferromagnets [17,18], which has
become important due to its considerable connections with
disordered systems and nonequilibrium critical phenomena.
Although some authors relate it to the depinning transition
[30,31], and some others propose a critical point tuned by
the disorder in the framework of disordered spin models [32],
the exact nature of the critical behavior is still debated. Our
observation (the similarity between the dynamics of flexible
magnetic domain walls in random media, i.e., Barkhausen
avalanches and the avalanches of our model) adds the BTW-
like avalanches on a diluted lattice to the list of possibilities.
This has root in the fact that the maximum pinning force
per unit vortex length f max

p (the defects being realized by 3D
percolation) play the role of the threshold for sandpiles above
which the particles (vortices) move isotropically toward the
neighboring defect site to be pinned, that is reminiscent of the
BTW model considered here. Note also that τr3 (T = 0) was
conjectured to be 2 in Ref. [33], and also τm3 (T = 0) = 4

3 ,
which are consistent with the values reported in Table I.

An interesting observation is that the fractal dimension of
the avalanche projections (D f defined by 〈ln l〉 = D f 〈ln r〉)
is 1.25 ± 0.01, consistent with the ordinary 2D BTW model
(Fig. 7), and within error bars robust against a change in T . A
similar phenomenon has been observed in a yet unpublished
work in which the fractal dimension of the shadows of clouds
(which show some strong similarities with SOC systems) is
1.25 and is quite robust against the environmental conditions,
e.g., temperature.

IV. CONCLUSION

Summarizing, we have found a geometry-induced phase
transition between two different SOC universality classes at
the critical temperature of the Ising model. While at low tem-

TABLE I. The critical exponents β, ν, τ , and σ of r3, m3, r, l , and
m2 for two universality classes (T = 0 and T = ∞) and the transition
point T = Tc. β and ν have been calculated using the data collapse
method, and τ is the linear extrapolation for L → ∞.

Quantity r3 m3 r l m2

β(T = 0) 1.95(5) 3.71(5) 2.05(5) 2.15(5) 3.85(5)
β(T = Tc ) 1.86(3) 3.6(1) 1.83(3) 1.96(2) 3.70(5)
β(T = ∞) 1.70(5) 3.5(1) 1.80(5) 1.95(3) 3.70(5)
ν(T = 0) 1.00(3) 2.74(5) 0.98(3) 1.23(3) 2.75(5)
ν(T = Tc ) 1.00(3) 2.80(5) 1.00(3) 1.20(2) 2.75(5)
ν(T = ∞) 0.96(4) 2.75(5) 1.05(5) 1.20(2) 2.73(5)
τ (T = 0) 1.94(4) 1.32(4) 2.00(5) 1.79(3) 1.38(3)
τ (T = Tc ) 1.86(3) 1.28(2) 1.77(3) 1.62(2) 1.30(2)
τ (T = ∞) 1.76(4) 1.27(3) 1.75(3) 1.60(3) 1.30(3)
σ 0.38(4) 0.48(3) 0.52(5) 0.31(5) 0.36(3)

peratures the model has ordinary BTW exponents τ = 1.34 ±
0.04 for the avalanche size distribution, at Tc and above τ =
1.27 ± 0.03. This exponent has been experimentally observed
for the size distribution of the Barkhausen avalanches in
amorphous ferromagnets [17,18], proposing that SOC 1

2
is a

candidate for the universal aspects of Barkhausen noise in
magnetic materials.

APPENDIX: OTHER STATISTICAL OBSERVABLES

As stated in the paper, we simulate the 3D as well as 2D
BTW avalanches on top of the Ising clusters. A sample of
the present model (BTW on the cubic Ising lattice) is shown
in Fig. 8(a), whose projection is shown in Fig. 8(b). Also
the external perimeter of this sample is shown in Fig. 8(c).
An important quantity that changes at this transition point is
the average number of toppings per (active) site (the order
parameter). The behavior change of the other statistical ob-
servables is also interesting at this point. In Fig. 2 the average
height h̄ is shown in terms of the host temperature T , whose
changes in behavior is evident at T = Tc, with a sharp peak
at this temperature. Also h̄(T ) − h̄(Tc) ∝ |T − Tc|σh̄ , showing
power-law behavior around Tc. The data collapse result for h
is shown in Fig. 9.

We saw that the observables change their behavior at the
transition point. An important question then arises concerning
the extent of the power-law behaviors in the phase transi-
tions. For conventional phase transitions, the extent of the
power-law region reduces as we get away from the critical
point. For example, for the Ising model in the vicinity of

TABLE II. The fractal dimensions γm3r3 and γlr for two univer-
sality classes, and T = Tc. The last row is the σ exponent for the two
fractal dimensions.

Quantity γm3r3 Df ≡ γlr

T = 0 2.96(3) 1.25(1)
T = Tc 2.88(3) 1.25(1)
T = ∞ 2.84(3) 1.25(1)
σ γm3r3 Df ≡ γlr
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FIG. 11. Data collapse for distribution function of (a) r and (b) l at T = Tc.

the critical temperature, this extent reduces with a power
of |T − Tc| for all observables. In Fig. 10(a) we show the
log-log plot of the distribution function of the gyration radius
for L = 200. We have observed that rcut (the cutoff value of
r at which the distribution function falls off rapidly) does
not run considerably with T , in contrast to the conventional
second-order phase transitions. For example, for two extremes
(T = 0 and T = ∞) we know that the power-law behaviors
survive already known critical exponents.

We have also two type of exponents: the exponent of the
distribution function, i.e., τx in P(x) ∝ x−τx (in which x is
chosen from the above list of statistical quantities), and γxy

in y ∝ xγyx .
These quantities (γr2,m2 , τr3 , τr, τm3 , τm2 , and τl ) are plot-

ted against T in Fig. 10 for various lattice sizes. An ap-
parent change of behavior is seen at T = Tc, below which
the exponents are concave (decreasing) functions of T ,
and above which the exponents become (asymptotically)
constant. These functions are not analytic at T = Tc, i.e.,
have discontinuity in the first derivative. This discontinu-
ity becomes more significant for larger lattice sizes. Al-
though the exponents are steplike in the thermodynamic
limit L → ∞ (see Fig. 4 in the paper), for finite sizes
the exponents show power-law dependence with secondary
exponents. These behaviors (concavity for T > Tc, change
of behavior at Tc) have been observed for all other ex-

ponents defined above, and power-law behavior around Tc

for finite sizes. In each graph both the power-law behav-
ior [τx(T ) − τx(Tc) ∼ (Tc − T )σx ] of the exponent and the
finite-size dependence of the exponent at the critical point
are shown. The relevant critical exponents (obtained from
the power-law behaviors around T = Tc) are reported in the
graphs.

The other thing that we have analyzed are the critical
exponents at T = Tc, which helps to recognize the universality
class of the mentioned phase transition. It is done in Fig. 11
in which, using the data collapse technique we extracted the
relevant exponents. The analysis has been done for r3, r,
l , revealing that τr3 (Tc)L→∞ = 1.83(4), τr (Tc)L→∞ = 1.80(4)
and τl (Tc)L→∞ = 1.63(3). The exponents for each class (T =
0 and T = ∞), and also for T = Tc are presented in Table I.
It is notable that for T < Tc all exponents are more or less
consistent with the T = 0 universality class, whereas for T >

Tc they are consistent with the T = ∞ phase. Some exponents
of the transition point T = Tc are different from the ones in the
two universality classes.

Also the fractal dimension of the 2D projections is shown
to be 1.25 ± 0.01 consistent with the ordinary 2D BTW model
(Fig. 7). As stated in the paper, we see that this exponent is
robust against temperature T . The fractal dimensions (γm3r3

and γlr ≡ D f ) can be seen in Table II for T = 0, T = Tc, and
T = ∞.
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