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Scaling in the massive antiferromagnetic XXZ spin-1/2 chain near the isotropic point
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The scaling limit of the Heisenberg XXZ spin chain at zero magnetic field is studied in the gapped
antiferromagnetic phase. For a spin-chain ring having Nx sites, the universal Casimir scaling function, which
characterizes the leading finite-size correction term in the large-Nx expansion of the ground-state energy, is
calculated by numerical solution of the nonlinear integral equation of the convolution type. It is shown that the
same scaling function describes the temperature dependence of the free energy of the infinite XXZ chain at low
enough temperatures in the gapped scaling regime.
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I. INTRODUCTION

Integrable models of statistical mechanics and field theory
[1,2] provide us with a very important source of information
about the thermodynamic and dynamical properties of the
magnetically ordered systems. Of particular importance is any
progress in solutions of such models in the scaling region
near the continuous phase transition points, since, due to the
universality of critical fluctuations, it does not only yield the
exact and detailed information about the model itself but also
about the whole universality class it represents.

In this paper we address the universal finite-size and ther-
modynamic properties of the anisotropic spin-1/2 XXZ chain
in the massive antiferromagnetic phase in the critical region
close to the quantum phase transition at the isotropic point.
The Hamiltonian of the model has the form

H = J

2

Nx∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + �σ z

j σ
z
j+1

)
. (1)

Here the index j enumerates the spin-chain sites, σ a
j are

the Pauli matrices, a = x, y, z, J > 0 is the antiferromagnetic
coupling constant, and � is the anisotropy parameter. The
number of sites will be chosen even, Nx = 2M, and peri-
odic boundary conditions will be implied, σ a

j+Nx
∼ σ a

j . The
massive antiferromagnetic phase is realized in this model at
� > 1. Following Lukyanov and Terras [3], we shall use the
following convenient parametrization,

J = 1

aπ
, x = a j, � = cosh η, (2)

where η > 0, a denotes the lattice spacing, and x is the
dimensionful spatial coordinate of the lattice site j. So, the
length of the chain is Lx = Nxa. The Euclidean evolution in
this model is described by the operator U (y) = exp(−yH ).

In the thermodynamic limit Nx → ∞, the antiferromag-
netic ground state of model (1) is doubly degenerate at � > 1.
Its particle sector is represented by the kinklike topological
excitations, which interpolate between two antiferromagnetic
vacua [4]. Since these excitations carry spin 1/2, they are
usually called “spinons.”

For finite Nx, the ground-state energy ENx (η, a) of the
model (1) can be represented as

ENx (η, a) = Nx Eb(η, a) + EC (Nx, η, a), (3)

where Nx Eb(η, a) is the bulk term calculated and studied for
all � by Yang and Yang [5,6] by means of the coordinate
Bethe ansatz. The Casimir energy term EC (Nx, η, a) expo-
nentially vanishes in the thermodynamic limit Nx → ∞ at
fixed η and a. This term describing the finite-size correction
to the bulk ground-state energy has been extensively studied
by many authors [7–12] by means of the technique utilizing a
certain nonlinear integral equation (NLIE) of the convolution
type. Most attention in these studies has been concentrated on
the |�| � 1 gapless Luttinger liquid phase. For the massive
antiferromagnetic phase that takes place at � > 1, the NLIE
was derived by de Vega and Woynarowich [11], and further
studied by Dugave et al. [12].

Note that study of the Casimir energy finite-size correction
term EC (Nx, η, a) does not have immediate experimental im-
plications, though it is important for the theory and crucial for
the interpretation of the results of the computer simulation,
which are typically performed on finite-size systems. In con-
trast, calculations of the per-site free energy

f (J, η, T ) = −T lim
Nx→∞

1

Nx
ln Tr e−H/T (4)

of the infinite XXZ chain has a major importance for the
experiments, since it yields the specific heat c(J, η, T ) =
−T ∂2

T f (J, η, T ) that can be directly measured in quantum
quasi-one-dimensional antiferromagnets. The most system-
atic approach to the thermodynamics of the XXZ spin chain
is based on the thermodynamic Bethe ansatz (TBA) method,
the first version of which was invented in 1969 by Yang
and Yang [13], who used it to study the one-dimensional
gas of delta-interacting bosons. Application of the TBA for
calculation of the thermodynamic quantities in the XXZ spin
chain was started in 1971 by Takahashi [14] and Gaudin
[15], and later continued by many other authors [10,16–19].
Thermodynamics of the more general XY Z spin-chain model
was studied by means of the TBA in [16,20,21]. Further
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references on the TBA method and its applications in the
theory of the integrable spin-chain models can be found in
monographs [22,23].

The specific heat c(J, η, T ), apart from the trivial linear de-
pendence on the coupling constant J , depends on temperature
T and on the anisotropy parameter η. For a given η > 0, the
temperature dependence of c(J, η, T ) can be found by means
of the TBA method, see Fig. 4(a) in [21], where the plot of
the specific heat c(1, arccosh(3/2), T ) obtained this way is
shown.

At the isotropic point η = 0, the XXZ chain (1) undergoes
a continuous quantum phase transition and the correlation
length diverges. Close to the isotropic point for 0 < η � 1,
the correlation length becomes much larger than the lattice
spacing and the spin chain arrives at the massive scaling
regime. It will be shown later that one should expect in this
regime the following scaling behavior of the specific heat at
low enough temperatures T � J ,

c(J, η, T ) = T

πJ
X (t ), (5)

where X (t ) is the universal scaling function depending solely
on the scaling parameter t = T/m(J, η) and m(J, η) is the
spinon mass, which is equal to the half of the gap in the
two-spinon excitation energy spectrum. The Casimir energy
EC (Nx, η, a) should have the analogous universal scaling be-
havior at η � 1; see Eq. (9) below. Surprisingly, the scaling
behavior of the specific heat and Casimir energy in the XXZ
spin chain at 0 < η � 1 has never been studied in literature,
and the corresponding universal scaling functions X (t ) and
Y (u) remained unknown. The aim of the present paper is to
fill this gap.

First, we modify the nonlinear integral equation derived
by Dugave et al. [12] and proceed in it to the scaling limit
in the massive antiferromagnetic phase in order to describe
the scaling behavior of the Casimir energy EC (Nx, η, a). The
scaling limit is understood in the usual way,

a → 0, η → +0, Nx → ∞, (6)

ξ (η, a) = const, Lx ≡ aNx = const.

Here ξ (η, a) is the correlation length, which behaves [12] at
small η > 0 as

ξ (η, a) = [2 m(η, a)]−1 [1 + O(exp[−π2/η])], (7)

and the spinon mass m(η, a) has the following asymptotic
behavior [24]:

m(η, a) = 4 exp[−π2/(2η)]

a
(8)

at η → +0.
It follows from dimension arguments [25] that the Casimir

energy takes the scaling form in the limit (6),

EC (Nx, η, a) � Y (u)

Lx
, (9)

where

u = Lx m(η, a) = 4Nx exp[−π2/(2η)] (10)

is the scaling parameter and Y (u) is the universal Casimir
scaling function. We calculated this function numerically by

FIG. 1. Plot of the Casimir scaling function Y (u) (black solid
line). Its large-u asymptotics determined by Eqs. (48) and (49)
are shown by the dotted blue and dashed red lines, respectively.
The value at the critical point Y (0) = −π/6 agrees with the CFT
prediction.

iterative solution of the NLIE written in the scaling limit (6).
The plot of the resulting Casimir scaling function is shown in
Fig. 1.

The scaling limit (6) of model (1) can be described by
the sine-Gordon quantum field theory [3,26], in which the
coupling constant β2

s approaches its upper boundary value
β2

s → 8π . This Euclidean quantum field theory (EQFT) lives
on the torus having the periods Lx, Ly, in the limit Ly → ∞.
Under the choice (2) of the coupling constant J , the dispersion
law of the elementary excitations in this continuous EQFT
takes the relativistic form ω(p) =

√
p2 + m(η, a)2, indicating

the rotational symmetry of the theory in the 〈x, y〉 plane. As it
was explained by Al. B. Zamolodchikov [25], this allows one
to relate the ground-state energy of the EQFT [determined in
our case by Eqs. (3) and (9)] with the free energy of the chain
having the infinite length Ly → ∞ at a nonzero temperature
T = 1/Lx; see Eq. (2.8) in [25]. As a result, one arrives at the
following representation for the per-site free energy (4) in the
scaling regime (6):

f (J, η, T ) = Eb(J, η) + T 2

πJ
Y (u), (11)

where u = m(J, η)/T is the scaling parameter and

m(J, η) = 4πJ exp

(
−π2

2η

)
(12)

is the spinon mass. Note that we have changed notations in
Eqs. (11) and (12) using the coupling constant J instead of the
lattice spacing a = (πJ )−1 as the argument of the functions
f , Eb, m. The free energy reduces to the form (11) in the
scaling regime, which is realized at aT � 1 and a m � 1. In
terms of the original parameters of the XXZ chain Hamilto-
nian, these two strong inequalities read

T � J, exp

(
−π2

2η

)
� 1. (13)

Accordingly, the specific heat per chain site c(J, η, T ) must
scale under conditions (13) to the form (5), where

X (t ) = [−2Y (u) + 2uY ′(u) − u2Y ′′(u)]|u=1/t . (14)

The plot of the universal specific heat scaling function X (t )
determined from Eq. (14) is shown in Fig. 2.
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FIG. 2. Plot of the specific heat scaling function X (t ) versus the
scaled temperature parameter t = T/m(J, η) (black sold line). The
small-t asymptotics (55) of X (t ) is shown by the red dashed line. At
large t , X (t ) approaches very slowly to its CFT value π/3.

In what follows, we will describe how these results were
obtained and present them in more details. In particular, in
Sec. II we recall briefly a few basic results on the Bethe ansatz
calculation of the ground-state energy of the finite XXZ spin
chain in the gapped antiferromagnetic phase. The well-known
representation of this ground-state energy in terms of the so-
lution of a nonlinear integral equation is described in Sec. III.
New results are presented in Sec. IV. First, we proceed in
it to the scaling limit in the nonlinear integral equation, and
then describe the numerical and analytical results for the
universal scaling functions characterizing the Casimir energy,
the free energy, and specific heat of the XXZ spin chain in the
antiferromagnetic gapped near-critical regime. Section V con-
tains concluding remarks. Finally, in the two Appendixes we
describe two alternative analytical calculations of the Casimir
scaling function Y (u) in the limit u � 1. In Appendix A we
exploit to this end the small-u asymptotical analysis of the
nonlinear TBA equations, while in Appendix B we use the
renormalization group perturbation-theory technique.

II. BETHE-ANSATZ SOLUTION FOR THE GROUND
STATE AT � > 1

The ground state |
〉 of the 2M-site chain is characterized
by the set of M real Bethe roots {λn}M

n=1, −π/2 < λ1 <

λ2 · · · < λM < π/2, which solve the equations

F (λn) + 1 = 0, (15)

where n = 1, . . . , M, and

F (λ) =
[

sin
(
λ − iη

2

)
sin

(
λ + iη

2

)
]Nx M∏

j=1

sin(λ − λ j + iη)

sin(λ − λ j − iη)
. (16)

Note that λn = −λM−n+1 for the Bethe roots describing the
ground state and

F (λ + π ) = F (λ), F (π/2) = 1,

F (π − λ) = 1

F (λ)
= F (λ̄). (17)

The ground-state energy of the Nx-site chain reads

ENx =
M∑

n=1

ε0(λn), (18)

where

ε0(λ) = 2J[−� + cos p0(λ)] (19)

and

exp[ip0(λ)] = sin
(
λ − iη

2

)
sin

(
λ + iη

2

) . (20)

Note that ε0(λ) = −J p′
0(λ) sinh η.

The counting function φ(λ) can be defined near the real
axis by the relations

F (λ) = exp[2π iNxφ(λ)], φ(−π/2) = 0. (21)

The counting function φ(λ) is analytic in the strip −η/2 <

Im λ < η/2 and quasiperiodic there,

φ(λ + π ) = φ(λ) + 1
2 . (22)

The logarithmic derivative in λ of Eq. (16) reads

φ′(λ) = p′
0(λ)

2π
− 1

Nx

M∑
j=1

K(λ − λ j ), (23)

where

p′
0(λ) = cot

(
λ − iη

2

) − cot
(
λ + iη

2

)
i

, (24)

K(λ) = cot(λ − iη) − cot(λ + iη)

2π i
. (25)

III. NONLINEAR INTEGRAL EQUATION

Assuming that the counting function φ(λ) corresponding
to the ground state strictly increases at real λ, and taking
into account (21) and (22), one concludes that Eq. (15) has
exactly M real solutions in the interval −π/2 < λ < π/2,
and these solutions coincide with the Bethe roots {λn}M

n=1.
Application of Cauchy’s integral formula to the sums in
the right-hand sides of (23) and (18) leads to the following
integral representations of these equations [12]:

φ′(λ) = p′
0(λ)

2π
−

∫ 0

−π

dμK(λ − μ)φ′(μ)

+ 1

πNx

∫ 0

−π

dμK(λ − μ) Im ∂μ ln[1 + F (μ + i0)],

(26)

ENx = Nx

∫ 0

−π

dλ ε0(λ)φ′(λ)

− 1

π

∫ 0

−π

dλ ε0(λ) Im ∂λ ln[1 + F (λ + i0)]. (27)

Let us define the linear integral operator K that acts on a π -
periodical function ψ (λ) of λ ∈ R as follows:

K[ψ](λ) =
∫ 0

−π

dμK(λ − μ)ψ (μ).

By action with the operator (1 + K )−1 on both sides of
Eq. (26), and subsequent integration in λ, one modifies it to
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the form

−i lnF (λ|η, Nx )

= 2πNxφ0(λ|η) + 2
∫ 0

−π

dμ Q(λ − μ|η)

× Im ln[1 + F (μ + i0|η, Nx )], (28)

where

Q(λ|η) ≡ (1 + K )−1[K](λ) =
∞∑

n=−∞
e2inλ e−2η|n|

π (1 + e−2η|n|)
,

(29)

φ′
0(λ|η) ≡ 1

2π
(1 + K )−1[p′

0](λ) =
∞∑

n=−∞

e2inλ

2π cosh(η n)

=
∞∑

l=−∞

1

2η cosh[π (λ − π l )/η]
, (30)

lnF (−π/2|η, Nx ) = 0, φ0(−π/2|η) = 0. (31)

Similarly, the ground-state energy (27) can be represented
in the form (3), where

Eb(η, a) =
∫ 0

−π

dλ ε0(λ)φ′
0(λ) (32)

is the ground-state energy per site in the infinite chain and the
finite-size correction (Casimir energy) reads

EC (Nx, η, a) = −2J sinh η

∫ 0

−π

dλ φ′′
0 (λ)

× Im ln[1 + f (λ+i0)]. (33)

IV. SCALING LIMIT

In the scaling limit (6), the solution F (λ|η, Nx ) of Eq. (28)
approaches very fast to its bulk limit exp[2π iNx φ0(λ|η)]
everywhere in the real λ axis, apart from the small vicinities
of the points λ(n) = −π/2 + πn. To describe the scaling limit
of Eq. (28) near one of such points λ(0) = −π/2, let us make
in it the linear change of the rapidity variables λ,μ,

λ = −π

2
− η α

π
, μ = −π

2
− η α′

π
, (34)

where α, α′ are the rescaled rapidities.
The function F (λ|η, Nx ) reduces in the vicinity of the point

λ(0) in the scaling limit (6) to the form

F (λ|η, Nx )λ=−π/2−η α/π = 1

f(α|u)
+ (corrections to scaling).

(35)

The scaling limit of the first term on the right-hand side of
the integral equation (28) reads

2πNx φ0(λ|η)λ=−π/2−η α/π = −u sinh α [1 + O(ma)2]. (36)

To prove this, let us note that the leading contribution to
the sum in the second line of (30) comes at η → +0 and
λ ≈ −π/2 from the two terms with l = −1, 0. Then simple
calculations yield

φ′
0(λ|η)λ=−π/2−η α/π = ma

2η
cosh α [1 + O(am)2]. (37)

Integration of this equality with respect to λ with (31) taken
into account leads to (36).

In order to find the scaling limit of the kernel Q(λ − μ|η)
in Eq. (28), we replace the sum on the right-hand side of (29)
by the integral

Q(λ − μ|η) = π

η
Q(α − α′) + O(η),

where λ,μ according to (34) are related to α, α′, and

Q(�) = 1

π

∫ ∞

0
dy cos(2y�)

e−πy

cosh(πy)
. (38)

The integral on the right-hand side can be explicitly calcu-
lated,

Q(�) = lim
γs→∞

1

2π i

∂ ln S(�, γs)

∂�
, (39)

where S(�, γs) is the soliton-soliton scattering amplitude in
the sine-Gordon model [27,28],

S(�, γs) = − exp

[
−i

∫ ∞

0

dy

y

sin(2�y) sinh[(π − γs

8 )y]

cosh(πy) sinh(γsy/8)

]
,

(40)

lim
γs→∞ S(�, γs) = −�

(
1 + i�

2π

)
�

(
1
2 − i�

2π

)
�

(
1 − i�

2π

)
�

(
1
2 + i�

2π

) . (41)

Here the parameter γs is simply related to the coupling con-

stant β2
s in the sine-Gordon model γs = β2

s /(1 − β2
s

8π
). It is

well known [29,30] that Eq. (40) describes also the amplitude
of the spinon-spinon scattering in the XXZ model (1) in
the gapless phase |�| < 1, if the parameter γ = arccos � is
chosen so that

γ = 8π2

8π + γs
= π

(
1 − β2

s

8π

)
. (42)

The limit γs = ∞ corresponds to the isotropic antiferromag-
netic point of the XXZ spin chain, in which γ = 0 and � = 1.
The spinon-spinon scattering phase factor (41) at this point of
model (1) was first obtained by Faddeev and Takhtajan [31].

The nonlinear integral equation (28) reduces in the scaling
limit to the form

−i ln f(α|u)

= u sinh α + 2
∫ ∞

−∞
dα′ Q(α − α′)

× Im ln[1 + f(α′ + i0|u)], (43)

with real α, α′ ∈ R, and the scaling limit of the Casimir
energy (33) reads

EC (Nx, η, a) = −m

π

∫ ∞

−∞
dα sinh α

× Im ln [1 + f(α + i0|u)]. (44)

Equations (43) and (44) coincide with the γ → 0 limit of
Eqs. (5.9) and (5.8) obtained by Destri and de Vega [10] for
the massive Thirring (sine-Gordon) model. However, concen-
trating in their article on the massive Thirring model with a
finite γ > 0 and on the gapless case of the XXZ spin chain,
the authors of [10] did not apply their results to describe the
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massive scaling regime of the XXZ chain, which we address
here. Perhaps, for this reason, Destri and de Vega did not study
in [10] the nontrivial γ → 0 limit of their integral equation
(5.9), which is relevant to the XXZ model in the massive
scaling regime.

Let us analytically continue the function f(α|u) into the
strip |Im α| � π/2 and introduce two auxiliary complex func-
tions (the pseudoenergies) ε(β|u), ε̄(β|u),

ε(β|u) = − ln f(β + iπ/2|u),

ε̄(β|u) = ln f(β − iπ/2|u). (45)

At real β, these functions are complex conjugate to one an-
other. They must satisfy the system of two nonlinear integral
TBA equations [compare with Eqs. (3.3) and (3.4) in [25]],
which follow from (43),

ε(β|u) = u cosh β −
∫ ∞

−∞
dβ ′ Q(β − β ′) ln[1 + e−ε(β ′ |u)]

+
∫ ∞

−∞
dβ ′ Q(β − β ′ + iπ − i0) ln[1 + e−ε̄(β ′|u)],

(46a)

ε̄(β|u) = u cosh β −
∫ ∞

−∞
dβ ′ Q(β − β ′) ln[1 + e−ε̄(β ′|u)]

+
∫ ∞

−∞
dβ ′ Q(β − β ′ − iπ + i0) ln[1 + e−ε(β ′ |u)].

(46b)

In turn, the Casimir energy (44) takes the form (9), with the
scaling function

Y (u) = − u

π

∫ ∞

−∞
dβ cosh β Re ln[1 + e−ε(β|u)]. (47)

The nonlinear integral equations (46) with a different
first term in the right-hand sides, however, were studied by
Klümper [18,21], who used them to calculate the temperature
dependence of the specific heat and magnetic susceptibility in
the isotropic antiferromagnetic XXX spin-1/2 chain.

Note that the nonlinear integral equations (46) can be
derived in a completely different way exploiting Klümper’s
results [21] for the general XY Z spin chain. If one starts
from the TBA equations (3.19) derived in [21] for the XY Z
chain, proceeds to the limit corresponding to the XXZ chain
in the gapped antiferromagnetic phase � > 1, and afterwards
proceeds to the scaling limit η → +0, one arrives at Eqs. (46).
In turn, formula (3.21) in [21] representing the free energy of
the XY Z chain reduces after these two limiting procedures to
the scaling form (11) with the scaling function Y (u) given by
(47).

The system of nonlinear integral equations (46) can be
solved numerically by iterations. The convergence of itera-
tions is perfect at large and intermediate values of the scaling
parameter u, but retards at very small u. The plot of the
resulting Casimir scaling function Y (u) is shown in Fig. 1.

The scaling function Y (u) exponentially decays at large
u → +∞,

Y (u) = −2u

π
K1(u) + O(e−2u) (48)

= −
√

2u

π
e−u [1 + O(1/u)], (49)

where K1(u) is the Macdonald function. As in the case of
the massive Thirring model at a finite γ > 0 [see Eqs. (6.9)–
(6.11) in [10]], the large-u asymptotics (48) can be easily
obtained by replacing the function ε(β|u) in (47) by its “zeros
iteration” u cosh β and then expanding the resulting logarithm
in the integrand to the first order, ln[1 + exp(−u cosh β )] →
exp(−u cosh β ).

At the isotropic point u = 0, the scaling function takes the
value

Y (0) = −π/6, (50)

in agreement with the CFT prediction [10,25] for the Gaussian
field theory with the central charge c = 1. A rather involved
perturbative calculation of three further terms in the small-
u expansion of Y (u) is described in Appendix A. The final
results read

Y (u) = −π

6
+ π

16 R(u)3
+ 3π ln[2R(u)]

32 R(u)4
+ a4

R(u)4
+ · · · ,

(51)

where a4 ≈ −0.193 and R(u) = ln(2/u).
The logarithmic singularity of the Casimir scaling function

at u = 0 predicted by Eq. (51) is too weak to be resolved in
Fig. 1. However, this singularity is clearly seen in Fig. 3(a),
which displays at small u < 0.005 the deviation of Y (u)
from its CFT limit (50), �Y (u) = Y (u) + π/6. The numerical
data shown by dots slowly approach with decreasing u the
solid curve representing the asymptotical formula (51). The
same tendency remains at very small u, as one can see in
Fig. 3(b). The dots in this figure display the numerical data for
the function R(u)3 �Y (u) in the interval 10−11 � u � 10−4

plotted against R(u)−1. The solid curve represents the small-u
asymptotics for this function,

R(u)3 �Y (u)≈ π

16
+ 3π

32
R(u)−1 ln[2R(u)] − 0.193 R(u)−1,

(52)

corresponding to (51). The asymptotic low- and high-
temperature behavior of the free energy � f (T ) = f (T ) −
f (0) per site can be read from (11), (48), and (51),

� f (T ) = −T 2

6J

[
1 − 3

8 ln3(2T/m)

− 9 ln[2 ln(2T/m)]

16 ln4(2T/m)
− 6 a4

π ln4(2T/m)
+ · · ·

]
,

(53)

at m � T � J , and

� f (T ) = − 1

πJ

√
2m

π
T 3/2 e−m/T [1 + O(T/m)], (54)
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Y(u)

(a)

(b)

FIG. 3. Comparison of analytical and numerical results for the
scaling function �Y (u) = Y (u) + π/6 at small u. (a) Numerical data
(dots) for the function �Y (u) and its asymptotical behavior (51)
(solid curve) at u < 0.005. (b) Numerical data (dots) for the function
R(u)3 �Y (u) plotted against R(u)−1 at 10−11 � u � 10−4. The solid
curve displays the small-u asymptotic formula (52) for this function.

at T � m � J , where m is given by (12). The corresponding
small-t asymptotics of the scaling function X (t ) takes the
form

X (t ) = −
√

2

π
t−5/2e−1/t [1 + O(t )] at t → 0, (55)

and X (t ) slowly approaches the CFT value π/3 at very large
t → ∞.

For the total free energy F (T, Ly) = Ny � f (T ) of the spin
chain of the length Ly → ∞, which has Ny = πJLy sites, the
low-temperature asymptotics following from (54) reads

F (T, Ly) = −2Ly

√
m

2π
T 3/2 e−m/T [1 + O(T/m)]. (56)

This result has a transparent physical interpretation. One can
easily see that the right-hand side of Eq. (56) is just the grand
canonical potential �(T, Ly) of the classical ideal gas of two
kinds of nonrelativistic particles (spinons with spins oriented
up and down) having the same mass m and the chemical
potential μ = m, which move in one dimension in the line of
the length Ly.

It is interesting to compare two asymptotical formulas for
the ground-state energy of the XXZ spin chain of finite length
Lx supplemented with periodic boundary conditions.

The first one

ENx (0, a) = Nx Eb(0, a) − π

6Lx
− π

16Lx ln3 Lx
a

+ · · · (57)

contains three initial terms in the large-Lx expansion of the
XXZ spin-chain ground-state energy at the isotropic point
η = 0. The third term on the right-hand side was first ob-
tained by Affleck et al. [32] in the conformal perturbation
theory approach, and later confirmed (for the analogous low-
temperature expansion of the free energy) by Klümper [18] in
the discrete-lattice TBA calculations.

The second formula

ENx (η, a) = Nx Eb(η, a) − π

6Lx
− π

16Lx ln3 Lx
ξ (η)

+ · · · (58)

holds in the gapped antiferromagnetic phase in the scaling
regime 0 < η � 1 at Lx � ξ (η). Equation (58) results from
the substitution of two initial terms of the small-u expansion
(51) into (3) and (9).

Though formulas (57) and (58) look remarkably similar,
there are two important differences between them.

(1) The third term on the right-hand side of (57) explicitly
depending on the lattice spacing a describes the discrete-
lattice correction to scaling in the ground-state energy. In
contrast, the third term on the right-hand side of (58) does
not depend on a and describes the universal scaling behavior
of the ground-state energy at 0 < η � 1.

(2) The ratio L/a is the large parameter in Eq. (57) and
the third term on its right-hand side is, therefore, negative.
In contrast, the ratio L/ξ (η) is the small parameter in the
asymptotic expansion (58) and the analogous correction term
in the latter is positive.

It turns out that expansion (58) can be also obtained by
means of the perturbative CFT technique applied in [32] for
the derivation of (57). The difference is that the log-correction
term in (57) was caused by the marginally irrelevant per-
turbation of the Gaussian CFT Hamiltonian, whereas in the
case of (58) the perturbing field is marginally relevant. The
field-theoretical derivation of formula (58) is described in
Appendix B.

V. CONCLUSIONS

Considering the Heisenberg XXZ spin-chain ring in the
gapped antiferromagnetic phase � > 1 close to the quantum
phase transition point � = 1, we expressed its ground-state
energy universal Casimir scaling function in terms of the
solution of the nonlinear integral equation. We calculated
this Casimir scaling function numerically by iterative solu-
tion of the nonlinear integral equation, and also analytically
determined its asymptotical form at large and small values of
the scaling parameter. Then, using the correspondence in the
scaling regime between the ground-state energy of the finite
ring of length Lx with the free energy of the infinite chain
at temperature T = 1/Lx, we calculated the universal scaling
function X (t ) describing the temperature dependence of the
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specific heat of the infinite chain at low temperatures T � J
and 0 < � − 1 � 1.

In contrast to many previous studies [10,14–16,18,21] of
the specific heat in the XXZ spin chain, our results are univer-
sal, since we have limited analysis to the scaling regime. Due
to its universality, the obtained scaling function X (t ) should
describe exactly the specific heat temperature dependences
in those quasi-one-dimensional magnetic compounds in the
scaling regime close to the isotropic point, whose magnetic
Hamiltonian falls into the universality class of the XXZ spin-
1/2 chain model.

In presenting the results, we followed the important rec-
ommendation of Tracy and McCoy in [33]: “We strongly
recommend that all data be presented in scale-variable and
scale-function language.”

It would be interesting to experimentally observe in quasi-
one-dimensional antiferromagnetic compounds the universal
specific-heat scaling temperature dependence (5). It would be
also interesting and important for the experimental applica-
tions to study corrections in small η to the scaling depen-
dences (9) and (5).
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APPENDIX A: PERTURBATIVE DERIVATION OF (51)

In this Appendix we perform the asymptotic analysis of
the nonlinear TBA integral equations (46) at a small u → 0,
and describe briefly the derivation of formula (51) for the
Casimir scaling function (47). Our calculations are based to
some extent on the techniques developed by Destri and de
Vega [10] and by Klümper [18] for different TBA integral
equations. We will comment on these works later.

Let us rewrite the integral equations (46) in the equivalent
form,

ε(β|u) = u cosh β − 2
∫ ∞

−∞
dβ ′ Q(β − β ′) Re χ (β ′|u)

−
∫ ∞

−∞
dβ ′ g(β − β ′ − i0) χ (β ′|u), (A1a)

ε̄(β|u) = u cosh β − 2
∫ ∞

−∞
dβ ′ Q(β − β ′) Re χ (β ′|u)

−
∫ ∞

−∞
dβ ′ g(β − β ′ − i0) χ (β ′|u), (A1b)

where

g(�) = − 1

2�(� + iπ )
, (A2)

χ (β|u) = ln[1 + e−ε(β|u)]. (A3)

The integral kernel Q(�) determined by Eqs. (39) and (41)
is real at real �, and behaves at large |�| as

Q(�) = 1

4�2
+ π2

8�4
+ O(�−6). (A4)
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FIG. 4. Real and imaginary parts of the pseudoenergy versus
rapidity β (a) at u = 10−8 and (b) at u = 0. (a) Real (solid) and
imaginary (dashed) parts of the function �ε(β|u) defined by (A7) at
u = 10−8. Vertical lines are located at ± ln(2/u). (b) Real (solid) and
imaginary (dashed) parts of the function �εk (β ) = εk (β ) − exp(β ).

The reflection symmetry of the integral kernels in (A1)

Q(�) = Q(−�), g(� − i0) = g(−� − i0) (A5)

ensures the reflection symmetry of the pseudoenergy

ε(β|u) = ε̄(−β|u) (A6)

at real β.
Besides the solution ε(β|u) of Eqs. (A1), it is also useful

to consider the difference

�ε(β|u) = ε(β|u) − u cosh β. (A7)

Figure 4(a) displays its real and imaginary parts plotted
against β at the small value of the scaling parameter,
u = 10−8. As one can see from this figure, the function
�ε(β|u) vanishes outside two regions located near the points
β ≈ ±R(u), where R(u) = ln(2/u). These two regions be-
come well separated from one another at very small u. By
this reason, it is useful to shift the argument in the solutions
of (A1) by R(u), and to introduce new functions

εR(β|u) = ε(β + R(u)|u), ε̄R(β|u) = ε̄(β + R(u)|u).
(A8)

These two functions solve the integral equations, which are
obtained from (A1) by replacement of the driving term

u cosh β → eβ + u2

4
e−β (A9)

in their right-hand sides.
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Proceeding in (A8) and (A9) to the limit u → 0, one
obtains the pseudoenergies

εk (β ) = lim
u→0

ε(β + R(u)|u), ε̄k (β ) = lim
u→0

ε̄(β + R(u)|u),

(A10)

which correspond to the isotropic point of the XXZ spin chain
and solve the TBA integral equations,

εk (β ) = eβ − 2
∫ ∞

−∞
dβ ′ Q(β − β ′) Re χk (β ′)

−
∫ ∞

−∞
dβ ′ g(β − β ′ − i0)χk (β ′), (A11a)

ε̄k (β ) = eβ − 2
∫ ∞

−∞
dβ ′ Q(β − β ′) Re χk (β ′)

−
∫ ∞

−∞
dβ ′ g(β − β ′ + i0)χk (β ′), (A11b)

where χk (β ) = ln [1 + e−εk (β )]. After subtraction of eβ from
εk (β ), the resulting difference

�εk (β ) = ε(β ) − eβ (A12)

decays at β → ±∞. The real and imaginary parts of this
function are plotted in Fig. 4(b). Since the kernels Q(�), g(�)
decay ∼�−2 at |�| → ∞, the difference (A12) also vanishes
as �εk (β ) ∼ β−2 at large |β|. Of course, the function εk (β )
decays ∼β−2 as well at β → −∞, due to (A12).

As it was mentioned above, the value Y (0) = −π/6 of the
Casimir scaling function at the isotropic point is determined
by the CFT. It is well known [9,10,25], that the CFT predicted
value of finite-size correction to the ground-state energy can
be alternatively obtained in the TBA approach without explicit
solution of the integral TBA equations. Let us describe such
an alternative derivation of the CFT result (50).

The integral representation (47) of the Casimir scaling
function reduces at u = 0 to the form

Y (0) = 2

π
Re

∫ ∞

−∞
dβ eβ χ ′

k (β ). (A13)

Let us now rewrite Eq. (A11a) as

eβ = εk (β ) + 2
∫ ∞

−∞
dβ ′ Q(β − β ′) Re χk (β ′)

+
∫ ∞

−∞
dβ ′ g(β − β ′ − i0)χk (β ′). (A14)

The key step of this calculation is the counterintuitive substi-
tution of the right-hand side of (A14) instead of eβ into the
integrand in (A13). As the result, one obtains

Y (0) = − 2

π
Re

∫ ∞

−∞
dβ εk (β )

ε′
k (β )

1 + eεk (β )

+ 4

π

∫∫ ∞

−∞
dβ dβ ′ Re [χ ′

k (β )]Q(β − β ′) Re [χk (β ′)]

+ 2

π
Re

∫∫ ∞

−∞
dβ dβ ′ χ ′

k (β ) g(β − β ′ − i0) χk (β ′).

Both double integrals in the right-hand side vanish due to the
kernel symmetry (A5). After the change of the integration
variable x = εk (β ) in the first integral, we arrive at the desired
CFT result (50),

Y (0) = − 2

π

∫ ∞

0
dx

x

1 + ex
= −π

6
.

For the subsequent analysis, we need the explicit form of
the asymptotic expansion of the function εk (β ) at β → −∞.
We obtained three terms in this expansion by the straightfor-
ward perturbative solution of the integral equations (A11) at
large negative β. The result reads

εk (β ) = b2

β2
+ b3

β3
− b2 ln(−β )

β3
+ O(β−4 ln(−β )), (A15)

where

b2 = −
(

π ln 2

2
+ Im A1

)
i, (A16a)

b3 = π Im b2 + i

(
−π Re A1 + Im b2

2
− Im A2

)
. (A16b)

Here A1, A2 denote the following converging integrals:

A1 =
∫ ∞

−∞
dβ[ln(1 + e−εk (β ) ) − θ (−β ) ln 2], (A17)

A2 =
∫ ∞

−∞
dβ

[
2β ln(1 + e−εk (β ) )

− 2β θ (−β ) ln 2 + b2

β
θ (−β − 1)

]
, (A18)

and θ (x) is the unit-step function.
By numerical calculation of the integrals (A17) and (A18)

we obtained the following values:

Re A1 = −0.38806 . . . , (A19)

Im A1 = 0.48200 . . . , (A20)

Im A2 = 1.026 . . . . (A21)

It turns out that the numerical value of Im A1 is very close to
(π/2)(1 − ln 2) = 0.482003 . . . [34]. In fact, there are strong
arguments [18] that the latter number is the exact value of the
imaginary part of the integral (A17),

Im A1 = π

2
(1 − ln 2) = 0.4820032816 . . . . (A22)

Under this assumption, one finds from (A23), (A19), and
(A21)

b2 = −π i

2
, b3 = −π2

2
− i 0.592 . . . . (A23)

We are now ready to return to the perturbative calculation
of the Casimir scaling functions Y (u) at a small u > 0. First,
we write the solution of Eqs. (A1) in the form

ε(β|u) = ε(0)(β|u) + v(β|u), (A24)

where

ε(0)(β|u) = εk (β − R(u)) + εk (−β − R(u)) (A25)
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is the zero-order term and v(β|u) is the small correction.
The latter could be in principal determined by means of the
perturbative solution of the nonlinear integral equations (A1),
with the small parameter δ = [R(u)]−1. Next, one could sub-
stitute (A24) into (47) and try to extract several initial terms in
the small-u asymptotic expansion for Y (u) from the resulting
integrals. It turns out, however, that such direct perturbative
calculations are extremely difficult and not suitable for evalu-
ation of the higher terms in (51). Really, in order to calculate
the smallest term a4δ

4 in expansion (51) in this approach, one
has to solve perturbatively the nonlinear integral equations
(A1) to the fourth order in the small parameter δ.

To avoid this problem, we have applied following [10,18]
the improved technique, which allowed us to obtain (51)
without solving perturbatively the integral equations (A1).
First, we rewrite the integral representation (47) of the scaling
function in the equivalent form,

Y (u) = − 2

π
Re

∫ ∞

−∞
dβ eβ χR(β|u), (A26)

where χR(β|u) = ln [1 + e−εR (β|u)]. Then we split the integral∫ ∞
−∞ dβ on the right-hand side into two parts,

∫ ∞
−∞ dβ =∫ −R(u)

−∞ dβ + ∫ ∞
−R(u) dβ. The first term is small ∼u due to the

[small at β < −R(u)] factor eβ in the integrand in (A26).
After integration by parts in the second term, one obtains at
u → 0,

Y (u) = 2

π
Re

∫ ∞

−R(u)
dβ eβ ∂β[χR(β|u)] + O(u). (A27)

This formula extends (A13) to the case of a small positive u.
Recall next that the function εR(β|u) defined by (A8) solves
the integral equation (A1a) modified according to (A9). Let us
rewrite this equation in the form similar to (A14),

eβ = εR(β|u) − u2

4
e−β +

∫ ∞

−∞
dβ ′ [2Q(β − β ′) Re χR(β ′|u)

+g(β − β ′ − i0) χR(β ′|u)]. (A28)

After substitution of the right-hand side instead of eβ in the
integrand in (A27) and straightforward calculations, one finds

Y (u) = −π

6
+ �Y (u) + O([R(u)]−5), (A29)

where

�Y (u) = 2

π
Re

∫ ∞

0
dβ

∫ ∞

−∞
dβ ′{2Q(β − β ′)∂βχ (β|u)

× Re [χ (β ′|u)] + g(β − β ′ − i0)

× ∂β[χ (β|u)]χ (β ′|u)}, (A30)

and χ (β|u) is given by (A3). In contrast to the u = 0 case,
the double integral in the right-hand side of (A30) is nonzero
at u > 0 due to the finite limits of integration. However, this
integral decreases with decreasing u and vanishes at u = 0.

Using integration by parts and the symmetry properties
(A5) and (A6), the double integral in (A30) can be conve-
niently represented as the sum of three terms,

�Y (u) = A + B + C, (A31)
where

A = 2

π
[χ (0|u)]2 Re

∫ ∞

2R(u)
dβ U (β ), (A32a)

B = − 2

π
χ (0|u) Re

∫ ∞

0
dβ U (β + R(u))�(β|u), (A32b)

C = 4

π

∫∫ ∞

0
dβ dβ ′ Q(β + β ′)Re [∂βχ (β|u)]Re [�(β ′|u)]

+ 2

π
Re

∫∫ ∞

0
dβ dβ ′g(β + β ′ − i0)∂βχ (β|u)�(β ′|u),

(A32c)

and

U (β ) = 2Q(β ) + g(β ), (A33)

�(β|u) = χ (β|u) − θ (R(u) − β )χ (0|u). (A34)

We substituted the function ε(β|u) in the form (A24) into
the integrals in (A32) and expanded the results in the small
parameter δ = [R(u)]−1 to the fourth order. It turns out that,
up to this order, (i) the correction term v(β|u) in (A24) does
not contribute to these integrals and (ii) these integrals can be
expressed solely in terms of two numbers Im b2 and Im b3,
which characterize the asymptotical behavior of the function
εk (β ) at β → −∞; see (A15) and (A23). As the result, we
obtained

A = π (ln 2)2 δ3

16
+ O(δ5), (A35)

B = ln 2

{
− (2 Im b2 + π ln 2) δ3

16
+ [−12 Im b2 ln(2/δ) + 3 Im b2 + 12 Im b3] δ4

128

}
+ o(δ4), (A36)

C = δ3 Im b2 [2 Im b2 + π ln 2]

8π
− δ4

8π

{
− 3 Im b2 ln(2/δ)

(
Im b2 + π ln 2

4

)

+ π ln 2

16
(5 Im b2 + 12 Im b3) + Im b2(Im b2 + 3 Im b3)

}
+ o(δ4). (A37)

This yields for (A31)

�Y (u) = (Im b2)2δ3

4π
+ 3 (Im b2)2 δ4 ln(2/δ)

8π
− δ4 Im b2

64π
(8 Im b2 + 24 Im b3 + π ln 2) + o(δ4). (A38)
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After substitution of the obtained earlier values (A23) of the
constants Im b2, Im b3 into this result, we arrive finally at
(51).

To conclude this section, we comment on the perturbative
analysis around the CFT critical point of two similar TBA
equations, which were previously performed by Klümper [18]
and by Destri and de Vega [10].

The nonlinear integral TBA equation (3) in [18] studied
by Klümper describes the thermodynamic properties of the
infinite antiferromagnetic isotropic spin-1/2 Heisenberg chain
in the presence of a uniform magnetic field. In the case of zero
magnetic field, this equation differs from Eq. (46b) only by
one term. Namely, the driving term u cosh β in the right side
of (46b) replaces [35] the term πJ/T

cosh β
in Eq. (3) in [18]. Despite

this difference, the low-temperature asymptotical analysis of
the nonlinear TBA equation (3) presented in Sec. 2 of [18] has
some similarities with our small-u perturbative calculations
described in this section. In particular, the small parameters

T
π J and L−1 = 1/ ln(πJ/T ) used in Sec. 2 of [18] are anal-
ogous to the small parameters u and δ = 1/ ln(2/u), which
we have exploited in the calculations described above. Note,
finally, that we have calculated four temperature-dependent
terms in the asymptotic expansion (53) for the free energy,
while only two such terms were obtained in the analogous
expansion (26) in [18].

The nonlinear integral TBA equation for the sine-Gordon
(massive Thiring) model was obtained by Destri and de Vega;
see Eq. (5.12) in [10]. Its asymptotical analysis close to the
conformal regime was performed by these authors in Sec. 7.3.
While the driving term in this equation is the same as in our
Eqs. (46), the kernels G0(�, γ ), G1(�, γ ) [see Eq. (5.13) in
[10] and the non-numbered foregoing equation there [36]] in
the integral terms are different. Namely,

G0(�, γ ) = 1

2π i

∂ ln S(�, γs(γ ))
∂�

=
∫ ∞

−∞

dk

4π

sinh
[(

π2

2γ
− π

)
k
]

sinh
[(

π2

2γ
− π

2

)
k
]

cosh(πk/2)
eik�,

(A39)

G1(�, γ ) = G0(� + iπ, γ ), (A40)

where S(�, γs) is the soliton-soliton scattering amplitude (40)
in the sine-Gordon model and parameters γ and γs are related
according to (42). In the limit γ → 0, the integral kernel
(A39) degenerates to the form (38),

lim
γ→0

G0(�, γ ) = Q(�).

So, the integral nonlinear TBA equations (46) describing the
scaling behavior of the gapped XXZ spin chain represent
the degenerate γ → 0 limiting case of the TBA equations
for the sine-Gordon model derived by Destri and de Vega.
However, our small-u asymptotical analysis described in this
section is to a large extent different from that developed by
Destri and de Vega in Sec. 7.3 in [10]. The reason is that in
our case the integral kernel Q(�) = G0(�, 0) decays slowly
∼�−2 at large rapidities |�|, whereas in the nondegenerate
case γ > 0 studied in [10], the kernel (A39) exponentially

vanishes at |�| → ∞; see the non-numbered equations be-
tween (7.24) and (7.25) in [10].

APPENDIX B: FIELD-THEORETICAL DERIVATION
OF (58)

The continuous limit of the XXZ spin chain (1) near
the isotropic point � = 1 can be described by the marginal
perturbation of the Gaussian CFT [37,38],

H = HWZW − 8π2

√
3

∫ Lx

0
dx [gx(JxJ̄x + JyJ̄y) + gzJ

zJ̄z].

(B1)

Here HWZW is the Hamiltonian of free bosons compactificated
at the radius R = 1/

√
2π or, equivalently, the SU(2) Wess-

Zumino-Witten (WZW) Hamiltonian of level k = 1. Opera-
tors Ja and J̄a, with a = x, y, z, represent the components of
the holomorphic and antiholomorphic currents, respectively.
Their normalization can be fixed by the operator product
expansions (OPE),

Ja(z)Jb(z′) = δab

8π2(z − z′)2
+ iεabc

2π (z − z′)
Jc(z) + · · · ,

J̄a(z̄)J̄b(z̄′) = δab

8π2(z̄ − z̄′)2
+ iεabc

2π (z̄ − z̄′)
J̄c(z̄) + · · · .

(B2)

Following [32,37], the normalization in Eq. (B1) has been
chosen to ensure that the operators multiplying g in the
isotropic case [see Eq. (B7) below] have a correlation function
with unit amplitude. The renormalization group (RG) flow of
the scaling parameters in (B1) in the one-loop approximation
is described by the Kosterlitz-Thoulless RG equations [37],

βx ≡ d gx/dr = − 4π√
3

gx gz,

βz ≡ d gz/dr = − 4π√
3

g2
x, (B3)

where r = ln L and L is the length scale.
Two RG trajectories are shown in Fig. 5. The dashed

bisector of the first quadrant gx = gz ≡ g > 0 corresponds to
the isotropic point � = 1 of the spin-chain Hamiltonian (1).
The RG equations (B3) reduce in the isotropic case to the

gz

gx

>1
=1

FIG. 5. Kosterlitz-Thouless RG flow corresponding to Eqs. (B3)
at � > 1 and � = 1.
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simple equation

dg(r)

dr
= −πb g2(r), (B4)

with b = 4/
√

3. Its solution taking the value g(r0) at the initial
point r0 � ln a reads as

g(r) = g(r0)

1 + π b g(r0)(r − r0)
. (B5)

The leading asymptotics of this solution at r → ∞ does not
depend on g(r0),

g(r) = 1

πb (r − r0)
+ O(r−2). (B6)

Along the critical line, the effective Hamiltonian (B1) reduces
to the form

HXXX = HWZW − g
∫ Lx

0
dx ϕ(x), (B7)

where ϕ(x) is the marginally irrelevant operator,

ϕ(x) = 8π2

√
3

J(x) · J̄(x). (B8)

In the Euclidean plane, its two- and three-point correlation
functions are fixed due to (B2),

〈ϕ(r1)ϕ(r2)〉 = 1

|r1,2|4 , (B9)

〈ϕ(r1)ϕ(r2)ϕ(r3)〉 = − b

|r1,2|2|r1,3|2|r2,3|2 , (B10)

where ri, j = ri − r j .
Affleck et al. [32] considered the generalization of the

effective Hamiltonian (B7) to the case of the WZW model
with arbitrary positive integer k, and performed for it the
perturbative calculation of the ground-state energy E0 to the
third order in g. In the case k = 1, their result [see the non-
numbered equation between Eqs. (8) and (9) in [32]] reads

E0(g) = e0Lx − π

6Lx
− π4

3Lx
bg3 + · · · , (B11)

where e0 denotes the nonuniversal bulk energy density in the
infinite system. Note that Affleck et al. [32] did not present
the details of their calculation of E0(g). However, similar
perturbative calculations were described earlier by Cardy
[39,40], and in the most detailed form by Ludwig and Cardy
[41]. After replacement of g in (B11) by its renormalization
group improved value g → 1/[πb ln(L/a)] with L ∼ Lx in
accordance with (B6), the authors of [32] arrived finally at
(57). This result was later confirmed by Lukyanov [38].

Let us turn now to the anisotropic case 0 < η � 1, and
show how the asymptotic formula (58) can be derived follow-
ing the strategy outline above. To this end, consider the RG
flow in the massive antiferromagnetic phase � > 1, which is
illustrated by the upper trajectory in Fig. 5. The first integral
Ax = g2

x − g2
z of the Kosterlitz-Thoulless RG equations (B3)

remains positive along it. The solution of the RG equations

(B3), which corresponds to this trajectory reads

gz(r) = −√
Ax tan

(
4πr

√
Ax

3

)
,

gx(r) =
√

Ax + g2
z (r), (B12)

with r varying in the interval rmin < r < rmax, where

rmax = −rmin = 1

8

√
3

Ax
.

The well-known arguments (see p. 124 in [42]) lead to the
requirement rmax − rmin � ln[ξ (η)/a], which allows one to-
gether with (7) and (8) to relate parameters Ax and η,

Ax = 3η2

4π4
. (B13)

Note also that

r − rmin � ln[L/a], rmax − r � ln[ξ (η)/L]. (B14)

Let us choose now the running point {gz(r), gx(r)} in the
upper RG trajectory in such a way that

gz(r) < 0, gx(r) > 0, (B15)

√
Ax � gx(r) � 1. (B16)

Under these conditions, the RG trajectory approaches its
asymptote gx = −gz in the second quadrant, the argument of
the tangent in Eq. (B12) lies slightly below its pole at π/2,
and one finds from (B12)–(B14)

gz(r) ∼= −
√

3

4π (rmax − r)
∼= −

√
3

4π ln[ξ (η)/L]
, (B17)

gx(r) ∼= −gz(r) ∼=
√

3

4π ln[ξ (η)/L]
, (B18)

where ξ (η)/L � 1. For such a choice of the scaling variables
gx, gz, we can approximately represent the effective Hamilto-
nian (B1) in the form

H = HWZW − gx

∫ Lx

0
dx 
(x), (B19)

where gx > 0, and 
(x) is the following marginally relevant
operator


(x) = 8π2

√
3

[Jx(x)J̄x(x) + Jy(x)J̄y(x) − Jz(x)J̄ z(x)]. (B20)

Its two- and three-point correlation functions in the plane can
be easily found from (B2),

〈
(r1)
(r2)〉 = 1

3|r1,2|4 , (B21)

〈
(r1)
(r2)
(r3)〉 = − b


|r1,2|2|r1,3|2|r2,3|2 , (B22)
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where b
 = −4/
√

3. Note that Eq. (B18) can be rewritten as

gx(r) ∼= 1

π b
 ln[L/ξ (η)]
. (B23)

The ground-state energy of the Hamiltonian (B19) can
be calculated perturbatively in the small parameter gx. This
calculation literally reproduces the derivation of Eq. (B11)
outlined above, in which one should replace ϕ(x) → 
(x),

g → gx, and b → b
. Accordingly, one obtains instead of
(B11)

E (a f )
0 (Lx, gx ) = e0 Lx − π

6Lx
− π4

3Lx
b
 g3

x + · · · . (B24)

After further replacement of the scaling variable gx by its RG
improved value (B23) and setting L ∼ Lx, one arrives at the
final result (58).
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