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Magnetic behavior of a ferroferrimagnetic ternary alloy ABρC1−ρ with a selective site disorder:
Case study of a mixed-spin Ising model on a honeycomb lattice
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Phase transitions, compensation phenomenon, and magnetization of a ferroferrimagnetic ternary alloy
ABρC1−ρ composed of three different kinds of magnetic ions A, B, and C with the spin magnitudes 1/2, 1,
and 3/2 are examined within the framework of a mixed-spin Ising model on a honeycomb lattice with a selective
annealed site disorder on one of its two sublattices. It is supposed that the first sublattice of a bipartite honeycomb
lattice is formed by the spin-1/2 magnetic ions, while the sites of the second sublattice are randomly occupied
either by the spin-1 magnetic ions with a probability ρ or the spin-3/2 magnetic ions with a probability 1 − ρ,
both being subject to a uniaxial single-ion anisotropy. The model under investigation can be exactly mapped into
an effective spin-1/2 Ising model on a triangular lattice through the generalized star-triangle transformation. For
a specific concentration of the spin-1 (spin-3/2) magnetic ions, it is shown that the ferroferrimagnetic version
of the studied model may display a compensation temperature at which the total magnetization vanishes below
a critical temperature. The critical temperature strikingly may also become independent of the concentration of
the randomly mixed spin-1 and spin-3/2 magnetic ions for a specific value of a uniaxial single-ion anisotropy.
The spontaneous magnetic order may be notably restored at finite temperatures through the order-by-disorder
mechanism above a disordered ground state, which results in an anomalous temperature dependence of the total
magnetization with double reentrant phase transitions.

DOI: 10.1103/PhysRevE.101.032104

I. INTRODUCTION

In the past few decades, advanced magnetic materials with
a two-dimensional magnetic structure have attracted a great
deal of attention because of their immense technological
potential in thermomagnetic recording, electronic, computer
technologies, chemical sensors, and electronic and optoelec-
tronic devices [1–4]. Various versions of the mixed-spin Ising
models in two dimensions have been extensively studied
because they may display richer critical behavior than their
single-spin counterparts, along with a greater variability of
their magnetic properties (see Ref. [5] and references cited
therein). A considerable attention has been paid, in particular,
to the magnetic behavior of ferrimagnetic mixed-spin Ising
systems when investigating the role of the spin magnitude and
the nature of considered coupling constants on the magnetic
behavior.

Among the most outstanding features of the ferrimagnetic
mixed-spin Ising systems belongs the emergence of a compen-
sation phenomenon, which refers to a specific temperature at
which the total magnetization of a magnetic system vanishes
in spite of an existent spontaneous long-range magnetic order
at a given temperature. The appearance of a compensation
point is closely related to a complete cancellation of the
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magnetic moments of at least two different magnetic species
(magnetic ions), which are coupled through the antiferromag-
netic interaction and may naturally display different temper-
ature dependencies of the relevant sublattice magnetizations.
It should be stressed, moreover, that the compensation phe-
nomenon is of particular technological relevance for thermo-
magnetic recording, because only a small change of a driving
field is needed for a reversal of the total magnetization [3,4].

The binary mixed-spin Ising systems are the simplest
models allowing a theoretical description of the main char-
acteristics of ferrimagnetism. To date, there are numerous
theoretical studies of the binary mixed-spin Ising models
defined on a honeycomb lattice [6–17], bathroom-tile lattice
[18,19], diced lattice [20], square lattice [21–25], Bethe lattice
[26,27], etc. As far as spin sizes are concerned, the binary
mixed-spin Ising models with a great variety of combina-
tions of the spin magnitudes have been investigated as, for
instance, (1/2, 1) [6,7,13,14,20], (1/2, 3/2) [8,21], (1, 3/2)
[9,10], (1/2, S > 1/2) [11,18,22], (2, 5/2) [12,15], (3/2,
2) [26], (7/2, 1) [23,27], (7/2, 2) [24], and (7/2, 3) [25].
Magnetic properties of the binary mixed-spin Ising models
on a honeycomb lattice were exploited by various theoretical
methods such as exact mapping technique [6,8], Monte Carlo
simulations [12,13,16,21], cluster variational method [28] and
the effective- [9] and mean-field [29] theories.

Compared to the above, the ternary mixed-spin Ising sys-
tems built of three different magnetic species were until now
much less studied and their magnetic characteristics remain
far from being fully understood. So far, there are only a few
rigorous studies of the ternary mixed-spin Ising models on
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decorated square [30,31] and Bethe [32–34] lattices. An even
more complicated situation emerges when considering the
mixed-spin Ising models for ternary alloys, which are being
subject to a site disorder emergent leastwise at one of its
sublattices. This situation is experimentally encountered, for
instance, in Prussian blue analogs (C1−ρMnρ )3[Cr(CN)6]2 · n
H2O (C = Ni2+ or Fe2+), which provide experimental realiza-
tions of the ternary alloy ABρC1−ρ with a perfect occupation
of the first sublattice by the spin-3/2 magnetic ions Cr3+ and
a site randomness of the second sublattice occupied with a
probability ρ by the spin-5/2 magnetic ions Mn2+and with
a probability 1 − ρ either by the spin-1 magnetic ions Ni2+

or the spin-2 magnetic ions Fe2+, respectively [35–37]. The
phase diagrams, compensation phenomenon, and magnetic
properties of the mixed-spin Ising ternary alloys ABρC1−ρ

with various combinations of the spin magnitudes were
thoroughly described by Bobák and coworkers by making
use of the mean-field theory [38–41], effective-field theory
[42], and Monte Carlo simulations [43–45]. To the best of
our knowledge, the exact calculations for the mixed-spin
Ising ternary alloys ABρC1−ρ have not been reported in the
literature yet.

In the present work we will therefore introduce and exactly
solve the mixed spin-1/2, -1, and -3/2 Ising models on a
bipartite honeycomb lattice, which will be designed for a
ternary alloy ABρC1−ρ with a selective site disorder on one
of its two sublattices. In Sec. II we will at first describe
the investigated model and basic steps of its exact solution
following the approach elaborated previously for the mixed-
spin Ising model on a selectively diluted honeycomb lattice
[5]. Section III elucidates phase diagrams, critical behavior,
and compensation phenomenon of the studied system. Typical
temperature variations of the spontaneous magnetization will
be reported in Sec. IV. Finally, some conclusions and future
outlooks are mentioned in Sec. V.

II. MODEL AND ITS EXACT SOLUTION

Let us begin by considering the mixed spin-1/2, spin-
1, and spin-3/2 Ising models for the ternary alloy with a
selective annealed site disorder on a given sublattice of a
honeycomb lattice as depicted in Fig. 1. The small circles
(σ ) represent the spin-1/2 magnetic ions forming the sub-
lattice A and the large circles correspond either to the spin
s = 1 or S = 3/2 magnetic ions B or C forming the other
sublattice BC. It is worthy to mention that the magnetic
ions B and C are both randomly distributed over the same
sublattice BC.

Then the total Hamiltonian can be written as:

H = − JAB

∑
〈i, j〉

σis jn j − JAC

∑
〈i, j〉

σiS j (1 − n j )

− DB

N∑
j=1

s2
j n j − DC

N∑
j=1

S2
j (1 − n j ), (1)

where the summation symbol 〈i, j〉 runs over all nearest-
neighbor spin pairs, the index i refers to a lattice site from
the sublattice A, the index j corresponds to a lattice site
from the sublattice BC with the spin size s j = 1 or S j = 3/2,
respectively, and N denotes the total number of the lattice sites

Sublattice A (spin-1/2)

JAB

JAC

σ1,k
σ2,k

σ3,k

sk

Sk

Sublattice BC (spin-1 or spin-3/2)

FIG. 1. A schematic representation of a honeycomb lattice.
Small circles represent the spin-1/2 magnetic ions (σ ) from sub-
lattice A, while the large circles denote the randomly mixed spin-1
(s) and spin-3/2 (S) magnetic ions from the sublattice BC. Solid
lines stand for the coupling constant JAB or JAC, while broken lines
visualize effective couplings within a triangular lattice obtained after
a star-triangle transformation.

within sublattice A. The coupling constant JAB denotes the
nearest-neighbor interaction between the spin-1/2 and spin-1
magnetic ions, while the coupling constant JAC denotes the
nearest-neighbor interaction between the spin-1/2 and spin-
3/2 magnetic ions. The parameters DB and DC measure a
strength of the uniaxial single-ion anisotropy acting on the
spin-1 and spin-3/2 magnetic ions from the sublattice BC.
Finally, the two-valued random variable n j = 0, 1 determines
whether the lattice site j in the sublattice BC is occupied
by the spin-1 magnetic ion B (nj = 1) or by the spin-3/2
magnetic ion C (nj = 0). The distribution function for the
binary random variable n j is given by:

P(n j ) = ρδ(n j − 1) + (1 − ρ)δ(n j ), (2)

where the probability ρ determines a concentration of the
spin-1 magnetic ions B and the probability 1 − ρ determines
a concentration of the spin-3/2 magnetic ions C.

The mixed-spin Ising model with a selective site disorder
on a honeycomb lattice can be rigorously solved following
the approach elaborated previously for the mixed-spin Ising
model on a selectively diluted honeycomb lattice [5]. Let us
rewrite first the Hamiltonian (1) as a sum of the cluster Hamil-
tonians H = ∑

k Hk , each of which involves all interaction
terms pertinent to a single four-spin cluster with the geometric
shape of a star (see the four-spin cluster delimited in Fig. 1 by
a thick red triangle):

Hk = − JABsknk (σ1,k + σ2,k + σ3,k ) − JACSk (1 − nk )

× (σ1,k + σ2,k + σ3,k ) − DBs2
knk − DCS2

k (1 − nk ).
(3)
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The relevant Boltzmann’s factor corresponding to the cluster
Hamiltonian (3) reads as follows:

ω({σk}) =
3
2∑

Sk=− 3
2

1∑
sk=−1

1∑
nk=0

e−βHk+βμnk , (4)

where {σk} ≡ σ1,k + σ2,k + σ3,k , β = 1/(kBT ), kB is the
Boltzmann constant, T denotes the absolute temperature,
and μ is the chemical potential of the spin-1 magnetic ions
B. Within this approach, we are assuming an equilibrium
disorder distribution, usually termed as annealed disorder.
In systems with quenched disorder the distribution is not
thermalized. Due to the absence of spin frustration in this
lattice, one expects the thermodynamic magnetic behavior
to be quite similar irrespective to the quenched or annealed
nature of the disorder distribution. For the sake of brevity, let
us introduce the fugacity of the spin-1 magnetic ions z = eβμ

and the parameter ζk = σ1,k + σ2,k + σ3,k , which enable us to
rewrite the Boltzmann’s factor (4) into the following explicit
form after performing all three summations in Eq. (4):

ω(ζk ) = z+2zeβDB cosh (βJABζk ) + 2e
9βDC

4 cosh

(
3βJAC

2
ζk

)

+2e
βDC

4 cosh

(
βJAC

2
ζk

)
. (5)

The generalized star-triangle transformation [46] allows one
to replace the Boltzmann factor (5) through the equivalent
expression given by the effective Boltzmann weight

ω̃(ζk ) = AeβR(σ1,kσ2,k+σ2,kσ3,k+σ3,kσ1,k ). (6)

So far not specified mapping parameters A and R can be
simply obtained by imposing the self-consistency condition
of the star-triangle transformation ω(ζk ) = ω̃(ζk ), which ne-
cessitates equality between the Boltzmann weights (5) and (6)
for all available combinations of the spin values σ1,k , σ2,k , and
σ3,k . One may easily convince oneself that the star-triangle
transformation ω(ζk ) = ω̃(ζk ) is in fact just a set of two
independent equations:

ω
(

3
2

) = zV1 + V3 = ω̃
(

3
2

) = Ae
3βR

4 , (7)

ω
(

1
2

) = zV2 + V4 = ω̃
(

1
2

) = Ae− βR
4 . (8)

In above, we have defined the following four functions:

V1 =1 + 2eβDB cosh

(
3βJAB

2

)
, (9)

V2 =1 + 2eβDB cosh

(
βJAB

2

)
, (10)

V3 =2e
9βDC

4 cosh

(
9βJAC

4

)
+ 2e

βDC
4 cosh

(
3βJAC

4

)
, (11)

V4 =2e
9βDC

4 cosh

(
3βJAC

4

)
+ 2e

βDC
4 cosh

(
βJAC

4

)
. (12)

By solving Eqs. (7) and (8) one gets the following exact
formula for the mapping parameter:

A = [(zV1 + V3)(zV2 + V4)3]
1
4 (13)

and

R = 1

β
ln

(
zV1 + V3

zV2 + V4

)
. (14)

After plugging in the star-triangle transformation into the
grand-canonical partition function of the mixed spin-1/2,
-1, and -3/2 Ising ternary alloy on a selectively disordered
honeycomb lattice one obtains the exact mapping relationship
with the partition function of the simple spin-1/2 Ising model
on a triangular lattice:

� =
∑
{σk}

N∏
k=1

ω({σk}) =
∑
{σk}

N∏
k=1

ω̃({σk}) = ANZt (β, R),

(15)

which is defined through the effective Hamiltonian with
temperature-dependent nearest-neighbor interaction R:

Ht = −R
∑
〈i, j〉

σiσ j . (16)

The grand potential of the mixed-spin Ising ternary alloy on a
selectively disordered honeycomb lattice consequently reads:

	 = −kBT ln � = −NkBT ln A − kBT lnZt (β, R). (17)

From the above equation one may simply calculate the mean
value for the concentration of the spin-1 magnetic ions using
the formula:

ρ = − 1

N

∂	

∂μ
= zβ

N

∂	

∂z
= z

∂ ln A

∂z
+ 3βε

∂R

∂z
, (18)

where ε = 〈σiσ j〉t denotes the nearest-neighbor pair corre-
lation function of the effective spin-1/2 Ising model on a
triangular lattice given by the effective Hamiltonian (16).
After some algebraic manipulations, one may express the
concentration ρ of the spin-1 magnetic ions in the following
compact form:

ρ = zV1

zV1 + V3

(
1

4
+ 3ε

)
+ 3zV2

zV2 + V4

(
1

4
− ε

)
. (19)

The formula (19) represents a central result of our calculation
as it can be viewed as an equation of state, from which phase
diagrams, critical behavior, as well as all basic thermody-
namic quantities can be rigorously calculated when the con-
centration of the spin-1 magnetic ions is fixed to some specific
value. It is worthwhile to recall that the particular case ρ = 1
corresponds to a mixed spin-1/2 and spin-1 Ising model on
a honeycomb lattice [6], while the other special case ρ = 0
corresponds to a mixed spin-1/2 and spin-3/2 Ising model on
a honeycomb lattice [8]. The selective site randomness can be
thus examined within a range of the concentration 0 < ρ < 1,
whereas the strongest effect of a selective site disorder could
be expected for the concentration ρ = 0.5 assuming half of
the lattice sites occupied by the spin-1 magnetic ions and
another half of the lattice sites occupied by the spin-3/2
magnetic ions.

III. PHASE TRANSITIONS AND CRITICAL PHENOMENA

In this section we will establish finite-temperature phase
diagrams of the mixed-spin Ising ternary alloy on a selectively
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diluted honeycomb lattice. To this end, it is sufficient to realize
that the mapping relation (15) between the grand-canonical
partition function of the mixed-spin Ising ternary alloy on
a selectively diluted honeycomb lattice shows a singularity
only if the same singularity appears in the canonical partition
function of the effective spin-1/2 Ising model on a triangular
lattice given by the Hamiltonian (16). It should be pointed out
that the critical parameters for the spin-1/2 Ising model on
a triangular lattice are known exactly (for a review see, for
instance, Refs. [5,47]): The inverse critical temperature reads
βcR = R/(kBTc) = ln 3 and the critical value of the nearest-
neighbor pair correlation function is εc = 1

6 . The critical value
of the fugacity zc can be consequently obtained from Eq. (14):

βcR = ln

(
zcV c

1 + V c
3

zcV c
2 + V c

4

)
⇒ zc = V c

3 − 3V c
4

3V c
2 − V c

1

. (20)

In above, the superscript c at the relevant expressions V c
j ( j =

1 − 4) means that the inverse critical temperature βc =
1/(kBTc) enters into their definitions (9)–(12) instead of β.
Now one may substitute the critical value of the fugacity zc

given by Eq. (20) and the nearest-neighbor pair correlation
function εc = 1/6 into Eq. (19) in order to get the critical
condition of the mixed-spin Ising model on a selectively
disordered honeycomb lattice:

ρc =
(
V c

1 + V c
2

)(
3V c

4 − V c
3

)
4
(
V c

1 V c
4 − V c

2 V c
3

) . (21)

The critical boundaries between the spontaneously ordered
and disordered phases of the mixed-spin Ising model on a
selectively disordered honeycomb lattice can be now straight-
forwardly obtained by solving numerically the critical condi-
tion (21). Before presenting a few typical finite-temperature
phase diagrams, it is worthwhile to remark that both consid-
ered coupling constants JAB and JAC enter in the expressions
V c

j ( j = 1 − 4) given by Eqs. (9)–(12) just in the arguments
of even functions, which means that a relative size of the
critical temperature is independent of whether these coupling
constants are being considered ferromagnetic (JAB, JAC > 0)
or antiferromagnetic (JAB, JAC < 0). In what follows all the
interaction terms will be accordingly scaled with respect to a
size of the coupling constant |JAB|, whereas both parameters
of the uniaxial single-ion anisotropy will be set equal to each
other DB = DC = D.

The reduced critical temperature kBTc/|JAB| is plotted in
Figs. 2(a)–2(d) against the concentration ρ for several values
of the uniaxial single-ion anisotropy D/|JAB|. It is quite evi-
dent from Figs. 2(a)–2(d) that the investigated mixed-spin sys-
tem displays at sufficiently low temperatures a spontaneous
magnetic ordering regardless of the concentration ρ for any
D/|JAB| > −1.5, while the ground state becomes disordered
at low-enough temperatures for any D/|JAB| < −1.5 provided
that high concentrations ρ > 0.5 of the spin-1 magnetic ions
are assumed. This latter finding can be attributed to the effect
of nonmagnetic dilution [5], because the spin-1 magnetic ions
preferentially occupying the selectively diluted sublattice for
the concentrations ρ > 0.5 are forced by strong-enough uni-
axial single-ion anisotropy D/|JAB| < −1.5 to their nonmag-
netic state s j = 0. The most remarkable finding is, however,
that the spontaneous magnetic ordering can be restored at

FIG. 2. Critical temperature kBTc/|JAB| as a function of the
concentration of the spin-1 magnetic ions ρ for several values of
the uniaxial single-ion anisotropy D/|JAB| and four different values
of the interaction ratio: (a) |JAC|/|JAB| = 2; (b) |JAC|/|JAB| = 1;
(c) |JAC|/|JAB| = 0.75; (d) |JAC|/|JAB| = 0.5.

finite temperatures also in the parameter region ρ � 0.5 and
D/|JAB| � −1.5 above the disordered ground state through
the order-by-disorder mechanism [48,49]. It actually turns
out that the investigated mixed-spin system shows, in this
parameter space, double reentrant phase transitions. This

FIG. 3. Critical temperature kBTc/|JAB| as a function of the
uniaxial single-ion anisotropy D/|JAB| for several values of the
concentration ρ and four different values of the interaction ra-
tio: (a) |JAC|/|JAB| = 2; (b) |JAC|/|JAB| = 1; (c) |JAC|/|JAB| = 0.75;
(d) |JAC|/|JAB| = 0.5.
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FIG. 4. (a) The single-ion anisotropy D/|JAB| versus the inter-
action ratio |JAC|/|JAB| dependence along which the critical tem-
perature is kept constant regardless of the concentration of the
spin-1 magnetic ions ρ. (b) The corresponding critical temperature
kBTc/|JAB| versus the interaction ratio |JAC|/|JAB| dependence.

phenomenon occurs whenever the system orders above a
disordered ground state at a lower critical temperature and this
spontaneous magnetic long-range order persists up to higher
critical temperature. Last, it is worth mentioning that the criti-
cal temperature of the mixed-spin Ising model on a selectively
disordered honeycomb lattice may strikingly remain constant
on change of the concentration ρ for specific values of the
uniaxial single-ion anisotropy as, for instance, D/|JAB| = −1
for |JAC|/|JAB| = 1 [Fig. 2(b)], D/|JAB| ≈ −0.15 or −1.275
for |JAC|/|JAB| = 0.75 [Fig. 2(c)], or D/|JAB| ≈ −1.365 for
|JAC|/|JAB| = 0.5 [Fig. 2(d)].

Next, the critical temperature kBTc/|JAB| is displayed
in Figs. 3(a)–3(d) as a function of the uniaxial single-ion
anisotropy D/|JAB| for several values of the concentration
ρ. Note that the dependencies of the critical temperature on
the uniaxial single-ion anisotropy for the particular values
of the concentration sufficiently close to ρ = 1 (ρ = 0) are
quite typical for the mixed spin-1/2 and spin-1 (spin-3/2)
Ising models on a honeycomb lattice [6,8]. It is also obvi-
ous from Figs. 3(a)–3(d) that the phase boundaries for the
concentration ρ = 0.51 verify existence of double reentrant
phase transitions in the parameter region D/|JAB| � −1.5
and ρ � 0.5 with the disordered ground state. Moreover, the
critical boundaries depicted in Figs. 3(b)–3(d) provide an
alternative confirmation of the independence of the critical
temperature on the concentration ρ when all displayed critical
frontiers for the interaction ratio |JAC|/|JAB| � 1 intersect
each other either in one [Figs. 3(b) and (d)] or two [Fig. 3(c)]
common points. Our exact results thus clearly corroborate
independence of the critical temperature on change of the
concentration of the mixed-spin Ising model on a selectively
disordered honeycomb lattice, which has been reported by

Bobák and coworkers using the approximate mean-field and
effective-field theories [38,39,42].

It is clear that this latter finding could be of considerable
technological relevance, because the change in a chemical
composition (i.e., the concentration of the magnetic ions)
would not affect under this specific constraint temperature
range for applicability of a given magnetic material. For this
reason, we have decided to illustrate in Fig. 4(a) the depen-
dence of the single-ion anisotropy D/|JAB| on the interaction
ratio |JAC|/|JAB| along which the critical temperature is kept
constant regardless of the concentration ρ. According to this
plot, the mixed-spin Ising ternary alloy may indeed display
this intriguing feature either for one or two specific values
of the uniaxial single-ion anisotropy D/|JAB| whenever the
interaction ratio |JAC|/|JAB| � 1. The isotropic interaction
ratio |JAC|/|JAB| = 1 accordingly provides an upper limit for
an observation of this striking phenomenon, whereas in this
special case all critical lines touch rather than cross each other
[cf. Fig. 3(b)]. A relative size of the critical temperature for
those special cases is depicted in Fig. 4(b).

IV. MAGNETIZATION AND COMPENSATION
PHENOMENON

In this section we will turn our attention to a detailed
investigation of temperature dependence of the spontaneous
magnetization, which will serve as the order parameter char-
acterizing the nature of a spontaneous long-range magnetic
ordering. Of course, three different sublattice magnetizations
have to be computed first in order to get the total spontaneous
magnetization. It can be readily proved by exploiting exact
mapping theorems developed by Barry et al. [50–53] that
the spontaneous magnetization of the sublattice A formed by
the spin-1/2 magnetic ions directly equals to the spontaneous
magnetization of the effective spin-1/2 Ising model on a
triangular lattice:

mA = 〈
σ z

k

〉 = 〈
σ z

k

〉
t
= mt (βR), (22)

which has been exactly calculated by Potts [54]:

mt = 1

2

[
1 − 16y6

(1 + 3y2)(1 − y2)3

] 1
8

, y = exp(−βR/2).

(23)

In this regard, an exact expression for the spontaneous magne-
tization of the sublattice A formed by the spin-1/2 magnetic
ions readily follows from Eq. (23) when substituting therein
the explicit form of effective nearest-neighbor coupling (14):

mA = 1

2

[
1 − 16(zV1 + V3)(zV2 + V4)3

(zV1 + V3 + 3zV2 + 3V4)(zV1 + V3 − zV2 − V4)3

] 1
8

. (24)

On the other hand, an exact calculation of the spontaneous magnetization of the sublattices B and C formed by the spin-1
and spin-3/2 magnetic ions can be performed with the help of the generalized Callen-Suzuki identity [55–57]. For instance, the
spontaneous magnetization of the sublattice B composed of the spin-1 magnetic ions follows from the exact spin identity:

mB ≡ 〈n j〈sk〉〉c = ρ

〈∑1
sk=−1 ske−βHk∑1

sk=−1 e−βHk

〉
= ρ

〈
2eβDB sinh (βJABζk )

1 + 2eβDB cosh (βJABζk )

〉
, (25)
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where the symbols 〈· · · 〉c and 〈· · · 〉 denote a configurational average and canonical ensemble average, respectively. To obtain
the statistical mean value on the right-hand side of Eq. (25) one may perform the following expansion:

〈 f (σ1,k, σ2,k, σ3,k )〉 = c1 + c2〈(σ1,k + σ2,k + σ3,k )〉 + c3〈(σ1,kσ2,k + σ2,kσ3,k + σ3,kσ1,k )〉 + c4〈(σ1,kσ2,kσ3,k )〉, (26)

which simplifies in a zero magnetic field to the following form due to zero value of the coefficients c1 and c3:

〈 f (σ1,k, σ2,k, σ3,k )〉 = c2〈(σ1,k + σ2,k + σ3,k )〉 + c4〈σ1,kσ2,kσ3,k〉 = 3c2mA + c4tA. (27)

Besides the spontaneous magnetization of the sublattice A given by Eq. (24) one should also calculate the triplet correlation
function tA ≡ 〈σ1,kσ2,kσ3,k〉 in order to complete an exact calculation of the spontaneous magnetization of the sublattice B. To
this end, one may use the exact result for the triplet correlation function of the effective spin-1/2 Ising model on a triangular
lattice derived by Baxter and Choy [58]:

tA = mA

4

[
1 − 2

3x2 − 3y2 − 2x
√

x2 + 2xy − 3y2

(x − y)2

]
, (28)

with x = eβR and y = e−βR/2. A substitution of the effective nearest-neighbor coupling (14) into Eq. (28) gives the following
exact expression for the triplet correlation function:

tA = mA

4

[
3(zV1 + V3)2 − 3(zV2 + V4)2 − 2(zV1 + V3)

√
(z(V1 + V2) + V3 + V4)2 − 4(zV2 + V4)2

(zV1 + V3 − zV2 − V4)2

]
. (29)

The spontaneous magnetization of the spin-1 magnetic ions B can be now calculated according to Eq. (27):

mB = 3
2ρmA

[
f
(

3
2

) + f
(

1
2

)] + 2ρtA
[

f
(

3
2

) − 3 f
(

1
2

)]
, (30)

where the explicit form of the function f (x) reads as follows:

f (x) = 2eβDB sinh (βJABx)

1 + 2eβDB cosh (βJABx)
. (31)

The spontaneous magnetization of B ions can be alternatively expressed in terms of the parameters V1 and V2 given by Eqs. (9)
and (10):

mB = 3

2
ρmA

(
W1

V1
+ W2

V2

)
+ 2ρtA

(
W1

V1
− 3W2

V2

)
(32)

and two newly defined functions:

W1 =2eβDB sinh

(
3βJAB

2

)
, (33)

W2 =2eβDB sinh

(
βJAB

2

)
. (34)

The same procedure can be repeated when exploiting the generalized Callen-Suzuki spin identity [55–57] for an exact
calculation of the spontaneous magnetization of the spin-3/2 magnetic ions C:

mC ≡ 〈〈(1 − n j )Sk〉〉c = (1 − ρ)

〈∑3/2
Sk=−3/2 Ske−βHk∑3/2

Sk=−3/2 e−βHk

〉
= (1 − ρ)

〈
3e

9βDC
4 sinh

(
3
2βJACζk

) + 2e
βDC

4 sinh
(

1
2βJACζk

)
2e

9βDC
4 cosh

(
3
2βJACζk

) + 2e
βDC

4 cosh
(

1
2βJACζk

)
〉
. (35)

Following the same steps as described in above for the spon-
taneous magnetization of B ions, one obtains the analogous
expression for the spontaneous magnetization of the C ions:

mC = 3
2 (1−ρ)mA

[
g
(

3
2

)+g
(

1
2

)]+2(1−ρ)tA
[
g
(

3
2

)−3g
(

1
2

)]
,

(36)

whereas the explicit form of the function g(x) reads as follows:

g(x) = 3e
9βDC

4 sinh
(

3
2βJACx

) + 2e
βDC

4 sinh
(

1
2βJACx

)
2e

9βDC
4 cosh

(
3
2βJACx

) + 2e
βDC

4 cosh
(

1
2βJACx

) . (37)

The spontaneous magnetization of C ions can be alternatively
expressed in terms of the parameters V3 and V4 given by

Eqs. (11) and (12):

mC = 3

2
(1 − ρ)mA

(
W3

V3
+ W4

V4

)
+ 2(1 − ρ)tA

(
W3

V3
− 3W4

V4

)
(38)

and two newly defined functions:

W3 =3e
9βDC

4 sinh

(
9βJAC

4

)
+ e

βDC
4 sinh

(
3βJAC

4

)
, (39)

W4 =3e
9βDC

4 sinh

(
3βJAC

4

)
+ e

βDC
4 sinh

(
βJAC

4

)
. (40)

At this stage, one may easily calculate the total magnetization
from the exact results (24), (32) and (38) derived for the

032104-6



MAGNETIC BEHAVIOR OF A FERROFERRIMAGNETIC … PHYSICAL REVIEW E 101, 032104 (2020)

spontaneous magnetization of ions A, B, and C:

mt = mA + mB + mC . (41)

The final formulas (32) and (38) for the spontaneous
magnetization of ions B and C are apparently odd
functions of the coupling constants JAB and JAC, which
implies that a change of the ferromagnetic coupling
constants (JAB, JAC > 0) to the antiferromagnetic ones
(JAB, JAC < 0) would merely cause a change of their
relative orientation with respect to the spontaneous
magnetization of sublattice A. In the following, particular
attention will be restricted to the mixed-spin Ising model
on a selectively disordered honeycomb lattice with a
character of the ferroferrimagnetic ternary alloy ABpC1−p

with the antiferromagnetic nearest-neighbor coupling
JAB < 0 between the spin-1/2 and spin-1 magnetic ions and,
respectively, the ferromagnetic nearest-neighbor coupling
JAC > 0 between the spin-1/2 and spin-3/2 magnetic ions.
For simplicity, the relative size of the coupling constant |JAB|
will be used for normalization purposes when defining two
dimensionless quantities JAC/|JAB| and kBT/|JAB| measuring
a relative strength of the interaction ratio and temperature.

First, let us comprehensively describe typical temperature
variations of the spontaneous magnetization of the mixed-
spin Ising model on a honeycomb lattice with the character
of a ferroferrimagnetic ternary alloy for a specific value of
the coupling ratio JAC/|JAB| = 2 assuming stronger ferro-
magnetic coupling JAC in comparison with the antiferromag-
netic one |JAB|. A few typical temperature dependencies of
the total magnetization are plotted for this particular case
in Figs. 5(a) and 5(b) for several values of the concentra-
tion ρ and two different values of the uniaxial single-ion
anisotropy. For sufficiently low concentrations ρ < 0.5, the
total magnetization exhibits a P-type temperature dependence
when classified according to the standard Néel nomenclature
[59]. Temperature variations of the sublattice magnetizations
depicted in Figs. 5(c) and 5(d) connect the anomalous rise
of the total magnetization on increasing of temperature with
a temperature-induced increase of the spontaneous magne-
tization of the C ions. The latter acts cooperatively with
the spontaneous magnetization of sublattice A due to the
ferromagnetic character of the coupling constant JAC > 0.
Interestingly, for the concentrations ρ � 0.5 and the uniaxial
single-ion anisotropies D/|JAB| � −1.5, the total magnetiza-
tion displays a peculiar temperature dependence with double
reentrant phase transitions [see Figs. 5(a) and 5(b)], which
goes beyond the standard Néel classification [59] and verifies
the correctness of the established finite-temperature phase
diagrams shown in Fig. 2(a). To shed light on this unusual
thermal dependence of the total magnetization, the sublattice
magnetizations are plotted against temperature in Figs. 5(e)
and 5(f) for two special cases supporting the presence of
the double reentrant phase transitions through the order-by-
disorder effect [48,49].

Typical temperature dependencies of the spontaneous
magnetization of the ferroferrimagnetic Ising ternary al-
loy on a selectively disordered honeycomb lattice are il-
lustrated in Figs. 6(a) and 6(d) for the particular case
with the coupling ratio JAC/|JAB| = 0.75 assuming a
weaker ferromagnetic coupling JAC in comparison with

FIG. 5. Temperature variations of the total magnetization
[Figs. 5(a) and 5(b)] and the sublattice magnetization [Figs. 5(c)–
5(f)] for the fixed value of the coupling ratio JAC/|JAB| = 2, several
values of the concentration of the spin-1 magnetic ions ρ and two
different values of the uniaxial single-ion anisotropy D/|JAB| =
−1.55 (left panel) and −1.8 (right panel).

the antiferromagnetic one |JAB|. It directly follows from
Figs. 6(a)–6(d) that the total magnetization displays a much
greater diversity of temperature dependencies than in the
reverse case. For instance, for the particular case with the
uniaxial single-ion anisotropy D/|JAB| = −1.45, the total
magnetization exhibits Q-type thermal dependence for the
concentration ρ = 0, P-type thermal dependence for the con-
centrations ρ = 0.25 and 0.5, N-type thermal dependence for
the concentrations ρ = 0.75 and 0.85, and R-type thermal
dependence for the concentration ρ = 1.0 [see Fig. 6(c)], all
belonging to the standard classification scheme of ferrimag-
nets according to Néel theory [59]. The most remarkable
temperature variations of the total magnetization can be found
for the concentration ρ ≈ 0.8, since the total magnetization
vanishes at a single compensation point below the critical
temperature due to a complete cancellation of all three sub-
lattice magnetizations in spite of the presence of a magnetic
long-range order. The resulting N-type temperature depen-
dence with a single compensation temperature follows from
a change in sign of the total magnetization, which is negative
below the compensation temperature due to the prevailing
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FIG. 6. Temperature variations of the total magnetization for the
fixed value of the coupling ratio JAC/|JAB| = 0.75, several values
of the concentration ρ and four different values of the uniaxial
single-ion anisotropy: (a) D/|JAB| = −0.7; (b) D/|JAB| = −1.275;
(c) D/|JAB| = −1.45; (d) D/|JAB| = −1.55. Temperature variations
of the sublattice magnetizations for the fixed value of the coupling
ratio JAC/|JAB| = 0.75, the uniaxial single-ion anisotropy D/|JAB| =
−1.45 and two different concentrations of the spin-1 magnetic ions:
(e) ρ = 0.75 and (f) ρ = 1.0.

contribution of the sublattice magnetization |mB| > mA + mC

and positive above the compensation temperature because of
the preponderant contribution of the sublattice magnetizations
mA + mC > |mB| [see Fig. 6(e)]. It is also noteworthy that the
R-type thermal dependence of the total magnetization observ-
able in Fig. 6(c) for the concentration ρ = 1.0 results from
a relatively steep decline of the spontaneous magnetization
of the sublattice B at low to moderate temperatures, which is
caused by a relatively strong value of the uniaxial single-ion
anisotropy [see Fig. 6(f)].

Now let us discuss in somewhat more detail N-type thermal
dependencies of the spontaneous magnetization with a com-
pensation temperature, which could be of technological rele-
vance for a thermomagnetic recording. For this purpose, the
total and sublattice magnetizations are plotted in Figs. 7(a)–
7(d) against temperature for two different sets of the interac-
tion parameters being compatible with a single compensation
point. It is noteworthy that the relatively sudden drop of the
total magnetization observable in Fig. 7(a) at low enough

FIG. 7. Temperature dependencies of the total and sublattice
magnetizations for a specific choice of the coupling ratio JAC/|JAB|,
the uniaxial single-ion anisotropy D/|JAB|, and the concentration
of the spin-1 magnetic ions ρ, which lead to presence of a single
compensation temperature.

temperatures can be connected to a thermally induced rise
of the sublattice magnetization mC , which acts against the
sublattice magnetization mB [Fig. 7(c)]. On the other hand,
the temperature variations of the total and sublattice mag-
netizations shown in Figs. 7(b) and 7(d) exemplify another
outstanding N-type thermal dependence, which has greater
absolute value of the total magnetization for temperatures
exceeding a compensation point than below it.

Last, the total magnetization may also display the remark-
able L-type temperature dependence, which can be regarded
as a special case of P-type dependence with an additional
compensation point of the total magnetization emergent in
the asymptotic limit of zero temperature [18]. This special
compensation point can be simply achieved by a convenient
choice of the concentration of the spin-1 and spin-3/2 mag-
netic ions. In general, there are two different possibilities
how to achieve a full compensation of the three sublattice
magnetizations at zero temperature. If the uniaxial single-
ion anisotropy D/|JAB| < −0.75 (D/|JAB| > −0.75) forces
the spin-3/2 magnetic ions to their lower (higher) spin state
S j = 1/2 (S j = 3/2), then the zero-temperature compensation
points are reached for the specific value of the concentra-
tion ρ = 2/3 (ρ = 4/5), see Figs. 8(a)–8(d). Of course, the
total magnetization starts to deviate from zero on increasing
temperature due to different temperature variations of three
individual sublattice magnetizations below the critical temper-
ature shown in Figs. 8(c) and 8(d).

V. CONCLUSION

In the present work we have investigated in detail phase
diagrams and magnetization properties of a ferroferrimagnetic
ternary alloy ABρC1−ρ , which is described in terms of the
mixed spin-1/2, spin-1, and spin-3/2 Ising model on a hon-
eycomb lattice with a selective site disorder on one of its
sublattices. It has been demonstrated that the grand-canonical
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FIG. 8. Temperature dependencies of the total and sublattice
magnetizations for a specific choice of the coupling ratio JAC/|JAB|,
the uniaxial single-ion anisotropy D/|JAB|, and the concentration
of the spin-1 magnetic ions ρ, which lead to presence of a single
compensation point in the asymptotic limit of zero temperature.

partition function of the investigated model can be rigorously
mapped by means of a generalized star-triangle transforma-
tion to the canonical partition function of the effective spin-
1/2 Ising model on a triangular lattice. Consequently, one
may extract exact results also for the mixed-spin Ising model
on a honeycomb lattice with a selective site disorder. It is
also worthwhile to remark that the presented approach based
on the generalized star-triangle mapping transformation can
be rather straightforwardly adapted to the mixed-spin Ising
models on other three-coordinated lattices as, for instance,
a bathroom-tile or a square-hexagon-dodecagon lattice (see
the Secs. 4.2.7 and 4.2.8 in Ref. [5]), but its application to

the mixed-spin Ising models defined on lattices with different
coordination number is not feasible.

It has been evidenced that the ferroferrimagnetic version of
the studied model may display strikingly diverse temperature
dependencies of the total magnetization, which may even
include a compensation temperature for a specific choice of
the relative concentration of the spin-1 and spin-3/2 magnetic
ions. Besides, we provided a rigorous proof that the critical
temperature of a ferroferrimagnetic ternary alloy may become
independent of the concentration of the randomly mixed spin-
1 and spin-3/2 magnetic ions for a specific value of the
uniaxial single-ion anisotropy. The above features, namely
the appearance of compensation temperatures and of critical
temperatures independent of the disorder concentration, are
in direct agreement with previous results gained from Monte
Carlo simulations for a similar model of a ferroferrimgnetic
ternary alloy on a square lattice with a quenched disorder
restricted to a given sublattice [43]. However, the most re-
markable finding stemming from our present study is that
the spontaneous ferroferrimagnetic ordering can be restored at
finite temperatures through the order-by-disorder mechanism
[48,49] in the parameter space ρ � 0.5 and D/|JAB| � −1.5
corresponding to a disordered (paramagnetic) ground state,
which results in the anomalous temperature dependence of the
total magnetization with double reentrant phase transitions.
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[6] J. Strečka and M. Jaščur, Phys. Rev. B 70, 014404 (2004).
[7] C. Ekiz and R. Erdem, Phys. Lett. A 352, 291 (2006).
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