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Probabilistic properties of detrended fluctuation analysis for Gaussian processes
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Detrended fluctuation analysis (DFA) is one of the most widely used tools for the detection of long-range
dependence in time series. Although DFA has found many interesting applications and has been shown to be
one of the best performing detrending methods, its probabilistic foundations are still unclear. In this paper, we
study probabilistic properties of DFA for Gaussian processes. Our main attention is paid to the distribution of
the squared error sum of the detrended process. We use a probabilistic approach to derive general formulas for
the expected value and the variance of the squared fluctuation function of DFA for Gaussian processes. We
also get analytical results for the expected value of the squared fluctuation function for particular examples
of Gaussian processes, such as Gaussian white noise, fractional Gaussian noise, ordinary Brownian motion,
and fractional Brownian motion. Our analytical formulas are supported by numerical simulations. The results
obtained can serve as a starting point for analyzing the statistical properties of DFA-based estimators for the
fluctuation function and long-memory parameter.
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I. INTRODUCTION

Detrended fluctuation analysis (DFA) was introduced in
1994 by Peng et al. for analyzing DNA sequences [1]. The
DFA method is very popular in various fields of science
and engineering since it is one of the most widely used
techniques for detection of long-range dependence (called
also long memory) in time series [2–8]. Such dependence
is defined via the autocorrelation function C(s) with a time
lag s of a time series. If the summation over all time lags
diverges then the time series is called long-range dependent.
This property reflects the asymptotic power-law decay of the
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autocorrelation function, C(s) ∼ s−δ , with the long-memory
parameter δ ∈ (0, 1] [9,10].

If the summation converges the process is called
short-range dependent. In order to estimate δ of a time series,
one can use the estimator of the autocorrelation function. Un-
fortunately, this approach has several practical drawbacks, es-
pecially for a small number of data points [11,12]. A possible
solution is to introduce another time-averaged statistic which
may characterize the memory properties. One of the most
powerful statistics is the fluctuation function F (s) of the DFA.
It provides an indirect way of estimating the long-memory
parameter δ. The time axis is divided into segments of length
s. In every segment v the squared error sum f 2(v, s) between
the summed time series and the polynomial fit is calculated.
The squared fluctuation function is the average of these
squared error sums and scales as F 2(s) ∝ s2α with fluctuation
parameter α, which is connected to δ via α = 1 − δ/2 and to
an anomalous diffusion exponent, as in, e.g., fractional Brow-
nian motion (FBM). For large s the power-law behavior of
the squared fluctuation function of the DFA can be seen more
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easily in a log-log plot than the power law of C(s), because
F 2(s) is an increasing function with respect to s. Another
important property of the DFA is its ability to remove the
influence of external trends on the estimation of α whereas
the sample autocorrelation function estimates δ only for
stationary time series. All these abilities of DFA in addition
with its easy implementation made it a successful tool for
data analysis over the years.

Despite its success, there are only a few articles investi-
gating the probabilistic properties of DFA. In fact, the main
focus of most analytical studies of DFA is the scaling behavior
[12–17] and the relationship to known statistical quantities
[11,18–26]; see [26] for a detailed description of these articles.
The asymptotic scaling behavior of the squared fluctuation
function and the linear regression estimator for the parameter
α have been studied in [27] for fractional Gaussian noise.
Furthermore, in [26] it was derived that the squared error
sums f 2(v, s) are identical to weighted squared displacements
of the summed time series. The procedure of detrending is
then attributed to these weights, which allows one to explain
detrending not only for external polynomial trends but also
for fractional Brownian motion. However, the probabilistic
properties of the squared error sum and fluctuation function
have not been explored in detail.

In this paper, we study probabilistic properties of the
squared fluctuation function of DFA for a general family of
Gaussian processes. In fact, the fluctuation function of DFA,
calculated on a finite data set, is a random variable itself with a
yet unknown distribution. Using the theory of quadratic forms
of Gaussian processes we find the distribution of the squared
error sum of the detrended process. In contrast to the papers
mentioned above, where only the asymptotic behavior of the
expected value and the variance of the squared fluctuation
function are considered, we proved the exact formulas for
those quantities for general centered Gaussian process.

This paper continues the authors’ recent research on an-
other time-averaged statistic, namely time-averaged mean
squared displacement, for the Gaussian processes [28] and
serves as a starting point for the analysis of the statistical
properties of the DFA-based estimators for fluctuation pa-
rameter α and the long-memory parameter δ. In this article,
we present general formulas for the expected value and the
variance of the squared fluctuation function for arbitrary order
q of detrending. For the exemplary Gaussian processes we
demonstrate the results for the cases q = 0 and q = 1.

II. EXPECTED VALUE AND VARIANCE OF SQUARED
FLUCTUATION FUNCTION FOR GAUSSIAN PROCESSES

In what follows we consider the centered Gaus-
sian process {Z (t )} and the corresponding time series
{Z (1), Z (2), . . . , Z (N )}. We define a path time series as a
cumulative sum of the time series {Z (1), Z (2), . . . , Z (N )}:

X (t ) =
t∑

i=1

Z (i), t = 1, 2, . . . , N. (1)

The time series {X (1), X (2), . . . , X (N )} is also a cen-
tered Gaussian. We denote its covariance matrix as � =
{E [X (i)X ( j)] : i, j = 1, 2, . . . , N}. The procedure of de-
trended fluctuation analysis is based on the time series

{X (1), X (2), . . . , X (N )} and consists of several steps. First,
the time axis 1, 2, . . . , N is divided into K segments of length
s, K = [N/s]. In every segment v, v = 1, 2, . . . , K , we derive
the squared error sum of the detrended process f 2(v, s) as

f 2(v, s) = 1

s

s+dv∑
t=1+dv

[X (t ) − pv (t )]2

= 1

s

s∑
t=1

[Yv (t )]2 = YvY
T
v , (2)

where pv (·) is the fitting polynomial of order q in the segment
v obtained by ordinary least-squares method and dv = (v −
1)s. The vector Yv = {Yv (t ) : t = 1, . . . , s} has the compo-
nents Yv (t ) = X (t + dv ) − pv (t + dv ). The order q of pv (·) is
a free parameter. The first three orders of constant, linear, and
quadratic detrending, q = 0, 1, and 2, are the ones which are
mostly used in practical applications. Finally, the square of the
fluctuation function of DFA is the average over all the squared
error sums:

F 2(s) = 1

K

K∑
v=1

f 2(v, s) = 1

[N/s]

[N/s]∑
v=1

f 2(v, s). (3)

In this paper, we provide the formulas for arbitrary q and get
explicit results for q = 0 and 1. The fit of order q is pv (t ) =∑q

m=0 âm,vtm. The coefficients âm,v can be calculated directly
from the system of linear equations⎛

⎜⎝
â0,v

...
âq,v

⎞
⎟⎠ =

⎛
⎜⎝

S0,v · · · Sq,v

...
. . .

...
Sq,v · · · S2q,v

⎞
⎟⎠

−1⎛
⎜⎝

∑s+dv

i=1+dv
X (i)

...∑s+dv

i=1+dv
iqX (i)

⎞
⎟⎠ (4)

with S j,v = ∑s+dv

i=1+dv
i j , j = 0, 1, 2. Using Eq. (4) the fit can

be written as a weighted sum of X (i), i = 1 + dv, . . . , s + dv:

pv (t ) =
s+dv∑

i=1+dv

X (i)Pv (i, t ). (5)

The weights are defined as

Pv (i, t ) =
q∑

m,n=0

tmin
(
S−1

v

)
m+1,n+1, (6)

where S−1
v is the inverse matrix of the matrix Sv with the

elements (Sv )m,n = Sm+n−2,v . From Eqs. (5) and (6) we get

Yv (t ) =
s∑

i=1

X (i + dv )[δi,t − Pv (i + dv, t + dv )], (7)

with δ·,· being the Kronecker delta and i, t = 1, 2, . . . , s. The
weights Pv (i + dv, t + dv ) can be expressed in explicit form
for zeroth order of detrending q = 0 as

Pv (i + dv, t + dv ) = 1

s
(8)

and for first order of detrending q = 1 as

Pv (i + dv, t + dv )

= 6i(2t − s − 1) + 2(s + 1)(−3t + 2s + 1)

s3 − s
. (9)
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It is also possible to calculate the weights for any higher order
of detrending. It can be shown that Pv (i + dv, t + dv ) does not
depend on the number v of the segment. Thus Eq. (7) can be
written as

Yv (t ) =
s∑

i=1

X (i + dv )[δi,t − P1(i, t )]. (10)

The covariance E [Yv (m)Yu(n)], m, n = 1, 2, . . . , s of the
vectors Yv = {Yv (t ) : t = 1, . . . , s} and Yu = {Yu(t ) : t =
1, . . . , s} for each v, u = 1, 2, . . . , [N/s] has the form

E [Yv (m)Yu(n)] =
s∑

i, j=1

E [X (i + dv )X ( j + du)]

× [δi,m − P1(i, m)][δ j,n − P1( j, n)]. (11)

Let us go back to Eq. (2). According to the Gaussian quadratic
forms theory [29], s f 2(v, s) has a so-called generalized χ2-
squared distribution, namely

s f 2(v, s)
d=

s∑
j=1

λ j (v)Uj, (12)

where Uj’s are independent identically distributed random
variables having χ2 distribution with one degree of free-
dom, E [Uj] = 1, Var [Uj] = 2, and weights λ j (v) are the
eigenvalues of the covariance matrix �Yv

= {E [Yv (m)Yv (n)] :
m, n = 1, . . . , s}; see Eq. (11). Therefore, for random quantity
f 2(v, s) the expected value and the variance are as follows:

E [ f 2(v, s)] = 1

s

s∑
j=1

λ j (v) = 1

s
tr(�Yv

)

= 1

s

s∑
j=1

E [Y 2
v ( j)], (13)

Var[ f 2(v, s)] = 2

s2

s∑
j=1

λ2
j (v) = 2

s2
tr

(
�2
Yv

)

= 2

s2

s∑
i, j=1

{E [Yv (i)Yv ( j)]}2. (14)

To get (13) and (14) we use two important facts from linear
algebra, namely (i) the sum of all eigenvalues of a given
matrix is equal to the trace of that matrix, and (ii) the sum
of squared eigenvalues of a given matrix is the trace of this
matrix taken to the power 2 [30]. Equations (13) and (14) are
the first main result of the paper.

Notice that the distribution of the quadratic form s f 2(v, s)
given in (12) can be represented as a sum of s independent
gamma distributed random variables with constant shape pa-
rameter 1/2 and different scale parameters [31]. Namely

s f 2(v, s)
d=

s∑
j=1

G(1/2, 2λ j (v)), (15)

where G(k, θ ) is the gamma distributed random variable with
parameters k and θ . The characteristic function, the moment
generating function, and the probability density function for
f 2(s, v) are presented in Appendix A 1.

The expected value and the variance of the squared error
sum of the detrended process f 2(v, s) allow calculating the

same quantities for the squared fluctuation function F 2(s).
Namely, the expected value of the F 2(s) takes the form

E [F 2(s)] = 1

[N/s]

[N/s]∑
v=1

E [ f 2(v, s)]

= 1

s[N/s]

[N/s]∑
v=1

s∑
j=1

E
[
Y 2

v ( j)
]
, (16)

where the last equality comes from formula (13) and E [Y 2
v ( j)]

can be calculated with formula (11) with v = u. Respectively,
the variance of F 2(s) has the form

Var[F 2(s)] = 2

s2[N/s]2

[N/s]∑
v,u=1

s∑
t,w=1

[E [Yv (t )Yu(w)]]2, (17)

where E [Yv (t )Yu(w)] is calculated according to the for-
mula (11). The details of the derivation are presented in
Appendix A 2. Equations (16) and (17) are our second main
result. We stress again that Eqs. (13) and (14) as well as (16)
and (17) are valid for any value of parameter q.

III. EXPECTED VALUE OF SQUARED FLUCTUATION
FUNCTION FOR EXEMPLARY GAUSSIAN PROCESSES

In this section, we present behavior of the expected value
of the squared fluctuation function for selected Gaussian
processes for detrending parameters q = 0 and q = 1. We also
illustrate the theoretical results by numerical simulations.

A. Gaussian white noise

As the first example we consider the path time se-
ries {X1(1), X1(2), . . . , X1(N )} of Gaussian white noise
W N (0, σ 2), that is the process {X1(t )} with E [X1(t )] = 0 and
the autocovariance function given by

E [X1(t )X1(t + τ )] =
{
σ 2 if τ = 0,

0 if τ �= 0.
(18)

Using Eq. (16) for W N (0, 1) we obtain

E [F 2(s)] = s − 1

s
(19)

for q = 0, while

E [F 2(s)] = s − 2

s
(20)

for q = 1. The details are presented in Appendix A 3. Equa-
tion (20) is an exact result which, to the best of our knowledge,
was not obtained before. This is our third main result.

In Fig. 1 we demonstrate a comparison between the theo-
retical expected value of the squared fluctuation function for
W N (0, 1) given in (20) and the empirical one for q = 1 for
the simulated trajectories of the considered process. As one
can see, the theoretical and empirical expectations coincide.

B. Fractional Gaussian noise

As the second example we consider the path time se-
ries {X2(1), X2(2), . . . , X2(N )} of fractional Gaussian noise
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FIG. 1. The comparison between theoretical and empirical ex-
pected values of the squared fluctuation function for q = 1 for
W N (0, 1) for N = 100 (the time series length). The number of
Monte Carlo simulations is M = 500.

(FGN). The FGN is a stationary process which defined heuris-
tically as the derivative of the fractional Brownian motion
[32–34]. The autocovariance function of FGN is given by

E [X2(t )X2(t + τ )] = D
(τ + 1)2H − 2τ 2H + |τ − 1|2H

2
,

(21)

where parameter H ∈ (0, 1) is the Hurst exponent, and D > 0
is the diffusion coefficient. In our consideration we assume for
simplicity D = 1. Notice that for H = 0.5 the FGN reduces to
the white noise process considered above. Using Eq. (16) we
obtain that for FGN with D = 1 and H �= 0.5 the expectation
of F 2(s) for large s behaves as

E [F 2(s)] ≈ 1 − s2H−2 (22)

for q = 0, while

E [F 2(s)] ≈ 1 − 2
2 − H

H + 1
s2H−2 (23)

for q = 1. The details are presented in Appendix A 4. Equa-
tion (23) is the fourth main result of the paper.

In Fig. 2 we demonstrate the empirical means of the
squared fluctuation function (circle lines) for FGN for q = 1
for two selected values of the H parameter: H = 0.3 (top
panel) and H = 0.7 (bottom panel). Moreover, in Fig. 2 we
present also the theoretical approximation given by the right-
hand side of (23). As one can see, for both cases the empirical
means of the squared fluctuation function and the theoretical
means coincide.

C. Ordinary Brownian motion

As the third example we analyze the path time series
{X3(1), X3(2), . . . , X3(N )} which represents the trajectory of
ordinary Brownian motion (OBM), that is a Gaussian process
with stationary independent increments. The autocovariance
function of OBM is given by

E[X3(t )X3(t + τ )] = 2Dt, t, τ > 0, (24)

where D > 0. In further analysis we assume D = 1/2. Using
formula (16) we obtain the exact value of the squared fluctua-
tion function for OBM:

E [F 2(s)] = s2 − 1

6s
(25)
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E
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(a)

empirical
theoretical
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0.8
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E
[F

2 (s
)]

(b)

FIG. 2. The empirical mean of the squared fluctuation function
F 2(s) for q = 1 for FGN (circle lines) with H = 0.3 (top panel)
and H = 0.7 (bottom panel) and the corresponding theoretical ones
(solid line). The trajectory length N = 256 and the number of Monte
Carlo simulations used to calculate the empirical mean is M = 500.

for q = 0, while

E [F 2(s)] = s2 − 4

15s
(26)

for q = 1 with s > 2. The details are presented in
Appendix A 5. Equations (25) and (26) reproduce the result
that was obtained earlier by a different method in Ref. [11]. In
the present paper we rederive it by using the general analytical
technique developed in Sec. II.

In Fig. 3 we demonstrate a comparison between the em-
pirical expected value for the squared fluctuation function for
q = 1 for OBM and the theoretical one given by Eq. (26). As
one can observe, the theoretical and empirical expectations
coincide.

D. Fractional Brownian motion

As the last example, we consider the path time series
{X4(1), X4(2), . . . , X4(N )}, which represents the trajectory
of fractional Brownian motion [9,10]. The FBM is a cen-
tered Gaussian process with the self-similarity index (Hurst

50 100 150 200 250 300 350 400 450 500

s

0

20

40

E
[F

2 (s
)]

empirical
theoretical

FIG. 3. The comparison between theoretical and empirical ex-
pected values of the squared fluctuation function for q = 1 for OBM
for D = 1, N = 512. The number of Monte Carlo simulations is
M = 500.

032114-4



PROBABILISTIC PROPERTIES OF DETRENDED … PHYSICAL REVIEW E 101, 032114 (2020)

exponent) H , 0 < H < 1. When H < 1/2 the increments of
FBM are negatively correlated. For H > 1/2 the increments
of FBM are positively correlated. The autocovariance function
of FBM is given by

E[X4(t )X4(t + τ )] = D(t2H + (t + τ )2H − |τ |2H ), (27)

where D > 0 is the diffusion coefficient. For simplicity, we
assume D = 1. Using formula (16) for large s and q = 0 we
obtain

E [F 2(s)] ≈ 2s2H

(2H + 1)(2H + 2)
, (28)

while for q = 1 the following scaling holds:

E [F 2(s)] ∝ s2H , s → ∞. (29)

The detailed calculations are presented in Appendix A 6.
Equation (29) reproduces the asymptotic behavior that was
derived earlier in [11,13,14,16,27]. It is worthwhile to note
that similar to [13,27] our approach here allows us to take the
interdependence of the segments, which are sections of a sin-
gle time series, into account explicitly. This is important since
for nonstationary processes it is not a priori clear that Eq. (3)
is an average over identically distributed terms; see also [26].
If the signal is the additive composition of a fluctuating
part z1(t ) plus a systematic trend z2(t ), Z (t ) = z1(t ) + z2(t ),
then the fluctuation function (and hence also its expectation
value) is the sum of the fluctuation functions of z1(t ) and
z2(t ). The detrending procedure is intended to suppress the
contribution of z2(t ) in the signal and thereby to isolate the
contribution of the fluctuating part of the signal. But even
if there is no systematic trend on the time series, Eq. (2)
requires subtracting a fitted polynomial from the sequence
X (t ). So one might wonder whether this operation distorts the

50 100 150 200 250
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E
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2 (s
)]

(a)

empirical
theoretical
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(b)

FIG. 4. The empirical means (circle line) of the squared fluc-
tuation function for q = 1 for FBM for H = 0.3 (top panel) and
H = 0.7 (bottom panel) and the corresponding theoretical expected
values given by the right-hand side of Eq. (29) with fitted prefactor a
of the functions as2H by the least-squares method (the solid line).
The trajectory length N = 256 and the number of Monte Carlo
simulations used to calculate the empirical mean is M = 500.
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FIG. 5. The empirical means of the squared fluctuation function
for q = 0, 1, and 2 for FBM with H = 0.3 (top panel) and H = 0.7
(bottom panel). The trajectory length N = 256 and the number of
Monte Carlo simulations used to calculate the empirical mean is M =
500.

scaling exponent. It is necessary to consider the full segment
dependent calculation as presented in Appendix A 6, which is
a different approach than in [26] and hence another proof that
detrending does not destroy the asymptotic scaling behaviour
of FBM.

In Fig. 4 we demonstrate the empirical means (circle line)
of the squared fluctuation function for q = 1 for FBM for
two selected values of the H parameter, namely H = 0.3
(top panel) and H = 0.7 (bottom panel). We also present the
corresponding theoretical expected values given by the right-
hand side of Eq. (29) with fitted prefactor a of the functions
as2H by the least-squares method (the solid line) in order to
demonstrate the asymptotic behavior of the considered quan-
tity. One can see that the simulations confirm the theoretical
result given in Eq. (29).

In order to demonstrate the influence of the order of
detrending, namely the q parameter, on the expected value of
the squared fluctuation function for FBM, in Fig. 5 we show
the results for q = 0, 1, and 2. The corresponding expected
values are calculated for the 500 simulated trajectories of
FBM for H = 0.3 and H = 0.7. We see that the deviations
of the asymptotic behavior of the expectation of the F 2(s)
statistic are much smaller between the cases q = 1 and q = 2
than between q = 0 and q = 1.

IV. CONCLUSIONS

The fluctuation function of DFA, evaluated with a single
time series, is a random variable itself. In this paper we
study its probabilistic properties. We present the distribution
of the single time window squared error f 2(ν, s) for gen-
eral centered Gaussian processes. From this expression we
derive the variance of the fluctuation function F 2(s), which
can be used to define an s-dependent confidence intervals
around the numerical results of DFA. We consider this as
the first step towards the assessment of statistical estimation
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errors on the scaling exponent α of DFA. We have proved
the formulas for the expected value and the variance of the
squared fluctuation function for Gaussian processes and order
of detrending. Based on that, we have analyzed the asymptotic
behavior of the expectation of the F 2(s) random variable for
selected Gaussian processes for special cases of detrending.
The theoretical results are confirmed by numerical simulation.
The paper can be a starting point for studying probabilistic
properties of the fluctuation parameter estimator.

The next key step in the theory will be to achieve analogous
results for similar methods such as detrending moving aver-
age (DMA) [35–38] and for multifractial extensions, namely
multifractal DFA (MF-DFA) [39] and multifractal DMA
(MF-DMA) [40]. The method of DMA is well-established
[5,7,41–48] and its detrending operation works similarly to
DFA [26], which implies a natural application of our approach
to DMA. Such extensions as MF-DFA [49,50] and MF-DMA
[51,52] were recently applied to many diverse fields. To the
best of our knowledge, the probabilistic properties of these
methods have not been studied in detail yet. We hope that the
methodology of this paper and the results presented will be
useful for multifractal analysis as well.
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APPENDIX

1. Probability distribution of the squared error sum

The probability density function of gamma distributed
random variable G(k, θ ) with shape parameter k and scale
parameter θ reads

h(k,θ )(x) = xk−1 exp(−x/θ )

�(k) θ k
, x > 0. (A1)

The characteristic function of G(k, θ ) is given by

φ(k,θ )(t ) = 1

[1 − θ it]k
. (A2)

Taking into account Eq. (15) one can see that the characteristic
function of s f 2(v, s) is a product of characteristic functions
of gamma distributed random variables. Thus, the random
variable f 2(v, s) has the following characteristic function:

φv,s(x) = E [exp{i f 2(v, s)x}]

=
s∏

j=1

1

[1 − 2λ j (v)ix/s]1/2
. (A3)

The expressions for the moment generating function and the
probability density function stem from the result of Ref. [31],
which establishes such quantities for a linear combination of
independent gamma random variables. In our case, such a
linear combination is the statistic s f 2(v, s); see Eq. (15). Thus

the moment generating function for f 2(s, v) takes the form

Mv,s(x) = E [exp{i f 2(v, s)x}]

= C(1 − 2λ1(v)x)−s/2 exp

( ∞∑
k=1

γk

(1 − 2λ1(v)x)k

)
,

(A4)

where λ1(v) is the smallest eigenvalue of the matrix �Yv
,

γk =
s∑

j=1

[1 − λ1(v)/λ j (v)]k

2k
, (A5)

and

C =
s∏

j=1

(
λ1(v)

λ j (v)

)1/2

. (A6)

The probability density function for f 2(s, v) is given by

gv,s(x) = C
∞∑

k=0

�k x
s
2 +k−1 exp

(− xs
2λ1(v)

)
�

(
s
2 + k

)( 2λ1(v)
s

) s
2 +k

, (A7)

where �k is expressed by the recursive formula

�k+1 = 1

k + 1

k+1∑
j=1

jγ j�k+1− j, �0 = 1. (A8)

2. Variance of the squared fluctuation function

According to (3) the variance of F 2(s) takes the form

Var
[
F 2(s)

] = 1

[N/s]2
Var

[
[N/s]∑
v=1

f 2(v, s)

]

= 1

[N/s]2

[N/s]∑
v,u=1

Cov[ f 2(v, s), f 2(u, s)]

= 1

[N/s]2

[N/s]∑
v,u=1

E [ f 2(v, s) f 2(u, s)]

− 1

[N/s]2

[N/s]∑
v,u=1

E [ f 2(v, s)]E [ f 2(u, s)]. (A9)

Using the fact that {X (1), X (2), . . . , X (N )} is a time series of
the general centered Gaussian process, we compute

E [ f 2(v, s) f 2(u, s)] = 1

s2
E

[
s∑

tw,=1

Y 2
v (t )Y 2

u (w)

]

= 1

s2

s∑
t,=1

E
[
Y 2

v (t )Y 2
u (w)

]

= 1

s2

s∑
t,w=1

E
[
Y 2

v (t )
]
E

[
Y 2

u (w)
]

+ 1

s2

s∑
t,w=1

2{E [Yv (t )Yu(w)]}2, (A10)
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where the last equality follows from Isserlis’s theorem for the
fourth joint moment of the multivariate normal distribution
[53]. By substituting (A10) and (13) into (A9) we get the
variance given in (17).

3. Example: Gaussian white noise

Taking under consideration Eq. (16), the fact that the
autocovariance function of white noise depends only on the
time lag, and E [X 2

1 (t )] = 1, we obtain

E [F 2(s)] = 1

s

s∑
i,t=1

[δi,t − P1(i, t )]2, (A11)

where P1(·, ·) is given in (9). Next, we will show that

s∑
i,t=1

[δi,t − P1(i, t )]2 =
s∑

i=1

(
1 − 2P1(i, i) +

s∑
t=1

P2
1 (i, t )

)
.

(A12)
Indeed,

s∑
i,t=1

[δi,t − P1(i, t )]2

=
s∑

i=1

(1 − P1(i, i))2 + 1

s

s∑
i=1

s∑
t=1,t �=i

P2
1 (i, t )

=
s∑

i=1

(
1 − 2P1(i, i) +

s∑
t=1

P2
1 (i, t )

)
. (A13)

Taking this formula along with the definition of the P1(·, ·)
function given in (8) for q = 0, we obtain

s∑
i=1

(
1 − 2P1(i, i) +

s∑
t=1

P2
1 (i, t )

)
= s − 1. (A14)

Taking Eq. (A13) along with the definition of P1(·, ·) function
given in (9) for q = 1 and using MATHEMATICA, we get

s∑
i=1

(
1 − 2P1(i, i) +

s∑
t=1

P2
1 (i, t )

)
= s − 2. (A15)

Thus, after plugging (A14) and (A15) into (A11) finally we
obtain Eqs. (19) and (20).

4. Example: Fractional Gaussian noise

Taking under consideration Eq. (16) and the fact that the
autocovariance function of FGN depends only on the time lag
τ , we obtain

E [F 2(s)] = 1

s

s∑
i=1

E
[
X 2

2 (i)
](

1 − 2P1(i, i) +
s∑

m=1

P2
1 (i, m)

)

+ 2

s

s−1∑
τ=1

E [X2(1)X2(1 + τ )]
s−τ∑
i=1

(
−2P1(i, i + τ )

+
s∑

m=1

P1(i, m)P1(i + τ, m)

)
. (A16)

With E [X 2
2 (i)] = 1 for q = 0 and q = 1 one can have

1

s

s∑
i=1

E
[
X 2

2 (i)
][

1 − 2P1(i, i) +
s∑

m=1

P2
1 (i, m)

]

= 1 − 2

s
≈ 1.

In order to find the limit of the second component of the right-
hand side of Eq. (A16), we use the fact that for H �= 0.5

E [X2(t )X2(t + τ )] ≈ H (2H − 1)τ 2H−2. (A17)

Applying formula (8) we obtain for q = 0

s−τ∑
i=1

[
−2P1(i, i + τ ) +

s∑
m=1

P1(i, m)P1(i + τ, m)

]

= − s − τ

s
.

Thus, the second component of the right-hand side of
Eq. (A16) for q = 0 takes the form

− 2

s2
H (2H − 1)

s−1∑
τ=1

τ 2H−2(s − τ )

≈ − 2s2H−1

s(2H − 1)
H (2H − 1) + 2s2H

s22H
H (2H − 1)

= s2H−2(2H − 1 − 2H ) = −s2H−2. (A18)

Thus finally we obtain Eq. (22).
In the case q = 1 with E [X 2

2 (i)] = 1, applying (A17) and
the definition of the P1(·, ·) function given in (9) and using
MATHEMATICA, we obtain

s−τ∑
i=1

[
−2P1(i, i + τ ) +

s∑
m=1

P1(i, m)P1(i + τ, m)

]

= −2 − 2
τ − 2s2τ + τ 3

s3 − s
. (A19)

Thus, the second component of the right-hand side of
Eq. (A16) for q = 1 takes the form

4

s
H (2H − 1)

s−1∑
τ=1

τ 2H−2

(
−1 − 1 − 2s2

s3 − s
τ − τ 3

s3 − s

)
.

(A20)

In order to calculate the above sum, we use the known
approximation [14]

m∑
t=1

t h ≈ mh+1

h + 1
for large m and h �= −1. (A21)

Moreover, for large s we have

2s2 − 1

s3 − s
≈ 2/s and

1

s3 − s
≈ 1/s3. (A22)
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Thus, for large s, Eq. (A20) takes the form

4

s
H (2H − 1)

s−1∑
τ=1

τ 2H−2

(
−1 − 1 − 2s2

s3 − s
τ − 1

s3 − s
τ 3

)
≈ −4

s
H (2H − 1)

(
1

2H − 1
s2H−1 − 2

2H
s2H−1 + 1

2H + 2
s2H−1

)

= −4H (2H − 1)
2(2 − H )

2H (2H − 1)(2H + 2)
s2H−2 = −2

2 − H

H + 1
s2H−2.

(A23)

After plugging (A17) and (A23) into (A16) finally we obtain Eq. (23).

5. Example: Ordinary Brownian motion

Using Eq. (16) for OBM, we obtain the following:

E [F 2(s)] = 2

s[N/s]

[N/s]∑
v=1

∑
k=1

(k + dv )
s∑

j=1

[δk, j − P1(k, j)]2 + 2

s[N/s]

[N/s]∑
v=1

s−1∑
k=1

s∑
i=k+1

(k + dv )
s∑

j=1

[δk, j − P1(k, j)][δi, j − P1(i, j)].

(A24)

First we will show that
s∑

j=1

[δi, j − P1(i, j)][δk, j − P1(k, j)] = δi,k − 2P1(i, k) +
s∑

j=1

P1(i, j)P1(k, j). (A25)

Indeed, For k �= i the left-hand side of (A25) is given by
s∑

j=1

[δi, j − P1(i, j)][δk, j − P1(k, j)] = −[1 − P1(i, i)]P1(k, i) − [1 − P1(k, k)]P1(i, k) +
s∑

j=1, j �=i, j �=k

P1(i, j)P1(k, j)

= −2P1(i, k) +
s∑

j=1

P1(i, j)P1( j, k).

For k = i the left-hand side of (A25) takes the form
s∑

j=1

[δi, j − P1(i, j)][δi, j − P1(i, j)] = [1 − P1(i, i)]2 +
s∑

j=1, j �=i

P1(i, j)P1(i, j) = 1 − 2P1(i, i) +
s∑

j=1

P1(i, j)P1(i, j).

Thus, using Eqs. (A12) and (A25), the formula (A24) takes the form

E [F 2(s)] = 1

s[N/s]

[N/s]∑
v=1

∑
k=1

(k + dv )

⎛
⎝1 − 2P1(k, k) +

s∑
j=1

P1(k, j)2

⎞
⎠

+ 2

s[N/s]

[N/s]∑
v=1

s−1∑
k=1

s∑
i=k+1

(k + dv )

⎛
⎝−2P1(k, i) +

s∑
j=1

P1(k, j)P1(i, j)

⎞
⎠. (A26)

Applying the definition of the P1(·, ·) function given in (8) for q = 0 and in (9) for q = 1 to Eq. (A26) and using MATHEMATICA,
we obtain formulas (25) and (26).

6. Example: Fractional Brownian motion

Using Eqs. (11), (16), and (27) we obtain

E [F 2(s)] = 1

s[N/s]

[N/s]∑
v=1

s∑
j=1

E
[
Y 2

v ( j)
] = 1

s[N/s]

[N/s]∑
v=1

s∑
j,i,k=1

E [X3(i + dv )X3(k + dv )][δi, j − P1(i, j)][δk, j − P1(k, j)]

= 2

s[N/s]

[N/s]∑
v=1

s∑
i,k=1

[i + (v − 1)s]2H
s∑

j=1

[δi, j − P1(i, j)][δk, j − P1(k, j)]

− 1

s

s∑
k,i=1

|i − k|2H
s∑

j=1

[δi, j − P1(i, j)][δk, j − P1(k, j)] = A(s) + B(s), (A27)
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where P1(·, ·) is given in (8) for q = 0 and in (9) for q = 1, and

A(s) := 2

s[N/s]

[N/s]∑
v=1

s∑
i,k=1

[i + (v − 1)s]2H
s∑

j=1

[δi, j − P1(i, j)][δk, j − P1(k, j)], (A28)

B(s) := −1

s

s∑
k,i=1

|i − k|2H
s∑

j=1

[δi, j − P1(i, j)][δk, j − P1(k, j)]. (A29)

In the case q = 0 for large s, by using Eq. (A21) we have

B(s) = −1

s

s∑
k,i=1

|i − k|2H

(
δi,k − 1

s

)

= 2

s2

s−1∑
τ=1

s−τ∑
i=1

|τ |2H = 2

s2

s−1∑
τ=1

|τ |2H (s − τ )

≈ 2(s − 1)2H+1

s(2H + 1)
− 2(s − 1)2H+2

s2(2H + 2)

≈ s2H

(
2

2H + 1
− 2

2H + 2

)

= 2s2H

(2H + 1)(2H + 2)
, (A30)

A(s) ≈ 2

N

N/s∑
v=1

s∑
i,k=1

[i + (v − 1)s]2H

(
δi,k − 1

s

)

= 2

N

N/s∑
v=1

s∑
i=1

[i + (v − 1)s]2H
s∑

k=1

(
δi,k − 1

s

)
. (A31)

Observe that
s∑

k=1

(
δi,k − 1

s

)
= 0;

thus we may neglect the contribution of A(s) at large s. Finally
we obtain (28).

We will show that in the case q = 1 for large s the follow-
ing holds:

A(s) ≈ C1 and B(s) ≈ s2H , (A32)

where C1 is some positive constants. Using formula (9) one
can show that

P1(i, t ) = 2(2s + 1)

s(s − 1)
+ 12it

s(s − 1)(s + 1)
− 6(t + i)

s(s − 1)

= 4

s − 1
+ 2

s(s − 1)

+ 6i(t − s − 1)

s(s − 1)(s + 1)
+ 6t (i − s − 1)

s(s − 1)(s + 1)
. (A33)

Observe that for 1 � i, t � s and large s we have the
following:∣∣∣∣ 6i(t − s − 1)

s(s − 1)(s + 1)

∣∣∣∣ = 6i(s + 1 − t )

s(s − 1)(s + 1)

� 6s2

s(s − 1)(s + 1)
≈ 6

s
. (A34)

We have a similar result for | 6t (i−s−1)
s(s−1)(s+1) |. Thus one can con-

clude that P1(t, s) tends to zero as 1
s when s is large. We

assume P1(i, t ) ≈ E1
s , where E1 is some constant. Therefore,

using Eq. (A25) we obtain for large s

B(s) ≈ −1

s

s∑
k,i=1

|i − k|2H

⎛
⎝δi,k − 2E1

s
+

s∑
j=1

E2
1

s2

⎞
⎠

= −1

s

s∑
k,i=1

|i − k|2H

(
δi,k − 2E1 − E2

1

s

)

= 2
(
E1 − E2

1

)
s2

s−1∑
τ=1

s−τ∑
i=1

|τ |2H

= 2
(
2E1 − E2

1

)
s2

s−1∑
τ=1

(s − τ )|τ |2H

= 2
(
2E1 − E2

1

)
s

s−1∑
τ=1

|τ |2H − 2
(
2E1 − E2

1

)
s2

s−1∑
τ=1

|τ |2H+1.

(A35)

Using (A21) we obtain that, for large s, B(s) tends to infinity
as s2H . In order to prove the behavior of A(s) for large s we
use reasonings similar to those for B(s) behavior, namely

A(s) ≈ 2

N

N/s∑
v=1

s∑
i,k=1

[i + (v − 1)s]2H

(
δi,k + E2

1 − 2E1

s

)

= 2

N

N/s∑
v=1

s∑
i=1

[i + (v − 1)s]2H
s∑

k=1

(
δi,k + E2

1 − 2E1

s

)

= 2

N

N/s∑
v=1

s∑
i=1

[i + (v − 1)s]2H

+2(E2
1 − 2E1)

N

N/s∑
v=1

s∑
i=1

[i + (v − 1)s]2H

= 2(E1 − 1)2

N

N/s∑
v=1

vs∑
i=1+(v−1)s

|i|2H

= 2(E1 − 1)2

N

N/s∑
v=1

vs∑
i=1

|i|2H

− 2(E1 − 1)2

s

N/s∑
v=1

(v−1)s∑
i=1

|i|2H . (A36)
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Now, using (A21) we obtain

A(s) ≈ 2
(
E2

1 − 1
)2

N

N/s∑
v=1

(vs)2H+1

2H + 1

− 2(E1 − 1)2

N

N/s∑
v=1

[(v − 1)s]2H+1

2H + 1

= 2(E1 − 1)2s2H+1

N (2H + 1)(2H + 2)

((
N

s

)2H+2

−
(

N

s
− 1

)2H+2)

= 2(E1 − 1)2s2H+1

N (2H + 1)(2H + 2)

(
N

s

)2H+2(
1 −

(
1 − s

N

)2H+2
)

.

(A37)

Thus, taking the fact that for s 
 N

1 −
(

1 − s

N

)2H+2
≈ (2H + 2)

s

N
, (A38)

we get

A(s) ≈ 2(E1 − 1)2s2H+1

N (2H + 1)(2H + 2)

(
N

s

)2H+2

(2H + 2)
s

N

= 2(E1 − 1)2N2H

(2H + 1)
= C1, (A39)

where C1 is some positive constant. After taking the comment
below Eq. (A35) and the formula (A39), finally we obtain
Eq. (29).
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