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Correlations between avalanches in the depinning dynamics of elastic interfaces
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We study the correlations between avalanches in the depinning dynamics of elastic interfaces driven on a
random substrate. In the mean-field theory (the Brownian force model), it is known that the avalanches are
uncorrelated. Here we obtain a simple field theory which describes the first deviations from this uncorrelated
behavior in a ε = dc − d expansion below the upper critical dimension dc of the model. We apply it to calculate
the correlations between (i) avalanche sizes (ii) avalanche dynamics in two successive avalanches, or more
generally, in two avalanches separated by a uniform displacement W of the interface. For (i) we obtain the
correlations of the total sizes, of the local sizes, and of the total sizes with given seeds (starting points). For
(ii) we obtain the correlations of the velocities, of the durations, and of the avalanche shapes. In general we find
that the avalanches are anticorrelated, the occurrence of a larger avalanche making more likely the occurrence of
a smaller one, and vice versa. Examining the universality of our results leads us to conjecture several exact scaling
relations for the critical exponents that characterize the different distributions of correlations. The avalanche size
predictions are confronted to numerical simulations for a d = 1 interface with short range elasticity. They are also
compared to our recent related work on static avalanches (shocks). Finally we show that the naive extrapolation
of our result into the thermally activated creep regime at finite temperature predicts strong positive correlations
between the forward motion events, as recently observed in numerical simulations.
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I. INTRODUCTION

The motion of elastic interfaces slowly driven in a random
medium is not smooth but proceeds via jumps extending over
a broad range of space and time scale [1,2]. This avalanche
motion is ubiquitous in a number of experimental systems
such as magnetic domain walls [3,4], fluid contact lines [5,6],
earthquakes [7,8], cracks [9–11], or imbibition fronts [12],
often modeled as elastic interfaces. Theoretically, the statics
and the dynamics of elastic interfaces has been studied using
the functional renormalization group (FRG) [13–24]. The
FRG has then been extended to study avalanches, either in
the statics (the so-called shocks) [25,26] or near the depinning
transition [27–33].

An important question is to quantify the temporal and
spatial correlations between successive avalanches. It is well
known that in the case of earthquakes strong temporal corre-
lations are observed, called aftershocks [34]. It was believed
that in the context of elastic interfaces models, correlations be-
tween avalanches arise only if one includes additional mecha-
nisms in the interface dynamics, such as relaxation processes
[35,36] or memory effects [37]. In a recent work [38] we
have studied correlations between “static avalanches.” These
are defined by considering the lowest energy configuration
(i.e., the ground state) of an elastic interface at equilibrium
in presence of both a quenched random potential (which
models the random substrate), and an external quadratic po-
tential centered at some position w. One then finds that, as
a function of this parameter w, the ground state experiences
abrupt reorganizations, called shocks or static avalanches.

In Ref. [38] the correlations of the sizes and locations of
these shocks were studied. There is no dynamics involved
there; one is just probing the structure of the manifold of
equilibrium states. In the dynamics by contrast, the interface is
driven, and its stationary state is different from the equilibrium
one. The avalanches which occur in this stationary state are
of a different nature, they exhibit irreversible behavior (and
hysteresis) and it remains to study their correlations.

In this paper we study the correlations between avalanches
in the depinning dynamics of elastic interfaces driven on a
random substrate. The starting point is the mean-field the-
ory, valid in space dimension d > dc, known as the Brow-
nian force model (BFM) [26–28,39,40], a multidimensional
generalization of the celebrated Alessandro-Beatrice-Bertotti-
Montorsi (ABBM) model [41]. In the BFM, the avalanches
are strictly uncorrelated [39]. Here we obtain a simple field
theory, based on the FRG, which describes the first deviations
from this uncorrelated behavior in a ε = dc − d expansion
below the upper critical dimension of the model [which de-
pends on the range of the elastic interaction, dc = 4 for short-
range (SR) elasticity and dc = 2 for usual long-range (LR)
elasticity]. The elastic model and the avalanche observables
are defined in Sec. II. Section III contains a summary of the
main results, which can be read independently of the details
of the derivation. The field theory is described in Sec. IV and
Appendix C, together with a discussion of the physical origin
of the correlations.

We apply our theory to calculate the correlations of two
successive avalanches, loosely meaning two avalanches which
occur within the same dynamical forward evolution of the

2470-0045/2020/101(3)/032108(26) 032108-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.032108&domain=pdf&date_stamp=2020-03-09
https://doi.org/10.1103/PhysRevE.101.032108


PIERRE LE DOUSSAL AND THIMOTHÉE THIERY PHYSICAL REVIEW E 101, 032108 (2020)

interface in a given pinning landscape. It is convenient to study
two avalanches separated by a given displacement W of the
center of mass of the interface. For W = 0+ this describes
immediately successive avalanches. We study two types of
information: (i) the correlations of the avalanche sizes, in
Sec. V, and (ii) the correlations in the dynamics within each
avalanche, in Sec. VII. More precisely for (i) we obtain the
correlation between the total sizes, the local sizes, and the total
size of avalanches with given seeds (i.e., given the position
of their starting points). We show that the first two results
are equal to this order in the expansion, i.e., to O(ε), to the
ones obtained in the statics [38] for random field disorder
(differences are expected to the next order). These results are
derived here in a much simpler fashion. The third one, the
correlation of the total sizes as the distance between the seeds
is varied, was not considered in Ref. [38]. Some of these
analytical predictions are confronted, in Sec. VI, to numerical
simulations for a d = 1 interface with short range elasticity.
For the dynamics (ii) we obtain the correlations of the veloc-
ities, of the avalanche durations, and of the avalanche shapes,
i.e., of the velocity as a function of time at fixed duration.
For the latter, a deviation from the famous parabola shape is
demonstrated in the correlation. Examining the universal limit
of our results, we obtain some nontrivial (and presumably
exact, i.e., valid beyond the ε expansion) conjectures for a
variety of critical exponents that characterize the correlations.

We find that in the depinning dynamics the avalanches are
anticorrelated, the occurrence of a larger avalanche (in size,
in total velocity etc.) making more likely the occurrence of
a smaller one, and vice versa. The same was observed in
the statics (i.e., for correlations between shocks) for random
field disorder, while both positive and negative correlations
could occur for random bond disorder depending on W . In the
Conclusion we discuss qualitatively some possible extension
at finite temperature which indicates instead the occurrence of
positive correlations in the creep regime.

II. MODEL AND OBSERVABLES

A. Model

We focus on a d-dimensional elastic interface whose po-
sition at point x ∈ Rd and time t ∈ R, is denoted u(x, t ) ∈ R.
The origin of time is arbitrary and negative times can be used
to specify, e.g., the preparation of the system (see below). The
position field satisfies the following overdamped equation of
motion with bare friction coefficient η:1

η∂t u(x, t ) = ∇2
x u(x, t ) − m2[u(x, t ) − w(x, t )]

+ F (u(x, t ), x). (1)

The random pinning force F (u, x) is chosen Gaussian with
correlator

F (u, x)F (u′, x′) = δd (x − x′)�b(u − u′), (2)

where �b(u) denotes the bare correlator, assumed to be a
symmetric short-range function. Here we have restricted to
elastic interfaces with short-range elasticity and the elastic

1We use interchangeably u̇ or ∂t u to denote partial derivatives with
respect to time.
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FIG. 1. The quasistatic process u(x; w) for an elastic interface
slowly driven in a disordered environment exhibits jumps called
avalanches as a function of w (the position of the driving well).
Here an avalanche occurred at w = 0 and another one at w = W
[many others also occurred in between since u(x; 0+) �= u(x,W −)].
The goal of this article is to study the correlations between these two
avalanches, in particular the correlations between the total jumps (the
areas of the two avalanches) or between the local jumps S1(x1) and
S2(x2) indicated on the figure.

coefficient [the coefficient in front of the Laplacian in Eq. (1)]
has been set to unity by a choice of units. The interface is
driven by a parabolic well of stiffness m2 following some
driving protocol w(x, t ). We restrict to monotonous driving
ẇ(x, t ) � 0 which leads to only forward motion u̇(x, t ) � 0
and to the so-called Middleton attractor. The lateral extension
of the interface is noted L > 0 and we assume periodic
boundary conditions, although this will be unimportant as
long as L � 1/m, the scale over which the interface motion is
correlated. Our theory extends to other types of elasticity and
more general microscopic disorder as in Ref. [38] but here we
focus on this setting for the sake of simplicity.

Our aim is to study the avalanches that occur in the so-
called quasistatic limit. There are two main protocols that are
largely equivalent.

(1) In the first protocol the interface driving is w(x, t ) = vt
and we are interested in the stationary state [42] in the limit
v = 0+ where the motion of the interface is intermittent. The
avalanches are defined by the rapid motion u̇(x, t ) � v that
occur in between quiescence periods [of duration of order
1/(Ldv)]. The avalanches can be indexed by the time at which
they occur and their starting point (xi, ti) and we can ask
about the correlations of these avalanches. Equivalently the
process u(x; w) = limv→0 u(x, t = w/v) exhibits jumps as a
function of w that are the avalanches. This process is called
the quasistatic process and our goal is to study correlations
between different given avalanches as a function of W , the
distance along u between two given avalanches, or equiva-
lently T = W/v, the time interval between the two avalanches
(see Fig. 1). Note that for W > 0 many other avalanches have
usually occurred between the two avalanches under study.

(2) In the second protocol we prepare the system in the
same stationary state, stop the driving at w = 0, and wait
for the interface to stop. It is thereby prepared with u̇(x, t =
0) = 0 in the so-called Middleton attractor [42]. Then we
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apply a kick at t = 0, ẇ(x, t ) = δw(x)δ(t ), either (i) local
δw(x) = δw δd (x) or (ii) uniform δw(x) = δw. This produces
some interface motion, that we call an avalanche. Choosing
uniform kicks of vanishing size δw ensures that the interface
stops at the position u(x; δw) previously defined in the first
protocol in the limit v → 0+. To study the correlation between
avalanches, we apply a series of such kicks, waiting each time
for the interface to stop before applying the next kick. After
n � 1 kicks the driving is now at w = nδw and the position
of the interface is u(x; w).

For the sake of simplicity we use in this paper the language
of the second protocol and more often consider uniform kicks
(although the dependence in the positions of the avalanche
starting points, the seeds, will be investigated using a local
kick; see below). We derive results using the functional renor-
malization group and these will be accurate and universal in
the limit of small m (with still L � 1/m), in an expansion
in ε = 4 − d around the upper-critical dimension duc = 4
of the model. We thus restrict ourselves to d < 4, although
equivalent results for d = 4 could be obtained.

B. Observables

We focus on the correlations between two avalanches, the
first occurring after a uniform kick of size δw1 at w = 0 and
the second occurring after a uniform kick of size δw2 at w =
W . If W > 0 potentially many avalanches have also occurred
in between. We start by considering the full velocity field
inside an avalanche. It is convenient to adopt the following
representation. We define two copies of the velocity field
shifted in time u̇1(x, τ1) and u̇2(x, τ2) where τ1 and τ2 denote
the time since the beginning of respectively the first and
second avalanche (i.e., the first and the second kick, recalling
that, according to the second protocol described above there
has been many kicks in between to move the interface from
w = 0 to w = W ).

1. Velocity fields during avalanches and their associated densities

We consider a general observable of the form (i.e., the
generating function of the velocity field)

G[λ] = e
∫

dd xdtλ(x,t )u̇(x,t ). (3)

Decomposing the source field λ(x, t ) as done above for the
velocity, this can be rewritten

G[λ] = G[λ1, λ2] = eλ1·u̇1+λ2·u̇2 , (4)

where here and below we denote for each i = 1, 2

λi · u̇i =
∫

dd x
∫ +∞

0
dτiλi(x, τi )u̇i(x, τi ), (5)

where the source field λ1 (respectively λ2) is only nonvanish-
ing in the first (respectively the second) avalanche.

The generating function G[λ] depends on the size of the
kicks δwi and can be expanded as follows:

G[λ1, λ2] = 1 +
∑
i=1,2

δwi

∫
Du̇iρ[u̇i](e

λi·u̇i − 1)

+ δw1δw2

∫
D[u̇1, u̇2]ρW [u̇1, u̇2](eλ1·u̇1 − 1)

× (eλ2·u̇2 − 1) + O
(
δw2

1, δw
2
2

)
. (6)

This is obtained by decomposing the process into events
where either an avalanche occurs u̇ > 0 or does not occur
u̇ = 0.2 The terms of order δwi account for the contribution to
G coming from events where an avalanche occurred at w = 0
or w = W , while the term of order δw1δw2 accounts for the
contribution to G where avalanches occurred at both positions.
Here the factors ρ[u̇i] denote the (equal by stationarity of the
protocol considered here) functional densities of the instan-
taneous velocity field taking the configuration u̇i(x, τ ) during
the corresponding avalanche (and

∫
Du̇i denotes a functional

integral). It is normalized as
∫

Du̇iρ[u̇i] = ρ0 where ρ0 ∼ Ld

is the total density of avalanches per unit of driving δw.
Similarly ρW [u̇1, u̇2] is the joint density, i.e., it is proportional
to the number of events where two avalanches occurred at
w = 0 and w = W with velocity fields u̇i(x, τ ). A more de-
tailed discussion of the formula (6) is given in Appendix B. If
avalanches were independent, as is the case for the mean-field
BFM (where they form a Levy jump process [26,39]) one
would have ρW [u̇1, u̇2] = ρ[u̇1]ρ[u̇2]. The present theory goes
beyond the independent avalanche process, and allows us to
compute the connected joint density,

ρc
W [u̇1, u̇2] = ρW [u̇1, u̇2] − ρ[u̇1]ρ[u̇2], (7)

which vanishes in the mean-field theory.

2. Total and local avalanche size

The theory presented in this paper allows us to study
any correlation between the two velocity fields in the two
avalanches. In this paper, to make calculations and results
explicit, we will first focus on the total and local size of the
two avalanches (the velocities being studied later in Sec. VII).
The local size of avalanche i = 1, 2 is defined as the total
displacement of the interface at a given point (see Fig. 1),

Si(x) :=
∫ +∞

0
dτiu̇i(x, τi ), (8)

and the total size is given by

Si =
∫

dd xSi(x), (9)

that is, the area spanned by the avalanche.
The densities for these quantities can be obtained by con-

sidering the generating function (4) for source fields chosen as
λi(x, τ ) = λi, for the total size, and as λi(x, τ ) = λiδ

d (x − xi )
for the local sizes S(xi ). Expanding in powers of δwi gives, for
the total size,

G[λ1, λ2] = 1 +
∑
i=1,2

δwi

∫ +∞

0
dSiρ(Si )(e

λiSi − 1) (10)

+ δw1δw2

∫ +∞

0
dS1

∫ +∞

0
dS2ρW (S1, S2)

× (eλ1S1 − 1)(eλ2S2 − 1) + O
(
δw2

1, δw
2
2

)
, (11)

2Here by an avalanche we mean a motion u̇ = O(1). For δw > 0 in
the BFM there is always an avalanche, however most of them are of
vanishing sizes and velocities as δw → 0+.

032108-3



PIERRE LE DOUSSAL AND THIMOTHÉE THIERY PHYSICAL REVIEW E 101, 032108 (2020)

where ρ(S) is the single avalanche total size density (per unit
w) normalized as

∫ +∞
0 dSSρ(S) = 1 and ρW (S1, S2) is the

joint density of the total sizes S1, S2 in the two avalanches.
We also define the connected joint density as

ρc
W (S1, S2) = ρW (S1, S2) − ρ(S1)ρ(S2), (12)

which vanishes in mean-field theory (the BFM) and, as we
show below, is O(ε) where ε = dc − d , near the upper critical
dimension dc = 4. Similarly, for the local size we have the
same expansion (10) with Si → Si(xi ) and the corresponding
densities ρ(Si(xi )) and ρW (S1(x1), S2(x2)). In Sec. V C we will
also study the total size of avalanches conditioned on starting
at a given point. The associated densities are defined in the
same way.

III. SUMMARY OF MAIN RESULTS

We give here a sample of the results obtained below, with
a short discussion, and refer to the corresponding sections
below for detailed derivations and analysis.

Let us recall that the mass m in the equation of motion
(1) provides an upper cutoff Sm for the total sizes of the
avalanches, such that the size distribution decays fast with
S beyond S ∼ Sm. This cutoff is visible if the system length
L � Lm = 1/m, where Lm is the cutoff length in the internal
direction. The typical displacement in the direction of motion
of the largest avalanches is then u ∼ m−ζ , where ζ is the
roughness exponent at depinning, which leads to Sm ∼ m−d−ζ

at small m.
The first set of results concerns the correlations between

the total sizes S1 and S2 of two avalanches separated by W
in the direction of motion (see Fig. 1). We obtain that the
dimensionless normalized covariance is given by

〈S1S2〉c
W

〈S〉2
= −�′′(W )

m4Ld
= −Ad

�̃′′(W mζ )

(mL)d
, (13)

where 〈S〉 is the mean size of a single avalanche. This result
is exact, where the function �(u) denotes the renormalized
disorder correlator defined below in Eq. (25). In the limit
m → 0, the dimensionless function �̃(u) converges to a fixed
point, which can be calculated in a d = 4 − ε expansion, see
(26), or alternatively, measured in a numerical simulation,
as we obtain for d = 1 in Fig. 4 below. The comparison
is plotted in Fig. 2. One thus finds that the distance W
in the direction of motion over which correlations extend
scales naturally as W ∼ m−ζ . Since �̃′′(u) > 0 (see Fig. 5
below), the avalanche sizes are anticorrelated as can be seen
in Fig. 2. A larger avalanche is more likely to be followed,
up to that distance m−ζ , by smaller ones, and vice versa.
Equation (13) quantifies that result. Note that the result for
successive avalanches (meaning, occurring immediately after)
can be obtained setting W = 0+ in that formula. Of course
these will usually not occur in the same region of space, hence
the factor 1/(mL)d in Eq. (13). More detailed results are given
below, such as higher joint size cumulants in Eqs. (44) and
(49), and the connected joint density ρc

W (S1, S2), defined in
Eq. (12) above, in Eqs. (45)–(48). In particular we arrive at

200 400 600 800 1000

�0.10

�0.08

�0.06

�0.04

�0.02

S1 S2 Wc

S 2

W

FIG. 2. Comparison between the measurement of 〈S1S2〉c
W (blue

dots) and our prediction (13) (exact result). The blue dots cor-
responds to direct measurements of the correlations between
avalanches, each dot corresponding to an average over avalanches
for a given W . The dispersion of the cloud of dots gives an estimate
of the accuracy of the measurement.

the conjecture, for small avalanches (much smaller than Sm),

ρc
W (S1, S2) ∼ 1

Sτc
1 Sτc

2

, τc = 2 − 2 + d

d + ζ
(14)

with τc = 1/2 in mean field.
It is important to obtain also spatial information about

avalanche correlations. There are two main types of observ-
ables. Either one measures the local jump S(x) at a given point
x, for a uniform driving of the interface (as above). Or one
performs a kick at some local position x and measures the
total size of the resulting avalanche (which thus has a seed
in x). One can then correlate this information in two distinct
avalanches. The first result obtains the correlations between
the local sizes of the same two avalanches, S1(x1) and S2(x2),
at two different points. Our leading order result, extended to
d = 1, reads

〈S1(x1)S2(x2)〉c
W

〈S(x)〉2

=d=1 −m−3 �′′(W )

4
(1 + m|x2 − x1|)e−m|x2−x1|. (15)

The second observable is the joint connected moment when
the two seeds are separated by x = x2 − x1 (in dimensionless
units),

〈S1S2〉ρc,x
W

= −�̂′′(W )2−1−d/2π−d/2x2−d/2K(d−4)/2(x); (16)

see below for precise definitions. More results about the
spatial dependence of the size correlations are obtained in
Secs. V B and V C.

Some of the above results for the size correlation bear
similarities with the one obtained in Ref. [38] for the “static
avalanches” (the dependence on the position of the seeds was
not discussed there). Let us point out however that the re-
sults are different. Indeed the renormalized disorder correlator
�(W ) which enters all formulas flows to different fixed points
in the statics and in the driven dynamics. In particular, while
positive correlations do occur for short range disorder in the
statics, they do not occur in the dynamics (i.e., at depinning),
and only anticorrelations occur.
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The second set of results obtained in this paper concern
purely dynamical observables which do not have any analog
in the static avalanches. Let us mention some of them. One
finds that the connected density correlation between the total
velocities u̇i = ∫

dd x u̇(x, τi ), i = 1, 2 in two avalanches, de-
fined in Eq. (7), is given by

ρc
W (u̇1, u̇2) = − Ld

m4v2
mS2

m

�′′(W ) rt1/τm

(
u̇1

vm

)
rt2/τm

(
u̇2

vm

)
,

(17)

where vm = Sm/τm is the velocity of large avalanches of sizes
Sm, τm their typical time scale of duration, and the function
rt (u̇) is given by

rt (u̇) = d

dt

(−t + et − 1)et−et u̇/(et −1)

(et − 1)2 . (18)

As above, this is the leading order result within the d = 4 − ε

expansion, which can be extrapolated to d < 4. Similarly one
can ask about the correlation of the durations T1 and T2 of two
avalanches. We find that they are described by

ρc
W (T1, T2) = − Ld

m4S2
mτ 2

m

�′′(W )d (T1/τm)d (T2/τm), (19)

where the function d (T ) is given by

d (T ) = eT [eT (T − 2) + T + 2]

(eT − 1)3
(20)

a result valid for a spatially uniform driving.
Again one may ask about the spatial structure, for a driving

with seeds separated by x. The Fourier transform in x of the
connected density correlation takes the form for any d ,

ρ
c,q, f
W (T1, T2) = 1

(T1T2)α1
c
Gd

(
qT 1/z

1 , qT 1/z
2

)
,

α1
c = 1 − 1

2z
(4 − d − 2ζ ), (21)

where Gd is a scaling function calculated within the epsilon
expansion in Sec. VII A. Finally in Sec. VII B the correlation
of the shapes at fixed duration of the two avalanches is
calculated. For small avalanches, we find that, to leading
order in the epsilon expansion, the correlation between the
celebrated parabolic shape of small avalanches vanishes, i.e.,
the O(T1T2) term, however there is a correlation to the order
O(T 3

1 T 3
2 ).

The main message of this section and of our results is
that the correlations between observables in the successive
avalanches near the depinning of an elastic interface do exist,
and are not at all negligible. The calculation shows that they
arise mostly from the large avalanches (at the level of the
large avalanche cutoff, here Sm, controlled by the mass m),
although there is also some amount of correlations for the
small avalanches, characterized by some nontrivial power law
exponents and universal scaling functions.

We now turn to the derivation of these results.

IV. DYNAMICAL FIELD THEORY FOR VELOCITY FIELD
CORRELATIONS IN TWO AVALANCHES

We now present the dynamical field theory which allows
us to calculate the densities previously introduced to leading
order in the ε = dc − d expansion. We also comment on the
physical origin of the correlations.

A. Field theory

We now go back to consider the generating function
G[λ1, λ2] in Eq. (4) for general sources. Our main result,
justified in Appendix C, is that, to lowest order in an ex-
pansion around mean field (i.e., independent avalanches), the
generating function which only measures the dynamics during
the two avalanches separated by W (see the Introduction) can
be written as a functional average,

G[λ1, λ2] =
∫

D[ũ1, u̇1, ũ2, u̇2]

× e
∑

i=1,2[λi·u̇i+m2δwi
∫

dd xũi (x,τi=0)]−S[ũ1,u̇1,ũ2,u̇2],

(22)

over the following dynamical action:

S[ũ1, u̇1, ũ2, u̇2] = SBFM[ũ1, u̇1] + SBFM[ũ2, u̇2] + �′′(W )

×
∫

dd x
∫

τ1,τ2>0
ũ1(x, τ1)ũ2(x, τ2)

× u̇1(x, τ1)u̇2(x, τ1). (23)

Here SBFM is the dynamical action associated to the BFM
model,

SBFM[u̇, ũ] =
∫

dd x

[∫
τ>0

ũ(x, τ )(η∂τ − ∇2 + m2)u̇(x, τ )

−σ

∫
τ>0

ũ(x, τ )2u̇(x, τ )

]
, (24)

following a uniform kick δw at time τ = 0. Here σ =
−�′(0+) > 0 and here and below �(w) denotes the renor-
malized disorder correlator defined from the two point corre-
lation function of the position of the center of mass, u(w) =
L−d

∫
dd xu(x, t = w/v), as

�(w − w′) = m4Ld [u(w) − w][u(w′) − w′]
c
, (25)

which is implicitly a function of m and reproduces the bare
disorder correlator in the limit of large m, i.e., �b(w) =
limm→+∞ �(w). Here we focus on the universal m → 0 limit,
where �(w) has been shown [18,23] to take the scaling form

�(w) = Ad mε−2ζ �̃(wmζ ), Ad=4 = 8π2,

�̃∗′′(0+) = 1 − ζ1

3
ε + O(ε2) (26)

with Ad = 2d−1πd/2/�(3 − d
2 ). Here �̃(w) converges as

m → 0 to the FRG fixed point �̃∗(w), which is uniformly
of order O(ε) and solution of the FRG fixed point equation,
where ζ = ζ1ε + O(ε2) is the roughness exponent, with ζ1 =
1/3 for interface depinning. Note that the depinning fixed
point has one undetermined, nonuniversal constant κ , i.e., one
can write �̃∗(w) = κ2�∗(w/κ ), however �̃∗′′(0+) is fully
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universal, given in Eq. (26). The corresponding form for
long-range elasticity can be found in Ref. [38]. To lowest
order in ε the model is thus equivalent to two BFM models
with a single inclusion (at some fixed τ1, τ2) of the vertex
�′′(W ) in Eq. (23) [see also (29) below, the result being later
summed over all τ1, τ2]. Diagrammatically it is represented by
two trees (the two BFM’s) joined (i.e., correlated) by a single
vertex �′′(W ), as in Fig. 106 of [38] (the same diagram holds
for the dynamics, with time running upward).

The above theory allows us to calculate exactly the corre-
lations of the velocity field at order O(δw1δw2) and to order
O(ε) in the stationary setting defined in the Introduction.
Expanding Eq. (22) in powers of δw1, δw2 and comparing
with Eq. (6), identifying the terms, we obtain the Laplace
transform of the single avalanche velocity field density in
terms of the correlation of the response field as∫

Du̇1ρ[u̇1][eλ1·u̇1 − 1]

= m2
∫

D[ũ1, u̇1]
∫

dxũ1(x, 0)eλ1·u̇1−SBFM[ũ1,u̇1], (27)

as well as the joint density of velocity fields in the two
avalanches, as∫

D[u̇1, u̇2]ρW [u̇1, u̇2](eλ1·u̇1 − 1)(eλ2·u̇2 − 1)

= m4
∫

D[ũ1, u̇1, ũ2, u̇2]
∫

dx1ũ1(x1, 0)
∫

dx2ũ2(x2, 0)

× e
∑

i=1,2 λi·u̇i−S[ũ1,u̇1,ũ2,u̇2]. (28)

We now make these results more explicit by focusing on
simpler observables, namely the joint densities and corre-
lations of the total sizes S1, S2, as well as the local sizes
S1(x), S2(y) of the two avalanches.

Remark 1. To be more precise, we stress that the above
theory is devised to calculate the O(ε) result for the connected
correlations between two avalanches. For the velocity field
statistics inside a single avalanche it only leads to the mean-
field result, i.e., O(ε0). To obtain the O(ε) correction to the
latter, one needs to add other terms [involving �′′(0)] in the
action as was done in Ref. [28] (see also Appendix C). This
is not our purpose here, and one should remember that only
the results that we obtain for the connected correlations (the
sole purpose of this paper) between avalanches are exact up to
order O(ε).

Remark 2. The above setup and results can be eas-
ily generalized to study correlations between avalanches
that are conditioned on starting at any given posi-
tion (called the “seed”) along the interface. Replacing∫

dx1ũ1(x1, 0)
∫

dx2ũ2(x2, 0) → ũ1(x1, 0)ũ2(x2, 0) in Eq. (28)
for given x1 and x2 fixed indeed selects the avalanches that
have started at x = x1 at w = 0 and at x = x2 at w = W . The
easiest way to see this is to slightly modify our protocol by
triggering the avalanches at w = 0 and w = W by local kicks
δwi(x) = δd (x − xi )δwi of vanishing size δwi. Such kicks can
indeed only trigger avalanches with seeds x1 and x2. One then
easily generalizes (10) to this case; see also Appendix B. This
is used in Sec. V C. We refer the reader to [31,33] for more
details about this seed centering procedure in the field theory.

Remark 3. One can study truly successive avalanches by
simply considering the limit W = 0+. The present theory ap-
plies as long as the second avalanche starts well after the first
one is finished. It would be interesting to study overlapping
avalanches, but this goes beyond this paper (see discussion in
Appendix B).

B. Origin of correlations

Before we go further here let us comment here on the
physical origin of the correlations. The correlations originate
from the fact that the time derivatives of the pinning forces
∂τi F (ui(x, τi )), which enter the equation of motion for the
velocity, are correlated, their covariance being

∂τ1 F (u1(x, τ1), x)∂τ2 F (u2(x′, τ2), x′)

= ∂τ1∂τ2�[u1(x, τ1) − u2(x, τ2) + W ]δd (x − x′)

 −u̇1(x, τ1)u̇2(x, τ2)�′′(W )δd (x − x′). (29)

This is because two displacement fields in the two avalanches
see the same static random pinning force landscape. This
landscape is correlated in the direction of the motion, and
the correlation, at fixed value of u1(x, τ1) − u2(x, τ2), extends
to an arbitrary time difference [we recall that τi are counted
from the beginning times Ti of each avalanche, e.g., hence
ui(x, τi ) = u(x, t = Ti + τi ), where T2 − T1 ∼ W/v is a very
large time].

One could object, however, that the SR correlator of the
bare (i.e., microscopic) model, �b(w), has correlations only
on short distance w ∼ r f , leading to correlations of the dis-
placements only within the (small and fixed) Larkin volume.
However, the renormalized correlator �(w), which includes
the effect of the interplay of elasticity and disorder at all
scales, is correlated on the much larger distance w ∼ m−ζ . It
is this renormalized correlator that must be used here. It is pos-
sible to prove this fact [and also justify that it is σ = −�′(0+)
which must be used in the BFM] by consideration of the
effective action of the theory. Some steps in that direction are
provided in Appendix C. Physically, correlations live on the
scale w ∼ m−ζ because this is the scale of the displacement
of the interface during avalanches. In the dynamics we always
find that the correlations are negative. It can be seen already
from the negative correlation of the forces in Eq. (29) [since
�′′(W ) > 0 near the depinning fixed point and the velocities
are positive]. One finds that if one avalanche occurred and the
interface moved on a distance m−ζ , the driving has to “catch
up” with this scale w ∼ m−ζ in order for the interface to forget
that this avalanche has already occurred.

V. ANALYTICAL RESULTS: CORRELATIONS OF THE
AVALANCHE SIZES, TOTAL AND LOCAL

A. Joint density of total sizes

We first consider the total sizes of the avalanches defined
in Eq. (9).

1. Expressions for Laplace transform

Following the same steps as in the previous section, ex-
panding (22) in powers of δw1, δw2 in the special case of
constant sources λi(x, τ ) = λi, and comparing with (10) we

032108-6



CORRELATIONS BETWEEN AVALANCHES … PHYSICAL REVIEW E 101, 032108 (2020)

obtain the Laplace transform of ρ(S) as∫
dS1ρ(S1)[eλ1S1 − 1]

= m2
∫

Dũ1Du̇1

∫
dxũ1(x, 0)

× eλ1
∫

dx
∫ +∞

0 dτ1u̇1(x,τ1 )−SBFM[ũ1,u̇1], (30)

a formula similar to (27), and the Laplace transform of
ρW (S1, S2) as∫

dS1dS2ρW (S1, S2)[eλ1S1 − 1][eλ2S2 − 1]

= m4
∫

Dũ1Du̇1

∫
Dũ2Du̇2

∫
dx1ũ1(x1, 0)

×
∫

dx2ũ2(x2, 0)e
∑

i=1,2 λi
∫

dd x
∫ +∞

0 dτi u̇i (x,τi )−S[ũ1,u̇1,ũ2,u̇2],

(31)

a formula similar to (28). We now compute explicitly the
right-hand side (rhs) of these equations.

2. Review of the calculation of ρ(S)

The rhs of (30) can be obtained from a standard calculation
within the BFM. The main observation is that the field u̇1

in the exponential on the rhs of (30) appears only linearly
[28]. Hence integrating over it leads to a delta function which
constrains ũ(x, t ) to be a solution of the so-called instanton
equation equation [28], in the present case given by

ũ(x, t ) = ũ, −m2ũ + σ ũ2 = −λ, (32)

which is

ũ = 1

m2Sm
Z (λSm), Z (λ) = 1

2
(1 − √

1 − 4λ), (33)

where Sm = σ
m4 is the typical scale of the largest avalanches in

the BFM. This leads to∫
dS1ρ(S1)[eλ1S1 − 1] = 1

Sm
Ld Z (Smλ), (34)

which leads to the total size density

ρ(S) = Ld

S2
m

ρ̂(S/Sm), ρ̂(s) = 1

2
√

πs3/2
e−s/4, (35)

which is the classic result for the BFM [exact in our
setting at order O(ε0)]. Note that

∫ +∞
0 dssρ̂(s) = 1 and∫ +∞

0 dss2ρ̂(s) = 2.

3. Calculation of ρW (S1, S2 )

The rhs of (31) can be obtained from a modification of the
previous calculation. The difficulty is the term proportional to
�′′(W )u̇1u̇2 in the action S in Eq. (23). It can be decoupled
by the following calculational trick. We introduce formal
centered Gaussian noise fields ξi(x, t ) as

e−�′′(W )
∫

dd x
∫
τ1,τ2>0 ũ1(x,τ1 )ũ2(x,τ2 )u̇1(x,τ1 )u̇2(x,τ1 )

= 〈
e
∑

i=1,2

∫
dd x

∫ +∞
0 dτiξi (x)ũi (x,τi )u̇i (x,τi )

〉
ξ
, (36)

where by definition

〈ξi(x)ξ j (x
′)〉ξ = −(1 − δi j )�

′′(W )δd (x − x′). (37)

For a given noise ξi(x), the velocity fields now appear linearly
and one can integrate over them (as in the BFM). This, for
each realization of the noise ξ , constrains the response fields
ũi(x, t ) to obey two decoupled instanton equations, whose
solutions are time independent but space inhomogeneous,
ũi(x, t ) = ũi(x), where ũi(x) for i = 1, 2 are solutions of(∇2

x − m2
)
ũi(x) + σ ũi(x)2 = −ξi(x)ũi(x) − λi. (38)

The solutions of these equations are coupled because the
noises ξ1 and ξ2 are not independent, and correlated as in
Eq. (37). From these solutions, and from (31), one obtains the
Laplace transform of the joint density as∫

dS1dS2ρW (S1, S2)[eλ1S1 − 1][eλ2S2 − 1]

= m4
∫

dd x1

∫
dd x2〈ũ1(x1)ũ2(x2)〉ξ . (39)

Being interested in computing ρW (S1, S2) in first order in
�′′(W ) [which is itself O(ε)] implies that we only need to
solve perturbatively (38) to first order in ξ . To this order the
solutions can be written as

ũi(x) = ũ0
i + ũ1

i (x), ũ0
i = 1

m2Sm
Z (Smλi ), (40)

and in Fourier space

ũ1
i (q) = 1

m2Sm

Z (Smλi )

q2 + m2 − 2m2Z (Smλi )
ξi(q), (41)

leading to our main result for the connected joint density,∫
dS1dS2ρ

c
W (S1, S2)[eλ1S1 − 1][eλ2S2 − 1]

= −�′′(W )
Ld

m4S2
m

Z (Smλ1)

1 − 2Z (Smλ1)

Z (Smλ2)

1 − 2Z (Smλ2)
, (42)

where the part proportional to ũ0
1ũ0

2 cancels in the connected
density.

The formula (42) is formally identical to the result Eq. (71)
in Ref. [38] for the statics. This shows that the present theory
reproduces the results of (42) in a much simpler fashion.
However, one must stress that the renormalized correlator
�(W ) is different in the dynamics from its value, e.g., for
random bond statics, leading to a numerically different result.

By expanding (42) in powers of λi one obtains the integer
moments over ρc

W which we denote 〈. . . 〉c
W . Similarly the

averages over the single avalanche density ρ are denoted as
〈. . . 〉.3 We give here two explicit formulas, which are tested
in the numerics in Sec. VI below. First one finds

〈S1S2〉c
W

〈S〉2
= −�′′(W )

m4Ld
, (43)

3Since below we only consider the moment ratio the
global normalization drops out and we can define 〈· · · 〉c

W =∫
dS1dS2 . . . ρc

W (S1, S2) and 〈· · · 〉 = ∫
dS . . . ρ(S).
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which is in fact an exact result, and can be seen to follow from
the definition (25) of the renormalized disorder correlator. The
proof is identical to the statics case, to which we refer [Eq. (8)
and Secs. III F. and IV E in Ref. [38]]. Another result is〈

S2
1S2

〉c
W

〈S2〉〈S〉 =
〈
S1S2

2

〉c
W

〈S2〉〈S〉 = −3
�′′(W )

m4Ld
, (44)

which holds only to order O(ε). Note that to the order that we
calculate here 〈S2

1S2〉c
W = 〈S1S2

2〉c
W and more generally, at this

order the correlation between the two avalanches is symmetric
(which is likely not to hold to higher orders in the ε expansion
contrary to the statics).

As in Ref. [38], (42) can be inverse Laplace transformed,
and leads to the complete O(ε) result for the connected
density,

ρc
W (S1, S2) = −�′′(W )

Ld m4

S1S2

4S2
m

ρ(S1)ρ(S2) + O(ε2), (45)

which again, is formally identical to (10) in Ref. [38]. We
recall the definition

Sm = |�′(0+)|
m4

= 〈S2〉
2〈S〉 (46)

valid beyond mean field. We can rewrite the connected density
in the form

ρc
W (S1, S2) = 1

(Lm)d

L2d

S4
m

Fd

(
W

Wm
,

S1

Sm
,

S2

Sm

)
, (47)

where Fd is a universal function, with

Fd (w, s1, s2)  −Ad�̃
∗′′(w)

16π
√

s1s2
e−(s1+s2 )/4 + O(ε2), (48)

correcting the sign misprint in (13), (89), and (90) of
[38], where the prefactor is given by (26), and fully uni-
versal at w = 0, i.e., �∗′′(0+) = 2

9ε and A4 = 8π2. The

scale Wm  κm−ζ contains one nonuniversal amplitude, re-
lated however to Sm = −�′(0+)/m4 = −Ad�̃

′(0+)m−d−ζ 
Adκε

√
1 − 2ζ1m−d−ζ [see formula (90) and below in

Ref. [38]] which can be independently measured from (46),
allowing us to determine κ .

Finally, note that for any real p1, p2, q1, q2 > −1/2 with
p1 + p2 = q1 + q2 we predict the following dimensionless
ratio: 〈

Sp1
1 Sp2

2

〉c
W〈

Sq1
1 Sq2

2

〉c
W

= �
(
p1 + 1

2

)
�

(
p2 + 1

2

)
�

(
q1 + 1

2

)
�

(
q2 + 1

2

) . (49)

B. Joint density of local sizes

1. Dimensionless units

In order to lighten notations and calculations, from now on
we switch to dimensionless units. We introduce the character-
istic scales of avalanches. The lateral extension 1/m, total size
Sm = σ/m4, duration τm = η/m2, velocity vm = md Sm/τm.
We rescale space and time as x → x/m, t → τmt . The fields
are rescaled as u → md Smu, u̇ → vmu̇, ũ → 1

m2Sm
ũ. Avalanche

local and total sizes are rescaled accordingly as S(x) →
md SmS(x), S → SmS. We also use that the renormalized disor-
der correlator � takes a scaling form �(W ) = mε−2ζ �̂(mζW )
with ζ the roughness exponent of the interface. We rescale
the distance between avalanches as W → m−ζW . This is
equivalent to setting η = m = σ = 1 in the above theory with
also the replacement �′′(W ) → �̂′′(W ). We will reintroduce
the full dimensions explicitly for some results, which can be
done easily using Appendix A.

2. Expressions for Laplace transforms

To study correlations between avalanche local sizes S1(x1)
and S2(x2), see Fig. 1, we now do as in Sec. V A but
using source fields λ1(x, τ1) = λ1δ

d (x − x1) and λ2(x, τ2) =
λ2δ

d (x − x2). Expanding (22) in powers of δw1, δw2 in the
special case of these sources we obtain the Laplace transform
of ρ(S1(x1)) as [a formula similar to (27)]

∫
dS1(x1)ρ(S1(x1))[eλ1S1(x1 ) − 1] =

∫
Dũ1Du̇1

∫
dxũ1(x, 0)eλ1

∫ +∞
0 dτ1u̇1(x1,τ1 )−SBFM[ũ1,u̇1], (50)

and of ρW (S1(x1), S2(x2)) as [a formula similar to (28)]

∫
dS1(x1)dS2(x2)ρW (S1(x1), S2(x2))[eλ1S1(x2 ) − 1][eλ2S2(x2 ) − 1]

=
∫

Dũ1Du̇1

∫
Dũ2Du̇2

∫
dy1ũ1(y1, 0)

∫
dy2ũ2(y2, 0)e

∑
i=1,2 λi

∫ +∞
0 dτi u̇i (xi,τi )−S[ũ1,u̇1,ũ2,u̇2]. (51)

We now compute explicitly the rhs of these equations following the same procedure as in the previous section.

3. Review of the calculation of ρ(S(x))

As in Sec. V A, it can be seen that u̇i only appears linearly in the exponential in the rhs of (50). Integrating over it creates
a Dirac delta functional and constrains the response field ũi as ũi(x, τi ) = ũi(xi ) with ũi(xi ) the solution of the following space
inhomogeneous instanton equation:

(∇2
x − 1

)
ũi(x) + (ũi(x))2 = −λiδ

d (x − xi ). (52)
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The Laplace transform of ρ(S(xi )) is then computed as, using (50),∫
dS(xi )ρ(S(xi ))[e

λiS(xi ) − 1] =
∫

dd x ũi(x). (53)

As discussed in Refs. [25,28,40] the solution ũi(x) can be exactly obtained in d = 1 as

ũi(x) = ũ0
i (x) := 6

(
1 − z2

i

)
e−|x−xi|

[1 + zi + (1 − zi)e−|x−xi|]2
, (54)

where zi(λi ) is one of the solutions of

λi = 3zi
(
1 − z2

i

)
. (55)

The right solution satisfies the following properties: it is defined for λi ∈] − ∞, 2/
√

3[, decreases from zi(−∞) = ∞ to zc =
zi(2/

√
3) = 1/

√
3, and approaches 1 as λi approaches 0. It is possible to perform the Laplace inversion leading to [25,28,40]

ρ(S(xi ) = S0) = 2

πS0
K1/3

(
2S0√

3

)
. (56)

4. Calculation of ρW (S1(x1), S2(x2 ))

To compute ρW (S1(x1), S2(x2)) we follow the same steps as in Sec. V A 3 and linearize in the u̇i fields the argument of the
exponential in the rhs of (51) by reintroducing the formal Gaussian fields ξi(x). This leads to the expression∫

dS1(x1)dS2(x2)ρW (S1(x1), S2(x2))[eλ1S1(x1 ) − 1][eλ2S2(x2 ) − 1] =
〈∫

y1,y2

dd y1dd y2ũ1(y1)ũ2(y2)

〉
ξ

, (57)

in terms of the solution of the following space inhomogeneous instanton equation:(∇2
x − 1

)
ũi(x) + ũi(x)2 = −ξi(x)ũi(x) − λiδ

d (x − xi ). (58)

Again to obtain the result at order O(ε) it is sufficient to solve perturbatively (58) to first order in ξ . This leads to

ũi(x) = ũ0
i (x) +

∫
dd y Gi(x, y)ξi(y)ũ0

i (y) + O(ξ 2), (59)

where ũ0
i (x) is the solution of (52), which in d = 1 is given in (54). We have introduced the propagators Gi(x, y) satisfying the

following equations: [∇2
x − 1 + 2ũ0

i (x)
]
Gi(x, y) = −δd (x − y). (60)

Inserting this formal solution in Eq. (94) and using the noise correlations (37), we finally obtain the Laplace transform of the
connected density for the local size as∫

dS1(x1)dS2(x2)ρc
W (S1(x1), S2(x2))[eλ1S1(x1 ) − 1][eλ2S2(x2 ) − 1] (61)

= −�̂′′(W )
∫

dd z1

∫
dd z2

∫
dd yG1(z1, y)G2(z2, y)ũ0

1(y)ũ0
2(y). (62)

Again, it can be seen that this result reproduces the equivalent results obtained for shocks in the static. This is most easily seen
by comparing this expression with the expression (D16) in Appendix D of [38].

From these expressions one easily obtains by expanding in λi a few integer moments of the connected distribution (see [38]).
Here we only give the explicit result for the first moment in d = 1 that will be compared with numerical simulations in Sec. VI.
One easily obtains from (55) that zi(λi ) = 1 − 1

6λi + O(λ2
i ). Then from (54) one obtains ũi(x) = λi

2 e−|x−xi| + O(λ2
i ). From (60)

one obtains Gi(x, y) = 1
2 e−|x−y| + O(λ) and thus we obtain from (61) that

〈S1(x1)S2(x2)〉c
W = d=1 − �̂′′(W )

∫
dz1dz1dy

1

16
e−|z1−y|−|z2−y|−|y−x1|−|y−x2|

= −�̂′′(W )

4

∫
dye−|y−x1|−|y−x2| = −�̂′′(W )

4
(1 + |x2 − x1|)e−|x2−x1|. (63)

Reintroducing the units and normalizing, one gets

〈S1(x1)S2(x2)〉c
W

〈S(x)〉2
=d=1 −m−3 �′′(W )

4
(1 + m|x2 − x1|)e−m|x2−x1|, (64)

a result that reproduces the result (112) of [38].
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C. Joint density of total sizes for given positions of the seeds

1. Seed centering and Laplace transform

The explicit results we have obtained up to now are formally equivalent to the results obtained for shocks in the statics [38],
rederived in the dynamics in a much simpler fashion using our general result (22)–(24). We now obtain results relevant for
the dynamics and not considered in Ref. [38], by looking at the correlations between the total size S1 and S2 of avalanches
occurring at a distance W and having seeds x1 and x2 (see Fig. 3). By “seed” we mean the first point of the interface that moves
when the avalanche starts. This concept is much more natural in the dynamics than in the statics. We now introduce ρx(S) and
ρx1,x2 (S1, S2), the total size density for an avalanche that starts at x and the total size density for avalanches that start at x1 at
w = 0 and at x2 at w = W . By translational invariance along the internal direction we have

ρx(S) = 1

Ld
ρ(S), ρ

x1,x2
W (S1, S2) ≡ ρ

x2−x1
W (S1, S2), (65)

with the normalization ∫
dd xρx

W (S1, S2) = 1

Ld
ρW (S1, S2). (66)

Our theory predicts that the Laplace transform of these densities are obtained as in Eqs. (30) and (31) but with the response
fields in front of the exponential not integrated over but restricted at x1 or x2 (see the remark in Sec. IV for a justification). More
precisely we get ∫

dS1ρ
x1 (S1)[eλ1S1 − 1] =

∫
Dũ1Du̇1ũ1(x1, 0)eλ1

∫
dx

∫ +∞
0 dτ1u̇1(x,τ1 )−SBFM[ũ1,u̇1], (67)

and∫
dS1dS2ρ

x1,x2
W (S1, S2)[eλ1S1 − 1][eλ2S2 − 1] =

∫
Dũ1Du̇1

∫
Dũ2Du̇2ũ1(x1, 0)ũ2(x2, 0)e

∑
i=1,2 λi

∫
dd x

∫ +∞
0 dτi u̇i (x,τi )−S[ũ1,u̇1,ũ2,u̇2].

(68)

2. Calculation of the densities

Proceeding as in Sec. V A, it is easily seen that the seed centering procedure does not affect the instanton equations satisfied
by the response fields and, as mentioned above, the only modification that is necessary is to keep track of the spatial dependence
of the solutions of the instanton equation at x = x1 and x = x2. More precisely, from (67) one easily obtains the trivial result
ρx(S) = 1

Ld ρ(S) and from (68) one obtains∫
dS1dS2ρ

x1,x2
W (S1, S2)[eλ1S1 − 1][eλ2S2 − 1] = 〈ũ1(x1)ũ2(x2)〉ξ ,

with ũi(xi ) still given by the solutions of the instanton equation (38) of Sec. V A, a result that should be compared to (42). Using
the perturbative solution (41) in adimensional units we obtain the Laplace transform of the connected density ρ

c,x2−x1
W (S1, S2) =

ρ
x2−x1
W (S1, S2) − ρx1 (S1)ρx2 (S2) exactly at order O(ε) as∫

dS1dS2ρ
c,x2−x1
W (S1, S2)[eλ1S1 − 1][eλ2S2 − 1] = −�̂′′(W )

∫
dd q

(2π )d
eiq(x1−x2 ) Z (λ1)

1 − 2Z (λ1) + q2

Z (λ2)

1 − 2Z (λ2) + q2
.

This can be explicitly computed and we obtain the following exact result [O(ε)] for this Laplace transform:∫
dS1dS2ρ

c,x2−x1
W (S1, S2)[eλ1S1 − 1][eλ2S2 − 1] = −�̂′′(W )Z (λ1)Z (λ2)I (1 − 2Z (λ1), 1 − 2Z (λ2), |x1 − x2|),

I (a, b, x) =
∫

dd q

(2π )d

eiqx

(a + q2)(b + q2)
= 1

b − a
(Ĩ(a, x) − Ĩ (b, x)),

Ĩ (a, x) = 1

(2π )d/2
a(d−2)/4x(2−d )/2K(d−2)/2(

√
ax). (69)

This is an exact expression but not easy to inverse Laplace transform to obtain the density. For that purpose it is more
convenient to work in Fourier space, defining ρ

q
W (S1, S2) = ∫

dd xeiqxρx
W (S1, S2). We obtain for the connected part

ρ
c,q
W (S1, S2) = −�̂′′(W )ψq(S1)ψq(S2), (70)

where we have introduced the function ψq(S) defined as

ψq(S) = ρ̂(S)(1 + q2)
S

2

(
1 −

√
πS

2
q2eq4S/4Erfc

(
q2

√
S

2

))
, (71)
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FIG. 3. In Sec. V C we calculate the correlations between the
total sizes S1 and S2 of two avalanches separated by a distance W
along u, with seeds (i.e., starting points) at x1 and x2.

with ρ̂(S) still given by (35), and whose Laplace transform is∫
dS(eλS − 1)ψq(S) = Z (λ)

1 − 2Z (λ) + q2
. (72)

We give here a few of the lowest order moments of the
function ψq(S): ∫

ψq(S)dS = 1

2
,∫

ψq(S)SdS = 1

1 + q2
, (73)

∫
ψq(S)S2dS = 2(3 + q2)

(1 + q2)2
.

The zeroth order moment allows us, for example, to calculate
from (70) the connected total density of avalanches with seeds
x1 and x2,

ρc
2 (W, x2 − x1) :=

∫
dS1dS2ρ

c,x2−x1
W (S1, S2)

= −�̂′′(W )

4
δd (x2 − x1). (74)

The form of the result shows that the drop in density of an
avalanche at w = W caused by the occurrence of an avalanche
at w = 0 with seed x1 is only felt at microscopic distances.
This is not so surprising since the vast majority of avalanches
are of microscopic sizes [the density ρx(S) is not normalizable
at small S]. By contrast, the first joint moment [obtained
from the second identity in Eq. (73)] is dominated by large
avalanches and reads

〈S1S2〉ρc,x
W

:=
∫

dS1dS2S1S2ρ
c,x
W (S1, S2)

= −�̂′′(W )2−1−d/2π−d/2x2−d/2K(d−4)/2(x). (75)

Integrating this result over x leads to the exact relation
L−2d〈S1S2〉c

W = − �̂′′(W )
Ld . This suggests that the above result

may be quite accurate since it integrates to an exact result.
Surprisingly, the full x dependence of this first joint moment

is identical to the one of the correlation of the local sizes
when the driving is uniform; see Eq. (112) in Ref. [38]. This
surprising result does not hold for higher order moments as
can easily be seen by comparing the formulas.

3. Universality and the massless limit

We now address in more depth the issue of universality and
of the massless limit. In Sec. V A 3 we obtained a universal
scaling form (47) for ρc

W (S1, S2). This form however involves
two features which makes it not fully universal: (i) First it
depends explicitly on m and Sm, i.e., it is universal (i.e., inde-
pendent of small scale details) within the model of the driving
parabolic well, which provides a large scale cutoff. One can
ask if it is possible to obtain results for avalanche correlations
which would be independent of the details of large scale cutoff
(which we call full universality). (ii) The second feature is
that ρc

W (S1, S2) is proportional to (mL)d , i.e., the number of
independent regions along the interface. This makes sense
since avalanches are expected to be correlated only if they are
separated within a distance x ∼ 1/m along the interface.

In the above calculation of ρc,x
W (S1, S2) the factor (mL)d is

absent, since the separation of the seeds, x, is fixed. In Fourier
space we now expect, restoring units,

ρ
c,q
W (S1, S2) = 1

md S4
m

Fd

(
q

m
,

W

Wm
,

S1

Sm
,

S2

Sm

)
, (76)

where Fd is a universal function. From our result (70) we see
that, restoring units, with w = W/Wm one has the expansion
around the upper critical dimension

Fd (q,w, s1, s2) = −md−4�′′(W )ψq(s1)ψq(s2) + O(ε2)

= −Ad�̃
∗′′(w)ψq(s1)ψq(s2) + O(ε2), (77)

where all factors are universal using the fixed point (26) [apart
from a single nonuniversal scale; see discussion below (48)].

Let us now discuss the behavior of (76) in the region
q � m, Si � Sm, W � Wm where we hope to find a fully
universal behavior. It is equivalent to take m → 0 and consider
the massless limit. It turns out that consideration of this limit,
upon some hypothesis, leads to a host of information, i.e.,
determination of some critical exponents.

Let us first recall the analysis of the massless limit for
the single avalanche size density, ρ(S), and its connection
to the Narayan-Fisher conjecture [15,16]. The massless limit
of the starting equation of motion for the interface, Eq. (1), is
obtained by defining f (x, t ) = m2w(x, t ), the applied force.
One can then take m → 0 at fixed f (x, t ) and the equation
remains well defined. Then one must define densities per unit
force, denoted everywhere with a subscript f , rather than per
unit w as we did until now. They simply differ by the factor
m2, e.g.,

ρ f (S) = m−2ρ(S). (78)

It is easy to see in the result for the BFM (35) that the
massless limit of ρ f (S) is well defined (i.e., all factors of m
cancel), leading to

ρ f (S) = lim
m→0

m−2ρ(S) = Ld

σ 1/2

1

2
√

πS3/2
, (79)
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which is the fully universal part of the density corresponding
to small avalanches S � Sm. It turns out that this extends
beyond mean field. Indeed, for any d one has, via simple
dimensional analysis,

ρ(S) = Ld

S2
m

r(S/Sm), r(s) ∼s→0 s−τ , (80)

where τ is the avalanche size exponent. For ρ f (S) =
limm→0 m−2ρ(S) to be finite, we see that we need m−2Sτ−2

m to
be finite in the limit m → 0, and using Sm ∼ m−(d+ζ ) this is
equivalent to

τ = τNF = 2 − 2

d + ζ
. (81)

This relation was tested to one loop in Ref. [28], and is rather
natural since we do expect that a universal massless limit
exists (a massless field theory). We will thus generally assume
that densities per unit force do exist in the limit m → 0. This
led in Ref. [29] to predictions for a number of other avalanche
exponents, and we call it the generalized NF conjecture.

Consider now the massless limit of the joint size density to
which we apply similar arguments. We note from (71) that

lim
m→0

m4ψq/m

(
S

Sm

)
= σ

S
ψ (q(S/σ )1/4) (82)

ψ (q) = q2

4
√

π
− 1

8
eq4/4q4erfc

(
q2

2

)

= q2

4
√

π
+ O(q4) = 1

2
√

πq2
+ O

(
1

q4

)
, (83)

where ψ (q) is the massless scaling form of ψq(S). Thus our
result to O(ε) for the joint density per unit force has a well
defined m → 0 limit

ρ
c,q, f
W (S1, S2)

= lim
m→0

m−4ρ
c,q
W (S1, S2)

= −�′′(W )

σ 2

1

S1S2
ψ (q(S1/σ )1/4)ψ (q(S2/σ )1/4) + O(ε2).

(84)

Note that as m → 0, �′′(W ) = Ad mε�̃∗′′(W mζ ) 
Ad�̃

∗′′(0+) + O(ε2) if W is kept fixed as m → 0. Hence the
dependence in W disappears in that limit since there can be
avalanches of arbitrary sizes; all avalanches can be considered
as successive (i.e., W = 0+).

More generally, we surmise that this massless limit exist in
any dimension. Scaling arguments and dimensional analysis
then lead to the scaling form4

ρ
c,q, f
W (S1, S2) = �d+4

σ

(S1S2)τ 1
c

fd
(
�σ qS1/(d+ζ )

1 , �σ qS1/(d+ζ )
2

)
,

τ 1
c = 1

2

(
2 − 4 − d − 2ζ

d + ζ

)
, (85)

4Note that an additional dependence in qW 1/ζ cannot be ruled out,
although it does not seem to appear to O(ε) (see remark above). Thus,
to be fully consistent, in Eq. (85) we have in mind here W = 0+, i.e.,
successive avalanches.

where τ 1
c is a correlation exponent, fd is a fully universal func-

tion, and the scale �σ is nonfully universal.5 For the parabolic
well model it equals �σ = limm→0 m−1S−1/(d+ζ )

m [hence it can
be measured independently using (46)], as easily seen by
studying the possible m → 0 limit of the scaling function Fd

in Eq. (76).
We see that for d = 4 − ε and ζ = O(ε) the form (85)

reproduces (84) with �σ = σ−1/4 and

fd (q1, q2) = −Ad�̃
∗′′(0+)ψ (q1)ψ (q2) + O(ε2)

= −16π2ε

9
ψ (q1)ψ (q2) + O(ε2), (86)

where ψ (q) is given in Eq. (83).
Let us now study the q = 0 limit, i.e., the uniform driving

studied in Sec. V A 3. For a fixed m > 0 one has

ρc
W (S1, S2) = Ldρ

c,q=0
W (S1, S2)

= − Ld

md S4
m

md−4�′′(W )
S1S2

4S2
m

ρ̂(S1/Sm)ρ̂(S2/Sm)

(87)

using (76), (77), and, from (71), that ψq=0(s) = ρ̂(s) s
2 . It

coincides with (45) upon using (35). Its m → 0 limit reads

ρ
c, f
W (S1, S2) = m−4ρc

W (S1, S2)

= −(mL)d A4�̃
∗′′(0+)

σ 3

1

16πS1/2
1 S1/2

2

+ O(ε2),

(88)

Note that this result cannot be obtained from taking the
q → 0 limit of (84) since ψ (q) ∼ q2 as q → 0. Hence there
is a noncommutation of limits m → 0 and q → 0.

It is reasonable to surmise that in any dimension, as
m → 06

ρ
c, f
W (S1, S2) ∼ (mL)d 1

Sτc
1 Sτc

2

(89)

with τc = 1/2 in mean field, i.e., for d = dc = 4 here, the
factor (mL)d being the number of independent regions. One
can obtain this factor by considering the q → 0 limit of the
massless result on one hand, and the q = 0 massive result at
small m on the other, and requiring matching upon setting
q = m. This determines the q → 0 behavior of the scaling
function fd as

fd
(
qS1/(d+ζ )

1 , qS1/(d+ζ )
2

) q→0 qd (S1S2)(1/2)[d/(d+ζ )], (90)

so that, substituting q = m in (85), we indeed obtain

ρ
c, f
W (S1, S2) = Ldρ

c,q=m, f
W (S1, S2) ∼ (Lm)d 1

Sτc
1 Sτc

2

,

τc = 2 − 2 + d

d + ζ
, (91)

5�σ has dimension (xζ /u)1/(d+ζ ) where x and u are lengths in
internal and displacement directions respectively.

6One cannot exclude an additional factor gd (S1/S2) (not present to
this order) which we ignore here for simplicity (it does not affect the
discussion of the critical exponent τc defined here for S1 ∼ S2).
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FIG. 4. The renormalized disorder second cumulant measured in
the simulations (blue dots) and its polynomial fit (red line).

where the exponent τc is thus fully determined, via this
generalized NF argument (recovering τc = 1/2 in the mean
field for d = 4, ζ = 0).

VI. NUMERICS

In this section we compare some of our results with the
simulation of a d = 1 elastic interface with short-ranged
elasticity in a short-ranged correlated disordered landscape.

A. Protocol

To perform numerical simulations we choose a Gaussian
disorder F (u, x) with a correlator F (u, x)F (u′, x′) = δ(x −
x′)�0(u − u′) with �0(u) = σδue−|u|/δu with δu the micro-
scopic correlation length of the disorder. As explained in
[33], this can be realized by taking F (u, x) as a collection
(indexed by x) of independent Ornstein-Uhlenbeck processes
(in the direction u). More precisely the model we study can be
defined as, for any driving protocol w(x, t ),

η∂t u(x, t ) = ∇2
x u(x, t ) − m2[u(x, t ) − w(x, t )]

+ F (u(x, t ), x),

∂uF (u, x) =
√

2σξ (u, x) − 1

δu
F (u, x) (92)

with ξ (u, x) a unit centered two dimensional Gaussian white
noise, ξ (u, x)ξ (u′, x′) = δ(u − u′)δ(x − x′). The advantage of
this setup is that one can directly obtain an autonomous
equation for the velocity field u̇(x, t ): the above model is
equivalent to

ηu̇(x, t ) = ∇2u̇(x, t ) + m2[ẇ(t ) − u̇(x, t )] + ∂t F(x, t ),

∂t F(x, t ) =
√

2σ u̇(x, t )χ (x, t ) − u̇(x, t )

δu
F(x, t ), (93)

with χ (x, t ) a centered Gaussian white noise
χ (x, t )χ (x′, t ′) = δd (x − x′)δ(t − t ′) and we have the
equality in law F(x, t ) ∼ F (x, u(x, t )).

We take as initial conditions u̇(x, t = 0) = F(x, t = 0) = 0
and then apply a sequence of kicks of size δw = 1, which
amounts at setting u̇(x, t ) = m2

η
δw at the beginning of each

kick and wait for the interface to stop before applying the
next kick. The motion of the interface between each kick is
measured by integrating the velocity field in between two
kicks and this defines for each kick an avalanche Sx. The
avalanche at the nth kick is said to have been triggered
at w = nδw. We wait for the system to reach a stationary
state before measuring anything. Averages are obtained using
50 independent “experiences,” each experience consisting in
2 × 106 kicks, and we have thus simulated 108 avalanches.
Correlations between avalanches are measured for avalanches
inside a window of 1000 successive kicks.

In the results reported here we have taken an interface
of lateral extension L = 1024 with periodic boundary con-
ditions, discretized with 1024 points. The parameters are
chosen as m = 20/L  0.02. The kicks are of size δw = 1
and the microscopic disorder correlation length is taken as
δu = 5δw = 5. The discretization in time is handled using an
algorithm similar to the one introduced in Ref. [43] and we
take a time step δt = 0.025.

B. Results

1. Renormalized disorder correlator

Central to our results is the measurement of the
renormalized disorder second cumulant �(w − w′) =
Ld m4[u(w) − w][u(w′) − w′]

c
where u(w) is the position

of the interface in the end of the w/δw-th kick. The plot of

200 400 600 800 1000
w
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0.0020
0.0025
0.0030
0.0035
� �w�

(a) (b)

FIG. 5. First (a) and second (b) derivative of the renormalized disorder second cumulant as obtained using the polynomial fit of the
measured renormalized disorder second cumulant.
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FIG. 6. Comparison between the measurement of
1
2 (〈S1S2

2〉c
W + 〈S2

1S2〉c
W ) (blue dots) and our prediction (44) [order

O(ε) result]. The blue dots correspond to direct measurements of
the correlations between avalanches, each dot corresponding to an
average over avalanches for a given W . The dispersion of the cloud
of dots gives an estimate of the accuracy of the measurement.

�(w) is presented in Fig. 4. To obtain a good measurement
of the derivative �′(w) and �′′(w) we fitted �(w) with a
polynomial of order 7 and differentiated directly the fitted
polynomial. A plot of �′(w) and �′′(w) is also given in
Fig. 5.

2. Total avalanche sizes correlations

The measurement of 〈S1S2〉c
W was shown in Sec. III, in

Fig. 2. We show in Fig. 6 the comparison between the
measurements of 1

2 (〈S1S2
2〉c

W + 〈S2
1S2〉c

W ). Both are compared
with our predictions (43) and (44). The analytical result for
〈S1S2〉c

W is exact and the agreement is, as expected, perfect.
The analytical result for 1

2 (〈S1S2
2〉c

W + 〈S2
1S2〉c

W ) is only a O(ε)
approximation and appears to overestimate the correlations.

3. Local avalanche sizes correlations

We show in Fig. 7 the comparison between the measure-
ments of 〈S10S2x〉c

W and our prediction (64). Despite the fact
that (64) is only valid up to order O(ε) (here ε = 3), it is clear
that it is a very good approximation. Also it seems that our
result tends to slightly underestimate the correlations between

avalanches at short distance and overestimate the correlations
at large distance.

VII. ANALYTICAL RESULTS: DYNAMICAL
CORRELATIONS

A. Correlations of the total velocities in an avalanche,
and of the avalanche durations

In this section we study the correlation of the global
velocities (center of mass velocities) in the two avalanches.
As a by-product we also obtain the correlation between the
avalanche durations. Let us define the total (areal) veloci-
ties in the two avalanches, which we denote u̇1 ≡ u̇1(t1) =∫

dd xu̇1(x, t1) and u̇1 ≡ u̇2(t2) = ∫
dd xu̇1(x, t2). The time is

counted from the kick in each avalanche, i.e., each avalanche
starts at ti = 0.

Similar methods as in Sec. V B give, for the joint density
ρ

x1,x2
W (u̇1, u̇2) at fixed positions of the seeds x1, x2,∫

du̇1du̇2ρ
x1,x2
W (u̇1, u̇2)[eλ1u̇1 − 1][eλ2 u̇2 − 1]

= 〈ũ1(x1, 0)ũ2(x2, 0)〉ξ , (94)

where ũi(x, t ) are the solutions of the time-dependent space
inhomogeneous instanton equation(

∂t + ∇2
x − 1

)
ũi(x, t ) + ũi(x, t )2

= −ξi(x)ũi(x, t ) − λiδ(t − ti ) (95)

with ũi(x, t > ti ) = 0, which are needed only to first order in
each ξi. As in Sec. V B we introduce

ũi(x, t ) = ũ0
i (t ) + ũ1

i (x, t ), (96)

where ũ0
i (t ) is the solution for ξi(x) = 0, which satisfies

(∂t − 1)ũ0
i (t ) + ũ0

i (t )2 = −λiδ(t − ti ) (97)

with ũ0
i (t > ti ) = 0. The solution is well known to be [27]

ũ0
i (t ) = λi

λi + (1 − λi )eti−t
θ (t < ti ). (98)

Let us recall that from this solution one obtains the single
avalanche (time-dependent) density in the BFM, denoted
ρ(u̇) ≡ ρt (u̇), of the total velocity u̇(t ) = ∫

dd xu̇(x, t ), by

2 4 6 8 10
mx
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FIG. 7. Comparison between the measurement of 〈S10S2x〉c
W (dots) and our prediction (64) [plain and dashed lines, order O(ε) approxima-

tion] as a function of mx for a few values of W (a) or as a function of W for a few values of mx (b).
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Laplace inversion of∫ +∞

0
du̇ρt (u̇)(eλu̇ − 1) = Ld ũ0(0) = Ld λ

λ + (1 − λ)et
⇒ ρt (u̇) = Ld et−et u̇/(et −1)

(et − 1)2 , u̇ > 0. (99)

By integration over time one recovers the well known result for the mean density of total velocity ρv=0+ (u̇) for a uniform
driving in the limit v = 0+, ρv=0+ (u̇) = ∫ +∞

0 dtρt (u̇) = Ld

u̇ e−u̇ (see [27,28,44]). The same calculation also gives the density of
the avalanche duration T in the BFM,7

ρ(T ) = −∂t

∫ +∞

0
du̇ρt (u̇)|t=T = Ld

4 sinh2(T/2)
, (100)

which reads, in dimensionful units, ρ(T ) = Ld

Smτm4 sinh2(T/2τm )
.

To obtain the connected joint density, we need to calculate ũ1
i (x, t ) to first order in ξi. For that purpose we introduce the

dressed response kernel

[∂t + ∇2
x − 1 + 2ũ0

i (t )]Gi(x, t ; y, t ′) = −δd (x − y)δ(t − t ′) (101)

with Gi(x, t ; y, t ′) = 0 for t > t ′ (i.e., time is in effect reversed as compared to a standard response function). It reads in Fourier,
for t, t ′ < ti,

Gi(q, t, t ′) = e−(q2+1)(t ′−t )+2
∫ t ′

t ũ0
i (s)dsθ (t ′ − t ) = e−(q2+1)(t ′−t ) (1 − λi + λiet ′−ti )2

(1 − λi + λiet−ti )2
θ (t ′ − t ). (102)

We obtain

ũ1
i (x, t ) =

∫
dd y Gi(x, t ; y, t ′)ξi(y)ũ0

i (t ′) + O(ξ 2), (103)

which leads to the Laplace transform of the connected density as∫
du̇1du̇2ρ

c,x1,x2
W (u̇1, u̇2)[eλ1u̇1 − 1][eλ2 u̇2 − 1] = −�̂′′(W )

∫
dd y

∫ t1

0
dt ′

∫ t2

0
dt ′′G1(x1, 0; y, t ′)G2(x2, 0; y, t ′′)ũ0

1(t ′)ũ0
2(t ′′).

(104)

It is more convenient to work in Fourier space and define

ρ
c,x1,x2
W (u̇1, u̇2) =

∫
dd q

(2π )d
e−iq(x1−x2 )ρ

c,q
W (u̇1, u̇2). (105)

We finally obtain the Laplace transform of the connected part of the joint density of total velocities in the two avalanches, for a
fixed driving wave vector q, as∫

du̇1du̇2ρ
c,q
W (u̇1, u̇2)[eλ1u̇1 − 1][eλ2 u̇2 − 1] = −�̂′′(W )Fλ1 (q, t1)Fλ2 (q, t2), (106)

where we have defined

Fλ(q, t ) = λ
(1 − q2 − λ)e−(1+q2 )t + (1 − λ)(q2 − 1)e−t + λq2e−2t

q2(q2 − 1)(1 − λ + λe−t )2
. (107)

We now analyze this formula in various cases: (i) homogeneous driving (ii) fixed distance between the seeds (iii) massless
limit (leading to conjectures for the correlation exponents in any dimension).

1. Homogeneous driving

Velocities. For the homogeneous driving δw(x) = δw, the Laplace transform of the connected joint density simplifies into∫
du̇1du̇2ρ

c
W (u̇1, u̇2)[eλ1u̇1 − 1][eλ2 u̇2 − 1] = −Ld�̂′′(W )Fλ1 (t1)Fλ2 (t2), (108)

where we denote

Fλ(t ) = Fλ(q = 0, t ) = −λe−t (λ(t − 1 + e−t ) − t )

(1 − λ + λe−t )2
. (109)

7Indeed one also has that
∫ +∞

0 du̇ρt (u̇) = 1
et −1 = ∂δw=0+ [1 − pδw(t )], where 1 − pδw (t ) is the probability that the velocity is nonzero at time

t . This comes from the definition of the density ρ(u̇) = ∂δw=0+ Pδw (u̇) from the PDF of the total velocity, which reads Pδw(u̇) = pδw (t )δ(u̇) +
[1 − pδw (t )]P̃δw(u̇) where P̃δw is the smooth normalized PDF for u̇ > 0 [see (26) and (28) in Ref. [44] for exact expressions]. Note the extra
delta function piece which is usually not considered in the expression for the density.
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It is possible to perform the inverse Laplace transform explicitly and obtain

ρc
W (u̇1, u̇2) = −Ld�̂′′(W ) rt1 (u̇1) rt2 (u̇2) (110)

rt (u̇) = et−et u/(et −1){et [−(t + 1)u̇ + et (t + u̇ − 2) + 4] − t − 2}
(et − 1)4

= d

dt

(−t + et − 1)et−et u̇/(et −1)

(et − 1)2 . (111)

Restoring the units it reads

ρc
W (u̇1, u̇2) = − Ld

m4v2
mS2

m

�′′(W ) rt1/τm

(
u̇1

vm

)
rt2/τm

(
u̇2

vm

)
, (112)

where vm = Sm/τm. One can check that
∫ +∞

0 dt1
∫ +∞

0 dt2〈u̇1u̇2〉c
W calculated with this formula coincides with the result for

〈S1S2〉c
W obtained above in Eq. (43) (which, we recall, was an exact result, i.e., valid beyond the ε expansion).

We can calculate the joint density of the mean total velocity, averaged over all the avalanche. In dimensionless units, using
that

∫ +∞
0 dt rt (u̇) = e−u̇, it reads simply∫ +∞

0
dt1

∫ +∞

0
dt2ρ

c
W (u̇1, u̇2) = −Ld�̂′′(W )e−u̇1−u̇2 . (113)

Note that it is regular at small u̇, unlike the single avalanche density (see above) ρ(u̇) = 1
u̇ e−u̇.

Let us obtain some cumulants. One has (in dimensionful units)

〈u̇1u̇2〉c
W

〈u̇1〉〈u̇2〉 = −�′′(W )

m4Ld

t1t2
τ 2

m

(114)

and (in dimensionless units) 〈
u̇1u̇3

2

〉c
W〈

u̇2
1u̇2

2

〉c
W

= 3et1−t2 (et2 − 1)[−3t2 + et2 (t2 + 2) − 2]

2[−2t1 + et1 (t1 + 1) − 1][−2t2 + et2 (t2 + 1) − 1]
.

(115)

Durations. Finally we can obtain the correlation between the durations T1 and T2 of the two avalanches. Integrating over u̇,∫ +∞

0
du̇ rt (u̇) = et (t − 1) + 1

(et − 1)2 , (116)

hence we obtain8

ρc
W (T1, T2) = −Ld�̂′′(W )d (T1)d (T2), (117)

d (T ) = −∂T

∫ +∞

0
du̇ rT (u̇) = eT [eT (T − 2) + T + 2]

(eT − 1)3
T �1

1

6
− T 2

60
+ O(T 3) (118)

T �1 Te−T , (119)

where d (T ) is a decreasing function of T . Note that the dimensionful version is

ρc
W (T1, T2) = − Ld

m4S2
mτ 2

m

�′′(W )d (T1/τm)d (T2/τm). (120)

2. Fixed distance between the seeds

Velocities. We now calculate the connected joint density ρc,x
W (u̇1, u̇2), for the total velocities (at times t1 and t2 respectively)

of two avalanches starting a distance x apart (i.e., in x1 and x2 with x2 − x1 = x). The definitions are similar to those in Sec. V C.
One finds

ρc,x
W (u̇1, u̇2) =

∫
dd q

(2π )d
eiqx ρ

c,q
W (u̇1, u̇2), (121)

ρ
c,q
W (u̇1, u̇2) = −�̂′′(W ) rq,t1 (u̇1)rq,t2 (u̇2), (122)

8Again, one shows that
∫ +∞

0

∫ +∞
0 du̇1du̇2ρW (u̇1, u̇2) = ∂δw1 |δw1=0∂δw2 |δw2=0Prob(u̇1 > 0, u̇2 > 0) = ρW (T1, T2) since Prob(u̇1 > 0, u̇2 >

0) = Prob(T1 > t1, T2 > t2).
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where

rq,t (u̇) = e−q2t−et u̇/(et −1)+t

q2(q2 − 1)(et − 1)4 [A(q, t ) + u̇B(q, t )], (123)

B(q, t ) = et (−q2et + eq2t + q2 − 1), (124)

A(q, t ) = −2q2et − 2q2eq2t+t + (q2 − 1)(1 + e(q2+2)t ) + (q2 + 1)(e2t + eq2t ). (125)

Restoring the units it reads

ρ
c,q
W (u̇1, u̇2) = − 1

m4v2
mS2

m

�′′(W ) rq/m,t1/τm

(
u̇1

vm

)
rq/m,t2/τm

(
u̇1

vm

)
, (126)

where vm = Sm/τm. Again one checks that
∫ +∞

0 dt1
∫ +∞

0 dt2〈u̇1u̇2〉c,q
W calculated with this formula coincides with the result for

〈S1S2〉c,q
W obtained in Sec. V C 2.

Durations. We can obtain the joint duration density. In dimensionless units, using∫ +∞

0
du̇ rq,t (u̇) = (q2 − 1)et − q2 + e(1−q2 )t

q2(q2 − 1)(et − 1)2 , (127)

we find

ρ
c,q
W (T1, T2) = −�̂′′(W ) dq(T1) dq(T2), (128)

dq(t ) = −∂t

∫ +∞

0
du̇ rq,t (u̇) = et ((q2 − 1)et + e−q2t [(q2 + 1)et − q2 + 1] − q2 − 1)

q2(q2 − 1)(et − 1)3
. (129)

3. Massless limit

We now study these formulas in the massless limit, to extract the fully universal limit. We follow the same strategy as
explained in Sec. V C 3.

Velocities. In the limit m → 0, we obtain from (126)

ρ
c,q, f
W (u̇1, u̇2) = lim

m→0
m−4ρ

c,q
W (u̇1, u̇2) = −�′′(W )

1

t1
r̃q

√
t1

(
u̇1

t1

)
1

t2
r̃q

√
t2

(
u̇2

t2

)
+ O(ε2) (130)

in the massless units (i.e., such that σ = η = 1), where

r̃q(u̇) = lim
m→0

m2rq/m,m2 (m2u̇) = e−q2−u̇(q2 + 2 − (q2 + 1)u̇ + eq2
(q2 + u̇ − 2))

q4
= 1

2
u̇e−u̇ + O(q2) (131)

= e−u̇

q2
+ O(q−4). (132)

We recall that �′′(W )  Ad�̃
∗′′(0+) + O(ε2) if W is kept fixed as m → 0.

We can thus surmise, more generally in the limit m → 0 (and fixed W ), from scaling and dimensional analysis, the fully
universal scaling form9

ρ
c,q, f
W (u̇1, u̇2) = 1

(t1t2)a1
c

Fd

(
u̇1

t (d+ζ )/z−1
1

,
u̇2

t (d+ζ )/z−1
2

, qt1/z
1 , qt2

)1/z

, a1
c = 1

z

(
3

2
d − 2 + 2ζ

)
− 1 (133)

with, in the d = 4 − ε expansion,

Fd (u̇1, u̇2, q1, q2) = −A4�̃
∗′′(0+)r̃q1 (u̇1)r̃q2 (u̇2) + O(ε2)

(134)

with A4�̃
∗′′(0+) = 16π2

9 ε.
Let us study q = 0, i.e., the homogeneous driving. From (112) using that rm2t (m2u̇) m→0

u̇
2t2m2 e−u̇/t we obtain the simple

and finite expression in the massless limit,

ρ
c, f
W (u̇1, u̇2) = lim

m→0
m−4ρc

W (u̇1, u̇2) = −Ld�′′(W )
u̇1

2t2
1

e−u̇1/t1
u̇2

2t2
2

e−u̇2/t2 (135)

9Up to two nonuniversal scales �σ = limm→0 m−1S−1/(d+ζ )
m and �η = limm→0 m−1τ−1/z

m .
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in the massless units. At variance with the joint size densities, there is no factor (mL)d (although of course there is a factor Ld ).
Hence this expression already has a fully universal limit. The origin of this surprising fact is that now there is a commutation of
limits q → 0 and m → 0, as can be seen from (131). Presumably it occurs because the times t1, t2 provide some natural cutoff.10

If we surmise that for this observable this property holds more generally we obtain

ρ
c, f
W (u̇1, u̇2) = Ld

(t1t2)(1/z)[(3/2)d−2+2ζ ]−1
Fd

(
u̇1

t (d+ζ )/z−1
1

,
u̇2

t (d+ζ )/z−1
2

, 0, 0

)
. (136)

Durations. Let us now discuss the joint density of the avalanche durations. Restoring the units in Eq. (128) we have

ρ
c,q
W (T1, T2) = − 1

m4S2
mτ 2

m

�′′(W ) dq/m(T1/τm) dq/m(T2/τm). (137)

In the limit m → 0 we obtain

ρ
c,q, f
W (T1, T2) = lim

m→0
m−4ρ

c,q
W (T1, T2) = −�′′(W )

1

T1T2
d̃
(
qT 1/2

1

)
d̃
(
qT 1/2

2

)
(138)

in massless units with

d̃ (q) = q2 − 2 + e−q2
(q2 + 2)

q4
= q2

6
+ O(q4) = 1

q2
+ O

(
1

q4

)
. (139)

We can compare with the massless limit of (120),

ρ
c, f
W (T1, T2) m→0 −(mL)d m4−d�′′(W ) 1

36 + O(ε2) (140)

in massless units. As was the case for the size joint density there is a factor (mL)d and noncommutation of limits q → 0 and
m → 0. The matching, i.e., setting q = m and m → 0 into (138) and recovering (140) [to O(ε)] also works, as was the case for
the size density. Another sign of the noncommuting limits is that if one integrates the q = 0 result (135) over u̇1, u̇2 and takes
∂t1∂t2 one obtains zero, while the correct subleading term in m is (140).

More generally we can thus surmise, from scaling and dimensional analysis, the fully universal scaling form (up to two
nonuniversal scales) in the massless limit in general dimension d ,

ρ
c,q, f
W (T1, T2) = 1

(T1T2)α1
c
Gd

(
qT 1/z

1 , qT 1/z
2

)
, α1

c = 1 − 1

2z
(4 − d − 2ζ ), (141)

with, in the d = 4 − ε expansion, Gd (q1, q2) = −A4�̃
∗′′(0+)d̃ (q1)d̃ (q2) + O(ε2), with A4�̃

∗′′(0+) = 16π2

9 ε. By the same
reasoning which led to (91) we can also surmise that the rhs of (141) must behave as qd at small q leading to

ρ
c, f
W (T1, T2) ∼ (mL)d 1

T αc
1 T αc

2

, αc = 1 − 1

z
(2 − ζ ) (142)

with αc = 0 in mean field, i.e., for d = dc = 4, consistent with (140).

B. Correlation of the shapes of two avalanches

Consider now the joint density of the total velocities u̇i = u̇i(ti ) = ∫
dd x u̇i(x, ti ), i = 1, 2, and u̇′

i = u̇i(t ′
i ) = ∫

dd x u̇i(x, t ′
i ),

i = 1, 2 in two avalanches, the times 0 < t1 < t ′
1 and 0 < t2 < t ′

2 being counted from the beginning of each avalanche. Its Laplace
transform satisfies∫

du̇1du̇′
1du̇2du̇′

2ρ
x1,x2
W (u̇1, u̇′

1, u̇2, u̇′
2)[eλ1u̇1+λ′

1u̇′
1 − 1][eλ2 u̇2+λ′

2 u̇′
2 − 1] = 〈ũ1(x1, 0)ũ2(x2, 0)〉ξ , (143)

where now ũi(x, t ) are solutions of (95) with the source −λiδ(t − ti ) − λ′
iδ(t − t ′

i ) with ti < t ′
i .

Here we are only interested in the correlation of the shape of each avalanche. Let us first recall the definition of the mean
shape for a single avalanche, at fixed avalanche duration T : it is the mean velocity as a function of time, conditioned to the
avalanche duration

〈u̇i(ti )〉Ti =
∫

du̇iu̇iρ(u̇i, Ti )

ρ(Ti )
, (144)

10Note however, interestingly, the noncommutation of limits m → 0 and integration over time, as integrating the massless result (135) over
time gives an extra factor 1/4 as compared to taking the small mass (or velocity) limit of the formula (113) which was integrated over time at
finite m. This is because the time scale τm diverges in that limit, while (135) is dominated by time scales t1, t2.

032108-18



CORRELATIONS BETWEEN AVALANCHES … PHYSICAL REVIEW E 101, 032108 (2020)

where ρ(u̇i, Ti ) is the joint density of the velocity and duration in an avalanche. Here we are interested in the correlation of the
shapes,

〈u̇1(t1)u̇2(t2)〉x1,x2
T1,T2

=
∫

du̇1du̇2u̇1u̇2ρ
x1x2
W (u̇1, T1, u̇2, T2)

ρ
x1x2
W (T1, T2)

, (145)

with fixed positions of the seeds at x1, x2, and in the correlation of the shapes for a homogeneous driving,

〈u̇1(t1)u̇2(t2)〉T1,T2 =
∫

du̇1du̇2u̇1u̇2ρW (u̇1, T1, u̇2, T2)

ρW (T1, T2)
. (146)

The denominator, i.e., the joint density of durations ρ
x1x2
W (T1, T2) was studied in the previous section. The numerator can be

obtained by taking a derivative of (143) with respect to λ1 and λ2 at λ1 = λ2 = 0, and setting λ′
i = −∞ [which implies u̇i(t ′

i ) = 0
hence Ti < t ′

i ] and, to obtain the joint density with durations Ti, taking the derivative with respect to t ′
i ,∫

du̇1du̇2u̇1u̇2ρ
x1x2
W (u̇1, T1, u̇2, T2) = ∂t ′

1

∣∣
t ′
1=T1

∂t ′
2

∣∣
t ′
2=T2

lim
λ′

1,λ
′
2→−∞

∂λ1

∣∣
λ1=0∂λ2

∣∣
λ2=0〈ũ1(x1, 0)ũ2(x2, 0)〉ξ . (147)

Let us first describe the solution of (95) to order 0 in ξ and recall the calculation of the shape in the BFM. The solution of

(∂t − 1)ũ0
i (t ) + ũ0

i (t )2 = −λiδ(t − ti ) − λ′
iδ(t − t ′

i ) (148)

with ũ0
i (t > t ′

i ) = 0 is [28,44]

ũ0
i (t ) = λ′

i

λ′
i + (1 − λ′

i)e
t ′
i −t

, ti < t < t ′
i , (149)

ũ0
i (t ) =

(
1 − λiλ

′
ie

ti − (1 − λi )(1 − λ′
i )e

t ′
i

(1 + λi )λ′
ie

ti + (1 − λ′
i )λiet ′

i
eti−t

)−1

, t < ti. (150)

It allows us to obtain the mean shape of a single avalanche (144) within the BFM as

〈u̇i(ti )〉Ti = 1

ρxi (Ti )
∂t ′

i

∣∣
t ′
i =Ti

∂λi

∣∣
λi=0 ũ0

i (0)
∣∣
λ′

i=−∞. (151)

Thus, for the remainder of the calculation we only need ũ0
i (0) for λ′

i = −∞ and to first order in λi, which reads

ũ0
i (t ) = θ (t ′

i − t )

1 − et ′
i −t

(
1 + λi

e−ti (eti − et ′
i )2

et − et ′
i

θ (ti − t )

)
, (152)

where we discard higher order terms in λi. This leads to the classical BFM result for the shape [28,44],

〈u̇i(ti )〉Ti = 1

ρxi (Ti )
∂t ′

i

∣∣
t ′
i =Ti

e−ti (eti − et ′
i )2

(1 − et ′
i )2

= 2(1 − e−ti )(eTi − eti )

eTi − 1

= s0(ti, Ti ) = 4 sinh ti
2 sinh Ti−ti

2

sinh Ti
2

= 2Tiz(1 − z) + O(T 3), z = ti
Ti

, (153)

using (100). Restoring the units the BFM result reads

〈u̇(t )〉T = vm s0

(
t

τm
,

T

τm

)
 vm

τm
T 2z(1 − z) + O(T 3) (154)

with vm = Sm/τm, which has a well defined massless limit since in the BFM limm→0
vm
τm

= σ/η2 = 1 in dimensionless units.
Note that the next order term O(T 3) is ∼1/τ 2

m ∼ m4 higher order in that limit.
Now we study (95) to the desired order O(ξ ). As in Sec. VII A we obtain

ũi(x, t ) = ũ0
i (t ) +

∫
dd y Gi(x, t ; y, t ′)ξi(y)ũ0

i (t ′) + O(ξ 2). (155)

Inserting in Eq. (147) and going to Fourier space, the connected correlation

ρ
c,x1,x2
W (u̇1, T1, u̇2, T2) =

∫
dd q

(2π )d
e−iq(x1−x2 )ρ

c,q
W (u̇1, T1, u̇2, T2) (156)
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becomes (taking into account that the disconnected piece has been substracted)∫
du̇1du̇2u̇1u̇2ρ

c,q
W (u̇1, T1, u̇2, T2) = −�̂′′(W ) r̂q,t1 (T1)r̂q,t2 (T2),

r̂q,ti (Ti ) = ∂t ′
i

∣∣
t ′
i =Ti

∂λi

∣∣
λi=0

∫ t ′
i

0
dt ′Gi(q, 0, t ′)ũ0

i (t ′), (157)

where we must insert (152) and the propagator to the needed order,

Gi(q, t, t ′) = e−(q2+1)(t ′−t )+2
∫ t ′

t ũ0
i (s)dsθ (t ′ − t )

= e−(q2+1)(t ′−t ) (et ′
i − et ′

)2

(et ′
i − et )2

θ (t < t ′ < t ′
i )

(
1 + λ1

2e−ti (eti − et ′
i )2(et − et ′

)

(et − et ′
i )(et ′

i − et ′ )
θ (t < t ′ < ti )

+λ1
2e−ti (eti − et )(eti − et ′

i )

et − et ′
i

θ (t < ti < t ′)
)

. (158)

From this one obtains the connected shape correlation. Since the connected parts of the densities are O(ε) one can expand
(145) as

〈u̇1(t1)u̇2(t2)〉c,x1,x2
T1,T2

= 〈u̇1(t1)u̇2(t2)〉x1,x2
T1,T2

− 〈u̇1(t1)〉T1〈u̇2(t2)〉T2

=
∫

du̇1du̇2u̇1u̇2ρ
c,x1x2
W (u̇1, T1, u̇2, T2)

L−2dρ(T1)ρ(T2)
− 〈u̇1(t1)〉T1〈u̇2(t2)〉T2

ρ
c,x1x2
W (T1, T2)

L−2dρ(T1)ρ(T2)
+ O(ε2). (159)

We recall that the nonconnected parts are x1, x2 independent and ρx(T ) = L−dρ(T ). Thus, to this order, one can easily Fourier
transform and write the shape correlation at fixed seed positions as

〈u̇1(t1)u̇2(t2)〉c,x1,x2
T1,T2

=
∫

dd q

(2π )d
e−iq(x1−x2 )〈u̇1(t1)u̇2(t2)〉c,q

T1,T2
, (160)

〈u̇1(t1)u̇2(t2)〉c,q
T1,T2

= −�̂′′(W )

[
r̂q,t1 (T1)r̂q,t2 (T2)

L−2dρ(T1)ρ(T2)
− dq(T1)dq(T2)

L−2dρ(T1)ρ(T2)
〈u̇1(t1)〉T1〈u̇1(t2)〉T2

]
+ O(ε2), (161)

where we have used (157). We recall that ρ(T ) is given in (100) and dq(T ) in Eq. (128). For the shape correlation at uniform
driving we obtain

〈u̇1(t1)u̇2(t2)〉c
T1,T2

= −Ld�̂′′(W )

[
r̂t1 (T1)r̂t2 (T2)

ρ(T1)ρ(T2)
− d (T1)d (T2)

ρ(T1)ρ(T2)
〈u̇1(t1)〉T1〈u̇1(t2)〉T2

]
+ O(ε2), (162)

where r̂t (T ) = r̂q=0,t (T ) and d (T ) = dq=0(T ) is given in Eq. (117). In both formulas, for 〈u̇(t )〉T one can insert into this order
the BFM shape given in Eq. (153).

Here we will only discuss the final formula for the shape at homogeneous driving, i.e., for q = 0. The formula at finite q are
given in Appendix D.

Denoting z = t/T , we obtain the building blocks of (162) as

AT (t ) = r̂t (T )

L−dρ(T )
= sinh(T − t ) + (t − 2T ) cosh(t ) − (t + T ) cosh(t − T ) + sinh(t ) + 2T − sinh(T ) + T cosh(T )

sinh2 T
2

= 1

3
T 3z(1 − z)[1 + z(1 − z)] + O

(
T 5

)
(163)

and

BT (t ) = d (T )

L−dρ(T )
〈u̇(t )〉T = 4 sinh

(
t
2

)
sinh

(
T −t

2

)
sinh

(
T
2

) [
T coth

(
T

2

)
− 2

]
= 1

3
T 3z(1 − z) + O

(
T 5

)
. (164)

From them one obtains the explicit expression for (162) in the form, restoring units

〈u̇1(t1)u̇2(t2)〉c
T1,T2

= −(mL)−dv2
mmd−4�′′(W )

[
AT1/τm

(
t1
τm

)
AT2/τm

(
t2
τm

)
− BT1/τm

(
t1
τm

)
BT2/τm

(
t2
τm

)]
+ O(ε2) (165)
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with vm = Sm/τm. Note that since AT (T − t ) = AT (t ) and BT (T − t ) = BT (t ) we find that to this order the shape correlations are
symmetric in independently changing each ti → Ti − ti. As is well known this property of the mean shape for a single avalanche
does not hold to the next order in ε, the corrections having been obtained in Ref. [29].

We now display the shape correlation explicitly for small avalanches. This is equivalent to considering the small mass limit.
Putting together the above results we find in the small T1, T2 limit, with z1 = t1/T1 and z2 = t2/T2,

〈u̇1(t1)u̇2(t2)〉c
T1,T2

= −(mL)−d S2
m

τ 8
m

md−4�′′(W ) × 1

9
T 3

1 T 3
2 z1(1 − z1)z2(1 − z2){[1 + z1(1 − z1)][1 + z2(1 − z2)] − 1}. (166)

The factor (mL)−d is expected since, in order to be correlated, the avalanches should take place in the same region of size
1/m along the interface. We see that there is indeed a correlation between the shapes of the avalanches. However it is of order
O(T 3

1 T 3
2 ), i.e., loosely speaking it arises as a correlation between the subleading O(T 3) terms in the avalanche shape in Eq. (154).

As a consequence it is O(m4) in the limit of small m. Hence the correlation of the fully universal part, which corresponds to the
parabolic form for the mean shape, vanishes, but there is a nontrivial correlation at the next leading order.

Finally, performing the double integral
∫ T1

0 dt1
∫ T2

0 dt2 on (167) we obtain an interesting observable, the correlation between
the total sizes of two avalanches, at fixed durations, 〈S1S2〉c

T1,T2
, which reads

〈S1S2〉c
T1,T2

= −(mL)−d S2
mmd−4�′′(W )[A(T1/τm)A(T2/τm) − B(T1/τm)B(T2/τm)] + O(ε2) (167)

= −(mL)−d S2
m

τ 8
m

md−4�′′(W )
11

8100
T 4

1 T 4
2 + O

(
T 6

1 , T 6
2

)
(168)

with

A(T ) = T
T (cosh(T ) + 2) − 3 sinh(T )

sinh2
(

T
2

) = T 4

15
+ O(T 6),

B(T ) = 2

[
T coth

(
T

2

)
− 2

]2

= T 4

18
+ O(T 6). (169)

We note the sum rule (in dimensionless units)∫ +∞

0
dTA(T )ρ(T ) =

∫ +∞

0
dTA(T )

1

4 sinh2(T/2)
= 1. (170)

Hence multiplying (167) by ρ(T1)ρ(T2), the first term leads
exactly to (43) (with 〈S〉 = Ld ). The second term comes
from the O(ε) correlation between T1 and T2 together with
the precise definition of the connected shape in Eq. (159).
Similarly there is a sum rule when performing the double
integral

∫ T1

0 dt1
∫ T2

0 dt2 on Eq. (157). Indeed, upon further
integration

∫ +∞
0 dT1dT2, it should give back (70). Using (73)

we see that it implies the sum rule (in dimensionless units)∫ +∞

0
dT

∫ T

0
dt r̂q,t (T ) = 1

1 + q2
, (171)

which we have checked is indeed obeyed by the result in
Appendix D.

VIII. CONCLUSION AND DISCUSSION

In conclusion we have obtained a method to calculate the
correlations between successive avalanches in the dynamics
of an elastic interface near the depinning transition to leading
order in the ε = dc − d expansion. This approach is techni-
cally simpler than the corresponding one developed to study
shocks in the statics. We have first calculated correlations of
the global and local sizes, which, to the accuracy of O(ε)
leads to results formally similar to the one for the shocks in
the statics, apart from the fact that the renormalized disorder
correlator is different in each case. Next we have calculated

an observable which is more natural in the dynamics, the
correlation between avalanche sizes with prescribed positions
of the seeds (the starting points). The massless limit was stud-
ied, leading to fully universal results, and conjectures for the
correlation exponents. Some of these results were confronted
to numerical simulations of an interface in d = 1. In a second
part we studied truly dynamical correlations, between the
velocities in the two avalanches. We obtained the correlations
of the total velocities and of the avalanche durations both
for homogeneous driving and for prescribed positions of the
seeds. These correlations admit a fully universal massless
limit which we studied, leading to further conjectures for
correlation exponents. Finally, we calculated the correlation
between the shapes of two avalanches. These were found to
be subdominant for small avalanches, but nonzero for larger
ones. It would be quite useful to probe these correlations
further in numerical simulations and in experiments to test
the theoretical predictions. These tests should allow us to
distinguish the various universality classes for avalanches.

Let us close by indicating an interesting direction for fur-
ther work. Here we have shown that the correlation between
avalanches separated by W in the direction of motion is
proportional (to leading order) to �′′(W ), where �(w) is the
renormalized correlator of the pinning force. At the depinning
fixed point this quantity is negative, leading to anticorrela-
tions. This result is valid at strictly zero temperature. On the
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other hand, avalanches at very low but finite temperature were
studied recently in numerical simulations [45]. There “events”
where the interface moves forward without returning, similar
to avalanches, were observed. These occur at scales below and
around the so-called thermal activation nucleus scale (also
called Lopt). These successive events tend to cluster in the
same spatial region and are observed to be very strongly pos-
itively correlated (reminiscent of the propagation of a forest
fire). At larger scale, they appear to organize into clusters,
which behave more like conventional depinning avalanches.
On the other hand, the FRG theory of creep, as obtained in
[46], predicts a similar crossover in scales from the creep to
depinning regimes. It is well known that in the creep regime
�′′(W ) is very large and positive within a “thermal boundary
layer” for small W , corresponding to the thermal nucleus
scale. We claim that this is quite consistent with the obser-
vations in Ref. [45] of a strong positive correlation between
the events. Obtaining a detailed theory is more challenging,
since it requires a precise and operational definition of these
events (as we did here for the zero temperature avalanches).
However we believe that our result should provide the main
guiding idea in that direction.

Note added. A recent preprint by Le Priol et al. [47] studies
dynamical correlations in crack front propagation near depin-
ning, in and outside of the avalanche regime, and observes
some regime of negative velocity velocity correlations, glob-
ally consistent with the prediction of dynamical avalanche
anticorrelations obtained in this work.
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APPENDIX A: RESTORING UNITS

In this Appendix we give useful information on how to
restore the dimensionful units in the formula for the problem
with a mass m > 0. To check units (and restore them) one
must convert all quantities in units of m, Sm, τm which are the
natural units. The conversion goes as follows:

[x], [L] = m−1, [w(x, t )], [u(x, t )] = Smmd , [t] = τm,

[u̇(x, t )] = Smmd/τm, [u̇tot] = vm := Sm/τm,

[�(w)] = m4−d [w2] = S2
mm4+d , [�′(w)] = Smm4,

[�′′(w)] = m4−d . (A1)

As dimensional relations these are exact (i.e., up to dimen-
sionless prefactors) in any dimension. Note that the relation
−�′(0) = Smm4 is exact. Let us give more details.

For kicks, source, and response field, one has ẇ(x, t ) =
δw(x)δ(t ), with for a uniform kick δw(x) = δw, then [δw(x)]
= [δw] = Smmd . For the source, [λ(x, t )] = 1/Sm, with the
same unit for λ(x, t ) = λ, conjugated to S. For the response
field [ũ(x, t )] = 1/(Smm2).

For local sizes, one has [S(x)] = Smmd and λ(x, t ) =
λδd (x) implies [λ] = 1/(md Sm).

For densities, one must distinguish densities for different
driving, and for different observables, which have all different
dimensions. The density with respect to a uniform driving is
[ρ(S)] = Ld/S2

m, [ρ(u̇tot )] = Ld/(Smvm). The joint densities
are [ρc

W (S1, S2)] = [ρW (S1, S2)] = [ρ(S1)ρ(S2)]. The density
with respect to uniform driving of local size is [ρ(S(x))] =
1/(S2

mm2d ) and [ρW (S1(x1), S2(x2))] = 1/(S4
mm4d ). The

densities with fixed kick positions have dimension
[ρx(S)] = 1/S2

m, [ρc,x1,x2
W (S1, S2)] = [ρc,x

W (S1, S2)] = 1/S4
m,

and in Fourier space [ρc,q
W (S1, S2)] = 1/(md S4

m). Similarly
one has [ρx(u̇)] = 1/(Smvm) [ρc,x1,x2

W (u̇1, u̇2)] = 1/(S2
mv2

m)
[ρc,q

W (u̇1, u̇2)] = 1/(md S2
mv2

m).
All the above assumes that one converts L = 1/m. There

are also some rules for how L appears in the formula.
For instance densities with uniform driving are ρ(S) ∼ Ld ,
ρW (S1, S2) ∼ L2d , while connected densities are ρc

W (S1, S2) ∼
Ld . The densities with fixed seed positions are all O(1).

In a second stage one can make explicit the dependence in
m, and introduce the roughness and dynamical exponents, i.e.,
write Sm = ASm−(d+ζ ) and τm = Aτ m−z, and write �(w) =
mε−2ζ �̂(mζ w).

Finally, what we call the “massless dimensionless units”
are such that σ = η = 1.

APPENDIX B: AVALANCHE DECOMPOSITION

Let us justify further the formula (6). The avalanche picture
is the following. In the limit of very slow driving, one can
assume that the part of the velocity field u̇ ≡ u̇(x, t ) which is
O(1) can be decomposed in a sum over discrete events called
avalanches, schematically

u̇ =
∑

α

u̇(α). (B1)

Each u̇(α) is a random velocity field (inside one avalanche). It
is either nonzero (the avalanche has occurred) or zero u̇(α) = 0
with finite probability (the avalanche has not occurred). In
practice it means that the velocity is not O(1); it can be
nonzero but vanishes as the driving vanishes.

Now we can use the identity

eλ·u̇ =
∏
α

eλ·u̇(α) =
+∞∑
n=0

∑
1<α1<α2<...αn

n∏
j=1

(
eλ·u̇(α j ) − 1

)
. (B2)

If we want to think of each avalanche α to be triggered by a
small kick δwα with probability proportional to δwα , we can
average (B2) and obtain

G[λ] =
∏
α

eλ·u̇(α)

=
+∞∑
n=0

∑
1<α1<α2<...αn

n∏
j=1

δwα j

∫ n∏
j=1

D[u̇(α j )]

× ρα1,...αn (u̇(α1 ), . . . , u̇(αn ) )
n∏

j=1

(
eλ·u̇(α j ) − 1

)
, (B3)

where ⎛
⎝ n∏

j=1

δwα j

⎞
⎠ρα1,...αn (u̇(α1 ), . . . , u̇(αn ) ) (B4)
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is the probability that the avalanches α1, . . . αn have occurred,
and ρα1,...αn (u̇(α1 ), . . . , u̇(αn ) ) is the associated joint density for
the avalanche velocities to take values u̇(α1 ), . . . , u̇(αn ). In the
BFM the avalanches are independent, and these densities are
just products ρα1,...αn (u̇(α1 ), . . . , u̇(αn ) ) = ∏n

j=1 ρα j (u̇
(α j ) ) and

one obtains eλ·u̇ = e
∑

α δwα

∫
D[u̇(α)]ρα (u̇(α) )(eλ·u̇(α) −1).

If we consider a source λ which is nonzero only for two
specific avalanches, we see that we obtain the formula (6)
since all other terms vanish. There is a small subtlety however
concerning, e.g., the terms δw2

1, δw
2
2 in Eq. (6) (not of interest

there). The above picture is correct for distinct kicks δwα .
There are additional terms in G[λ] containing powers of δw

p
α

with p > 1. Those are obtained by a small modification,
namely there can be in the sum (B1) pα replica of the same
avalanche (i.e., the kick δwα can trigger p avalanches). In
the BFM the pα are distributed according to the Poisson
distribution. Here we are not interested in these terms and we
can use pα = 1. Hence the above picture is sufficient.

One can now compare with the expansion of (C2) in
powers of ẇxt , namely

G[λ] = 1 + m2
∫

xt
ẇxt 〈ũxt 〉Sλ

+ 1

2
m4

∫
xt,y′t ′

ẇxt ẇyt ′ 〈ũxt ũyt ′ 〉Sλ
+ · · · , (B5)

where the brackets denote expectations of the response fields
in the theory Sλ = S − ∫

xt λxt u̇xt (normalized since G[λ] =
1 when ẇxt = 0). Choosing ẇxt to be a series of kicks at
well separated times (much larger than the typical duration
of an avalanche) ẇxt = ∑

α δwα (x)δ(t − tα ), and inserting in
Eq. (B5) we obtain an expansion similar to (B3), and we can
identify, e.g.,∫

D[u̇(α)]ρx
α (u̇(α) )(eλ·u̇(α) − 1) = m2

〈
ũx,tα

〉
Sλ

, (B6)∫
D[u̇(α)]D[u̇(β )]ρx,y

α,β (u̇(α), u̇(β ) )
(
eλ·u̇(α) − 1

)(
eλ·u̇(β ) − 1

)
= m4

〈
ũx,tα ũy,tβ

〉
Sλ

, (B7)

and so on (α �= β in the second relation). In the BFM
〈ũx,t 〉Sλ

= ũλ
x,t , 〈ũx,t ũy,t ′ 〉Sλ

= ũλ
x,t ũ

λ
y,t ′ and so on in terms of

the solution of the instanton equation, and the densities fac-
torize. The calculations performed in the main text amount
to calculating these expectation values beyond the BFM. As
said above the two times t, t ′ in Eq. (B7) are very far away
and chosen to belong to different avalanches. The response
field correlation in Eq. (B7) when t, t ′ are distant of order τm

instead allows us to study overlapping avalanches, which goes
beyond the present study.

APPENDIX C: DERIVATION OF THE ACTION

In this Appendix we justify our main result (22)–(24)
about the simplified field theory which allows us to compute
correlations between several avalanches at order O(ε) in the
depinning dynamics of elastic interfaces. To this aim, it is
easier to consider the first protocol (see Sec. II A) where
the interface is driven at a constant velocity v → 0+. For
compactness we denote the space and time dependence in
subscript, i.e., u(x, t ) ≡ uxt , λ(x, t ) ≡ λxt , and so on.

Our starting point is that the MSR action for the velocity
theory is exactly given by S[ũ, u̇] = S0[ũ, u̇] + Sdis[ũ, u̇] −
m2

∫
xt ẇxt ũxt with [see Eqs. (301)–(303) in Ref. [28]],

S0[ũ, u̇] =
∫

xt
ũxt

(
η∂t − ∇2

x + m2
)
u̇xt ,

Sdis[ũ, u̇] = −σ

∫
xt

ũ2
xt u̇xt + 1

2

∫
xtt ′

ũxt ũxt ′ u̇xt u̇xt ′�′′
reg

× (uxt − uxt ′ ), (C1)

where σ = −�′(0+) and �′′
reg(u) is the regularized version of

the renormalized disorder correlator �(u) that is smooth at 0
and defined by �reg(u) = �(u) + σ |u|.

This action allows us to calculate observables of the veloc-
ity field as, for any source λxt ,

G[λ] = e
∫

xt λxt u̇xt

=
∫

D[ũ, u̇]e
∫

xt λxt u̇xt −S0[ũ,u̇]−Sdis[ũ,u̇]+m2
∫

xt ẇxt ũxt . (C2)

Let us consider the slow uniform driving ẇxt = v → 0+.
Being interested in correlations between different avalanches,
we can consider a source of the form

λxt = λ1(x, t )θ (t )θ (T1 − t )

+ λ2(x, t )θ (t − W/v)θ (W/v + T2 − t ), (C3)

that is, as a source that is active in two different time windows
[0, T1] and [W/v,W/v + T2] and probes the result of two
avalanches eventually occurring at times t ∈ [0, T1] and t ∈
[W/v,W/v + T2]. Taking first the limit v → 0 with T1 and
T2 fixed, it is clear that if the interface moves during both time
windows, this is due to different avalanches since the duration
of an avalanche is O(v0).

It is a crucial point that near the critical dimension one
has uxt = vt + O(ε), while �′′

reg is also uniformly O(ε). That
means that, at order O(ε), we can replace in the above action
�′′

reg(uxt − uxt ′ ) → �′′
reg[v(t − t ′)] + O(ε2). We now rescale

the fields ũ and u̇ by introducing the characteristic scales of
the avalanche motion: we rescale t → τmt , x → m−1x, and
u → md Smu with τm = η/m2 and Sm = σ/m4. That leads to
a rescaling of the fields as u̇ → vmu̇ and ũ → 1

m2Sm
ũ with

vm = md Sm/τm. We also use that for m close to 0 the renor-
malized disorder correlator � takes a scaling form �(u) =
mε−2ζ �̂(mζ u) with �̂ a function that converges to a FRG
fixed point uniformly of order O(ε) in the m → 0 limit and ζ

the roughness exponent of the interface. Rescaling finally the
source field as λxt → 1

Sm
λxt and the driving velocity as v →

vmv we can decompose the action for these rescaled variables
between the tree action [O(ε0)] and one-loop corrections
[O(ε)]

G[λ] = e
∫

xt λxt u̇xt =
∫
D[ũ, u̇]e

∫
xt λxt u̇xt −Stree[ũ,u̇]−δSloop[ũ,u̇]+v

∫
xt ũxt ,

(C4)

with the tree action corresponding to the rescaled version of
the BFM action,

Stree[ũ, u̇] =
∫

xt
ũxt

(
∂t − ∇2

x + 1
)
u̇xt −

∫
xt

ũ2
xt u̇xt ∼ O(1),

(C5)
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and the O(ε) corrections,

δSloop[ũ, u̇] = 1

2

∫
xtt ′

ũxt ũxt ′ u̇xt u̇xt ′�̂′′
reg[mζ vmvτm(t − t ′)]

∼ O(ε). (C6)

On the other hand, expanding G at order v2 we obtain

G[λ] = 1 + v

∫
D[ũ, u̇]

∫
xt

ũxt e
∫

xt λxt u̇xt −Stree[ũ,u̇]−δSloop[ũ,u̇]

+ v2

2

∫
D[ũ, u̇]

∫
xt

ũxt

∫
x′t

ũx′t ′

× e
∫

xt λxt u̇xt −Stree[ũ,u̇]−δSloop[ũ,u̇] + O(v3). (C7)

As it has been already discussed numerous times in that
context, e.g., [28,33], each response field ũxt present in front
of the dynamical path weight in Eq. (C7) generates the con-
tribution to the observable G[λ] that comes from an avalanche
starting at time t at position x. The first line in Eq. (C7)
thus corresponds to the contribution from single avalanches
(a single avalanche occurred with probability of order v),
while the second line corresponds to the contribution from
two avalanches (two avalanches occurred with probability
of order v2), and contains the correlations between the two
avalanches. Let us now think a bit diagrammatically about
the calculation of an observable like (C3) at order O(ε).
This can be performed by an expansion in λxt and δSloop

of the O(v2) term in Eq. (C7) and computing the resulting
correlation functions involving the fields ũxt and u̇xt within
the Stree action. Since the tree action can only connect fields at
times differing by a time scale at most of order O(1) � 1/v

and that the O(ε) interaction vertex δSloop[ũ, u̇] can only be
used once at this order, it is clear that we can only get diagrams

of two types at order O(ε). The first type are diagrams where
the δSloop term was used to contract fields in the same time
window. This leads to diagrams where fields on the two
time windows are disconnected. These do not participate to
the correlations between the two avalanches at w = 0 and
w = W . For these diagrams we can replace in the limit v →
0, �̂′′

reg[mζ vmvτm(t − t ′)] → �̂′′
reg(0) in δSloop. In the second

type of diagrams the δSloop term is used to contract fields
in different time windows. These are the only diagrams that
contribute to correlations between avalanches at w = 0 and
w = W . For these diagrams we can replace in the limit v → 0,
�̂′′

reg[mζvmvτm(t − t ′)] → �̂′′
reg(mζW ) in δSloop.

In the above discussion, the first type of diagrams contains
the diagrams that lead to the O(ε) corrections to the single
avalanche statistics as studied in Refs. [28,33]. The second
type of diagrams on the other hand generates the correlations
between avalanches as studied in this paper. Since fields living
inside the two different time windows (avalanches) can only
be connected once by the �̂′′(W ) interaction vertex we can
formally introduce two different copies of the fields, one for
each time window, the two copies being only connected by the
�̂′′(W ) interaction vertex. The contribution to G[λ] coming
from avalanches starting at position x1 at time t = 0 and at
position x2 at time t = W/v can then be targeted by restricting
the response fields outside the exponential in the second line
of (C7) to (x1, t1) and (x2, t2). Once this has been done one can
send the time window T1 and T2 to infinity to ensure that the
avalanche terminates inside the time window with probability
1 (the order Ti � 1/v holds since the limit v → 0 has already
been taken). Going back to the original units of the problem,
one then sees that (C7) leads to (28) and more generally we
obtain the formulation of the theory presented in the text in
Eqs. (22)–(24).

APPENDIX D: FORMULA FOR THE SHAPE CORRELATION AT FIXED SEED POSITIONS

We give here the formula for arbitrary q in Eq. (163) We have

∂λi

∣∣
λi=0

∫ t ′
i

0
dt ′Gi(q, 0, t ′)ũ0

i (t ′) =
∫ ti

0
dt ′e−(q2+1)t ′ et ′−ti (et ′

i − eti )2

(et ′
i − 1)2

(D1)

−2
∫ ti

0
dt ′e−(q2+1)t ′ et ′−ti (et ′

i − eti )2(et ′ − 1)

(et ′
i − 1)3

− 2
∫ t ′

i

ti

dt ′e−(q2+1)t ′ et ′−ti (et ′
i − et ′

)

(et ′
i − 1)3

(eti − 1)(et ′
i − eti ) (D2)

= e−ti (et ′
i − eti )

(et ′
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(
(et ′
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0
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(et ′
i − eti )
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i − 1)

∫ ti

0
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(eti − 1)
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i

ti
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(et ′

i − et ′
)

)
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(D3)

from which we obtain the result by a simple derivative,

rq,ti (Ti ) = ∂t ′
i

∣∣
t ′
i =Ti

∂λi

∣∣
λi=0

∫ t ′
i

0
dt ′Gi(q, 0, t ′)ũ0

i (t ′). (D4)
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