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We investigate the outcome of generalized Lotka-Volterra dynamics of ecological communities with random
interaction coefficients and nonlinear feedback. We show in simulations that the saturation of nonlinear feedback
stabilizes the dynamics. This is confirmed in an analytical generating-functional approach to generalized
Lotka-Volterra equations with piecewise linear saturating response. For such systems we are able to derive
self-consistent relations governing the stable fixed-point phase and to carry out a linear stability analysis to
predict the onset of unstable behavior. We investigate in detail the combined effects of the mean, variance, and
covariance of the random interaction coefficients, and the saturation value of the nonlinear response. We find
that stability and diversity increases with the introduction of nonlinear feedback, where decreasing the saturation
value has a similar effect to decreasing the covariance. We also find cooperation to no longer have a detrimental
effect on stability with nonlinear feedback, and the order parameters mean abundance and diversity to be less
dependent on the symmetry of interactions with stronger saturation.
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I. INTRODUCTION

The discussion whether large ecosystems can maintain
stability and diversity or not has a long tradition [1-3]. While
models with random interaction parameters were introduced
more than 45 years ago by May [4,5], they continue to play an
important role in this diversity-stability debate. Models with
random coupling coefficients are used not only for the model-
ing of large-scale ecosystems, but also to describe interactions
in the human microbiome. For example, recent studies have
examined how different types of interactions between microbe
species, and between the human host and the microbes can
affect stability [6,7].

Several approaches have been taken to study the stability
of ecological communities with random interaction matrices.
One is concerned with assemblies with a fixed given size,
S, and assumes that their interactions are set by a random
matrix. More precisely, these models focus on the study of
the eigenvalues of a putative S x S Jacobian matrix, which
is assumed to be random. This line of approach has been
taken, for example, in Refs. [4,5] and in Refs. [8§—13]. Knowl-
edge and ideas from statistical physics contribute to these
studies, exploiting technology developed for random-matrix
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problems, for example, in nuclear physics, the theory of
disordered systems or condensed matter physics [14].

A second approach focuses on dynamical models of
species interaction. These are often based on coupled dif-
ferential equations, governing the abundances of species and
their interactions. Typical examples are generalized Lotka-
Volterra equations, or closely related, replicator dynamics
of evolutionary game theory. These involve a definition of
reproductive growth rate, which in turn requires a notion
of species-to-species interaction. One assumes, for example,
pairwise interaction with fixed random coefficients. Several
dynamical assembly approaches can then be taken, such as
the step-wise assembly process. This has been studied in
simulations [15] and also analytically [16]. We use a separate
approach, initiated originally in Ref. [17]. We start from a pool
of species, who interact through a generalized Lotka-Volterra
dynamics. In the course of these dynamics some species may
become extinct, and we are interested in the community of
remaining species. Given the fixed interaction coefficients,
such models are dynamical problems with quenched disorder
in the language of the theory of disordered systems (for a
general reference see Ref. [18]).

Tools from equilibrium and nonequilibrium statistical
physics can then be used to make analytical progress, usually
relying on the assumption that the number of species in
the system is large; formally the thermodynamic limit of
an infinite number of species is taken. Different types of
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behavior can then be found, both in simulations and from
analytical approaches. For example, dynamical systems of
this type can approach stable fixed points, and in suitable
parameter regimes these fixed points are found to be unique,
i.e., independent of the initial conditions. For other param-
eters multiple fixed points or equilibria can be found. Their
number and statistics can be characterized, for example, using
Gardner-type calculations [19,20].

Static approaches to ecosystems are based on the cele-
brated replica method [21-23]; this assumes the existence of a
Liapunov function and typically requires a symmetric interac-
tion matrix. A separate approach uses the cavity method or the
Thouless-Anderson-Palmer (TAP) equations, again originally
developed in the context of spin glasses (see, e.g., Ref. [18]).
The focus here is not on the actual dynamics of the ecosystem,
but on the statistics of fixed points, and on their stability
[24-26]. The advantage relative to the replica approach is that
symmetry of the interaction matrix is not required.

Finally, dynamic generating functionals (path integrals)
have been used to study large ecosystems with disordered cou-
plings. These techniques were originally developed for spin
systems [27-29] (for more recent reviews see Refs. [30-32])
and then first applied to replicator dynamics by Opper and
Diederich [17] and by Berg and Weigt [20]. This was then
further developed in Refs. [33-37]. The path-integral ap-
proach is dynamic, in principle, and results in an effective
process for a representative species. This dynamic mean-field
theory describes the time evolution of a typical degree of
freedom after the average over the quenched disorder has
been carried out. In most cases this effective process involves
a non-Markovian retarded interaction kernel and colored
noise. This makes analytical solution difficult, in particular
in transient regimes when dynamic order parameters are time
dependent.

The effective dynamics resulting from the generating-
functional analysis can be studied numerically using the
method by Eissfeller and Opper [38] to simulate sample paths
of the effective dynamics; see also Ref. [39] for further recent
developments of methods to evaluate dynamical mean field
theory. Analytical solutions are feasible when model parame-
ters are such that the system converges to a unique stable fixed
point, independent of the initial condition. It is then possible
to derive self-consistent relations for the statistics of these
fixed points and macroscopic order parameters. In the context
of ecological communities these order parameters represent,
among others, the fraction of species which survive the in
the long run, the diversity of these species (e.g., the species
abundance distribution), and the mean abundance at the fixed
point.

The theory also self-consistently predicts its own insta-
bility, i.e., from the fixed-point solutions one can identify
combinations of parameters at which dynamical instabilities
set in. A number of different concepts of stability are used
in the ecology literature [40,41]. In this paper we are mainly
interested in identifying the parameter regime in which the
dynamics is globally stable, i.e., it reaches one unique fixed
point, irrespective of the initial condition. As we will briefly
discuss later the type of instability we identify using the
generating-functional approach can be related to so-called
“structural stability” in ecology [16,42].

Outside the globally stable regime one finds phases in
which the dynamics converge to stable fixed points, but where
different fixed points are reached for different starting points
of the dynamics. We also find phases with persistent dynam-
ics, such as limit cycles, heteroclinic cycles, and chaos. For
generalized Lotka-Volterra equations with random coupling
matrices, finally, phases with unbounded growth can be iden-
tified [24-26,43]. Similar behavior has also been seen in the
context of replicator equations [33]; we note that unbounded
growth is not possible for replicator equations.

Most existing generating-functional studies of replicator or
generalized Lotka-Volterra models focus on cases in which
the resulting effective process takes a simple form, resulting
in linear fixed-point relations. These are typically models in
which the (relative) growth of the abundance of one species
depends linearly on the abundances of the other species.
Examples can be found in Refs. [17,33,43]. One notable ex-
ception are so-called Sato-Crutchfield dynamics in the context
of game learning [44,45]. This describes situations in which
players update their mixed strategies in response to moves by
their opponents and payoffs received. For the learning models
in Refs. [44,45] mixed strategies evolve in a way similar
to species abundances in a population, but the fixed-point
relations contain logarithmic terms.

In this paper we focus on an example of nonlinear feed-
back. This is inspired by the idea that the influence on
growth from interactions with other species may not have an
unlimited effect but instead saturate. This type of nonlinear
feedback is often modeled using Hill functions [46], similar
to Holling type-II functional response [47] in ecology. The
aim of our work is to investigate how this type of nonlinear
feedback affects the outcome of evolution of ecosystems with
random interactions. Specifically we focus on the effects of
the nonlinear feedback on the phase of global stability. We
show that the saturation of feedback increases the region with
a unique stable fixed point. This stabilizes communities, and
leads to more diversity than in the absence of saturation.

The remainder of this paper is organized as follows. In
Sec. Il we define the general class of models we will be
looking at, and we introduce the main control parameters. We
then present results from numerical simulations of random
generalized Lotka-Volterra communities with nonlinear feed-
back in Sec. III; in particular, we report the different types of
behaviours seen and how the main model parameters influence
this behavior. In Sec. IV we then develop the generating func-
tional for the model with general feedback function, report
the resulting effective species process, and the self-consistent
equations characterizing the regime of unique stable fixed
points. To make further analytical progress we then focus on
the case of piecewise linear saturating functional feedback,
and carry out a linear stability analysis. The predictions from
the theory are tested in Sec. V, where we report detailed phase
diagrams obtained from the path-integral analysis and from
simulations. We then compare our results from the piecewise
linear feedback function to results from simulations of the
model with nonlinear feedback in Sec. VI. In Sec. VII we
discuss the role of the different ecological parameters and,
in particular, how saturation in the nonlinear feedback affects
the stability of the ecosystem. We summarize our findings in
Sec. VIII.
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II. MODEL DEFINITIONS

We consider a pool of N species, which we label by i =
1,...,N. We write x;(¢) for the abundance of species i in
the ecosystem at time ¢. The dynamics proceed in continuous
time, governed by the generalized Lotka-Volterra equations:

xi(t):rixi(t){Ki_xi(t)+g|:za[jxj(l)]}. (1)
J

The quantity r; denotes the growth rate of species i, and K;
is the carrying capacity for the species. In absence of interac-
tions (a;; = O for all 7, j), the abundance x; can at most take
value x; = K;. In the following we will set r; = 1 and K; = 1
for all species, following Refs. [43,48]. The coefficients «;;
describe the interactions between the different species. In the
context of random generalized Lotka-Volterra dynamics these
are quenched disordered random variables; that is to say, they
are chosen from a specified distribution at the beginning, but
then remain fixed as the dynamics unfold. We will define the
statistics of the o;; below.

The function g(-) describes the “feedback,” i.e., how the
growth of any one species is affected by the interaction
with the other species. We note that Eq. (1) is restricted to
functional forms of the type g3 ; @ijx;). In principle, more
general forms can be devised, but these are harder to analyze.
As we will see below, the model defined in Eq. (1) produces
intricate behavior and is sufficient to highlight some of the
effects of nonlinear feedback.

Random generalized Lotka-Volterra communities with lin-
ear functional feedback, g(u) = u, have, for example, been
studied in Refs. [24-26,43]. We here focus on nonlinear
functions g. We generally assume that g is a nondecreasing
function of its argument.

The coefficient «;; denotes the reproductive benefit or
detriment species i receives when interacting with species
j- We set «;; = 0; self-interaction is already accounted for
in Eq. (1). In our model we assume that the off-diagonal
coefficients are drawn from a Gaussian distribution with the
following statistics:

M
Olij:N7
2 2
2 _o
== N ()

Inline with literature on disordered systems [18] we use an
overbar to indicate the average over the quenched random
variables {o;;}. Equations (2) indicate that the mean of each
matrix element is /N, and their variance is o2/N. The scal-
ing with N is standard in the context of disordered systems,
and is chosen to guarantee a meaningful thermodynamic limit
N — oo, which we will eventually assume in the generating-
functional analysis.

The parameter p controls the “baseline” interaction be-
tween any pair of species. Negative values of u indicate
a generally competitive environment; the presence of any
species leads to negative feedback on the growth of the other
species. Similarly, if u takes positive values, then species
generally interact positively with each other, and the presence
of one species tends to enhance the growth of all other species.
One expects this to potentially lead to unlimited growth as in

Refs. [24,25], at least in the absence of saturation effects in
the nonlinear feedback. We will refer to p as the cooperation
parameter. This is also known as the competition—-mutualism
parameter in ecology [49].

The parameter o describes the degree of heterogeneity in
the interaction of species, we will call it the “heterogeneity
parameter.” We also allow for correlations between the inter-
action coefficients «;; and «j; for any pair i # j of species.
Specifically, we write these as follows:

2 o2

N VN
where the model parameter y can take values between —1 and
1. The role of y can best be understood by considering the
case u = 0. In this case, @;;&;; = yo?/N. For y = —1 one
then finds «;; = —«;; with probability one, i.e., species form
predator-prey pairs; one species in each pair benefits from
the presence of the other, but that other species is adversely
affected by the presence of the first. For y =0 (and still
assuming p = 0) the interaction coefficients «;; and o; are
uncorrelated, i.e., half of all pairs of species will be of the
predator-prey type, and the other half will either both benefit
from each other, or each be suppressed by the presence of the
other species. For y =1 finally, there are no predator-prey
pairs. Instead, o;; = aj; with probability one, i.e., both species
i and j profit from each other’s presence, or the interaction is
negative in both directions. If & # 0, then the combination of
a;j, aj; is drawn from a bivariate Gaussian distribution with
nonzero mean, and the number of competitive, cooperative,
and exploitative interactions can be obtained from the proba-
bilities in the different quadrants of the o;;-c;; plane. We will
call y the symmetry parameter.

The main objective of our work is to investigate how the
parameters i, o, and y affect the outcome of the generalized
Lotka-Volterra dynamics in the presence of nonlinear feed-
back.

3)

oG —

III. NUMERICAL RESULTS FOR NONLINEAR FEEDBACK

We first focus on a model similar to Holling type-II func-
tional response [50,51]. This form of feedback was originally
introduced to model the rate of growth of a predator while
interacting with prey; it is natural that the benefit from ad-
ditional prey will eventually saturate when prey numbers are
large. We extend the idea of a saturating function to all types
of inter-species interactions, and study the following feedback
function,

2au

a+2ul’ @

gu) = gn(u) =
The subscript H stands for Hill function. This function has
a sigmoidal shape and saturates to gz = a for u > 1 and to
gy = —a for u < —1. We note that gy (v = *a/2) = +a/2,
i.e., the half-point of saturation is reached at u = +a/2. More
general forms of the Hill function can be considered, but we
here restrict the analysis to the form in Eq. (4), with one single
parameter a.
In numerical simulations of the generalized Lotka-Volterra
system with this type of feedback we broadly find three differ-
ent dynamical outcomes: In some cases the system converges
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FIG. 1. Phase diagram obtained from simulations of the generalized Lotka-Volterra system with N = 200. Panel (a) shows the case a — oo
(i.e., linear feedback), panels (b) and (c) are for nonlinear feedback, with @ = 2 in (b), and @ = 0.5 in (c). Simulations are for u = 0. The colors
indicate the dominant outcome in each part of parameter space, with red (medium gray) representing a unique stable fixed point, green (light
gray) multiple fixed points, blue (dark gray) indicating parameters for which the dynamics do not converge, and white indicating unbounded
growth of species abundances. The solid line in panel (a) describes the onset of instability as derived from theory (see Refs. [24,25,43]).

to a unique fixed point. That is to say, for a fixed draw of
the interaction matrix elements {o;;} the dynamics converge to
one single fixed point, independent of what initial conditions
are used for the {x;}. In other cases we also find fixed points,
but these are no longer unique. That is, while runs are gener-
ally found to converge, the system has multiple marginally
stable fixed-point attractors, and which one is eventually
reached depends on the initial condition. The third type of
outcome we find is one in which the dynamics never settles
down and remains volatile until the end of the simulation.
The general types of behavior have been found previously in
related systems, for example, in random replicator systems,
and in models of game learning [17,33,45].

For a — oo we recover unrestricted linear feedback; the
system can then display a fourth type of behavior: unbounded
growth [24,25,43]. This is due to the lack of saturation. The
absence of unlimited growth for finite values of the saturation
parameter a can directly be inferred from Eq. (1). For r; =
K; = 1 the relative growth rate of species i is given by x;/x; =
(1 —x; + g;), where g; = gH(Zj ;jx;) at most takes value
gi = a. Thus, the abundance of any species, x;, is limited
to at most x; = 1 + a, as the growth rate for species i then
reduces to zero. We note the difference with random replicator
dynamics [17,21,33], in which the total abundance is constant
in time (N~ >".x; = 1) by construction, but where none of
the single variables x; is constrained to a fixed interval in the
thermodynamic limit.

We present numerical simulations for the generalized
Lotka-Volterra system with nonlinear feedback in Fig. 1. The
figures illustrates the behavior of the system in the plane
spanned by the symmetry parameter  and the heterogeneity
parameter o, for different values of the saturation parameter a.
For each combination of these parameters we have carried out
an ensemble of runs of the dynamics, and have recorded how
frequently each dynamic outcome is observed. We describe
how we distinguish between the three types of behavior in
the Supplemental Material [52]. The frequencies with which
the different outcomes are found are then converted into a
color (grayscale) code. Red coloring (medium gray) in the

figure indicates parameters for which convergence to unique
fixed points is found. In the green (light gray) areas of the
phase diagram, we also observe predominantly convergence
to fixed points, but the system has multiple such attractors,
and which one is reached depends on the initial condition.
In the blue (dark gray) areas of the graphs finally we find
volatile behavior, the trajectories generated by the generalized
Lotka-Volterra system do not settle down by the end of our
simulations.

We broadly find the following phase behavior. For suffi-
ciently small heterogeneity o the system is stable and has a
unique fixed point. This region of stability tends to be larger
for low values of the symmetry parameter y than for higher
values. The presence of predator-prey pairs (anticorrelation
of the matrix elements) thus promotes the existence of a
unique stable fixed point, inline with previous observations,
for example, in Refs. [25,43]. If the heterogeneity o exceeds
a critical value o, then the system either enters a phase
with multiple stable fixed points or it fails to converge. The
latter tends to happen for lower values of y, i.e., anticor-
related or moderately correlated interactions, the former for
higher values of y, when the interactions are increasingly
correlated. The data in the figure shows that the saturation
of the nonlinear feedback stabilizes the dynamics, with the
globally stable region becoming larger for smaller values of
the saturation parameter a (i.e., for stronger nonlinearity). For
a = oo [Fig. 1(a)] we recover the unrestricted generalized
Lotka-Volterra system with linear feedback, for which acz is
analytically known to be 02 = 2/(1 + y)* [24-26,43]. This
boundary is shown in Fig. 1(a) as a solid line. For this
particular choice of parameters the system shows unlimited
growth in the unstable phase [indicated in Fig. 1(a) by the
absence of background shading].

We note that not all samples of the system show the same
behavior for any given set of parameters. For example, some
runs may converge and others may fail to settle down before
the end of the simulation. We believe that this is due to the
finite number of species, finite integration time-step, and finite
run-time required in simulations, and we would expect the
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boundaries to become more sharp in the asymptotic limit and
for infinitely large systems. We also see trajectories which
remain seemingly chaotic for a long time and then reach a
fixed point only at very long times. The phase diagram in
Fig. 1 shows the typical behavior. Technically, we cannot
exclude heteroclinic cycles based on our simulations, however
we have not witnessed any such behavior before the end-time
of our numerical integration. In some regions of parameter
space (most notably near the phase line), we also find that the
number of simulations runs displaying a unique fixed point
reduces when we increase the number of species N.

IV. GENERATING FUNCTIONAL ANALYSIS

A. Generating functional

The generating-functional analysis proceeds along the
lines of Refs. [17,33]. Starting from the dynamics in Eq. (1)
one introduces the generating functional as

Z[?ﬁ] — <eiz,-fdt Xi(t)wf(t)>’ (3)

where (. ..) denotes an average over paths of the process; this
includes averaging over potentially random initial conditions
(we assume that the distributions of these are independent
and identical across species). The field ¢ is a source term.
In essence Z[v] is the Fourier transform of the probability
measure in the space of paths of the generalized Lotka-
Volterra system. The generating functional is subsequently
averaged over the quenched random coupling matrix, and
the thermodynamic limit, N — oo is taken. These steps are
well-established, and the calculation is lengthy. We therefore
only quote the final result here. Further intermediate steps are
reported in the Supplemental Material [52].

B. Effective representative species process

The final outcome of the path-integral analysis, after the
disorder has been averaged out and the thermodynamic limit
has been taken, is an effective “mean-field” process for a
single representative species. For the case of the generalized
Lotka-Volterra dynamics in Eq. (1) (with r; = 1, K; = 1) the
effective process is of the form

W) = x(t){l —x(t) + g[,uM(t)

+ )/02/ di’ G@t, " x(t') + n(t)] } (6)
0

where one has the following self-consistent relations

M(t) = (x(1)),,
(m@)) = o (x(O)x ().,

our= {1

In these equations (- - - ), denotes the average over realizations
of the effective process, i.e., over the noise () and potentially
random initial conditions. We will refer to M(t), the correla-
tion function C(¢, t') = (x(t)x(t')),, and the response function
G(t,t') as the macroscopic dynamical order parameters. In

(7

the context of ecology M(t) is a measure of the average
abundance in the system per species.

We note that the description in terms of the above effective
process is also known as “dynamical mean-field theory.”
The process can alternatively be obtained using the cavity
method, for models with linear feedback this is discussed in
Refs. [24-26,39,48,53].

C. Fixed-point analysis

We proceed to evaluate fixed points of the effective dynam-
ics in Eq. (6). The corresponding fixed-point relations are

X1 —x* 4+ g(uM* + yo?xx* +n%)] =0, (8)

where we have used the superscript * to indicate quantities
evaluated at the fixed point. In the fixed-point regime one
has G(t,t") = G(t —t') (time-translation invariance), and we
have introduced the integrated response x = foood T G(1).
The correlation function C(¢, t') = (x(¢)x(¢")), becomes inde-
pendent of 7 and ' at the fixed point, and we write ¢ = C(¢, t').
We can then replace n* by n* = o,/qz, where z is a static
Gaussian random variable of mean zero and with variance
one.

Equation (8) always has the solution x*(z) = 0 for all z.
Potential other solutions fulfill the relation

X =14g(uM* +yo’xx* + 0./qz). 9)

Such solutions are only physically valid provided they are
nonnegative, as x* describes the abundance of an effective
species.

It is difficult to proceed analytically for general choices of
the function g. In particular, if g is nonlinear, then Eq. (9)
would have to be solved numerically for x*(z) for a given
value of z. We therefore consider a piecewise linear feedback
function g. Specifically, we follow Ref. [53] and approximate
the nonlinear feedback by

a u>a,
gw)=grw)={u —a<u<a, (10)
—a u< —a.

The subscript gp refers to piecewise linear. This function is
linear in u in the interval —a < u < a, and is then “clipped.”
Similar to the nonlinear feedback the function saturates at a
for large u, and at —a for large negative values of u. We
also note that g(a/2) = a/2, i.e., the saturation half-point of
the piecewise linear model is the same as for the nonlinear
feedback in Eq. (4). This structure allows us to proceed with
the mathematical analysis, and at the same time it conserves
some of the main features of the Holling type-II system as we
will discuss further below.

To find the solution x*(z) of Eq. (9) we consider the three
branches of gp(u). These are separated by threshold values z;
and z, for the static noise variable z; we will evaluate these
thresholds below. Specifically, we find

(i) For z > z», the argument of the function gp exceeds a
and hence gp(u) = a; this gives the solution x*(z) = 1 + a;

(i1) For z; <z < 2o one has gp(u) = u, giving x*(z) =
1+uM*+o0./qz

1-yoZy °

(iii) For z < z; finally, the value x*(z) depends on the
choice of the saturation parameter a in the following way: If
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a is smaller than the carrying capacity (i.e., a < 1), then the
feedback saturates at gp = —a, and we find x*(z) = 1 — a. If
a > 1, then the (effective) species dies out, x*(z) = 0, before
the feedback reaches saturation.

The threshold values z; and z, are found from the argument
of the function g in Eq. (9):

(1=a)1 —ya*x)0d —a) = (1 + uM*)

1=

)

oJ/4q
oo 14+a)1—yo?x)— (14 uM*) (n
o./q '

In the first expression ©(-) is the Heaviside step function, used
here to differentiate between the cases ¢ > 1 and a < 1. A
more detailed discussion can be found in Sec. S1 H of the
Supplemental Material [52].

Putting the different cases together we find the following
physical fixed-point value for a given combination of z and 4,

14+a Z 2 2,
x*(z) = W <z, (12
(1 —a)®( — a) z< 2.

We note that the abundance x* of the effective species
is bounded from above by 1 + a. This indicates that, unlike
in standard generalized Lotka-Volterra dynamics, abundances
cannot diverge, and hence the average species population
given by the order parameter M* also remains finite. The
lower bound for the solutions of Eq. (9) is zero for a > 1,
and given by 1 — a fora < 1.

It is important to recall that x*(z) =0 is a solution of
the fixed-point Eq. (8) for all z. However, we find in linear
stability analysis that this zero solution is an attractor only

whena > landz <71 = — 1;”*1‘;*, i.e., only when x*(z) = 0

is the unique solution of the fixed point Eq. (8). This is shown
in Sec. S1 I of the Supplemental Material [52]. For a < 1, the
solution x* = 0 cannot be realizd, and all species in the initial
pool will have nonzero abundances in the phase of unique
stable fixed points.

Using Eq. (12) we can write Egs. (7) in the following form:

*© 214 uM*+o0./qz
M*:/ (a—l—l)Dz—I—/ 2ﬁDz
22 z1 1 —yo’x

+0(1 —a)fZI (1 —a)Dz, (13a)

o a1+ uM* + o0 Jqz\°
qu (a+1)2Dz+/ < s ﬁ)Dz
22 21

1 —yoZy

+001 —a)/-z‘ (1 —a)’*Dz, (13b)

1 22
NP
1 —yo?x J,

where we have introduced the shorthand Dz = %e‘zz/ 2 for

(13c)

the Gaussian measure of z. The quantity M represents the
mean species abundance, ¢ is the second moment of the
species-abundance distribution, and y is a “susceptibility,”

capturing how the fixed-point values of the species abun-
dances shift in response to persistent perturbations.

Together with Eqs. (11) this is a self-consistent set of
relations for the order parameters ¢, x, and M* in the regime
of unique stable fixed points. Solutions of these equations can
be obtained numerically as function of the model parameters
u,o,y, and a. The method we use to solve this set of
equations is described in the Sec. S3 of the Supplemental
Material [52].

D. Linear stability analysis

We now carry out a linear stability analysis of the fixed
points identified in the previous section. We first notice that
fixed points of the form x*(z) = 1 + a,x*(z) = (1 —a)O(1 —
a) are always locally stable. This is shown in Section S1 I in
the Supplemental Material [52].

We note that the function g(-) is the identity function in the
vicinity of the remaining fixed points. We write x(f) = x* +
y(t) and n(t) = o ,/qz + v(t), and following Ref. [21] we add
noise of zero mean and unit amplitude £(¢) in the effective
process to study stability.

Linearizing the effective dynamics in Eq. (6) in y and v we
find

y() =x* |:—y(t) + )/02/ dt'G(t — t)y(t') +v(t) + é(t)}.
0

(14)
Carrying out a Fourier transform, this can be written as
ioy(w) ~ - - =
2 = y0’6(@) — 15(@) + 1) +E@). (15)

Following Refs. [17,33] we now focus on the long-time be-
havior of perturbations, i.e., on the mode at w = 0. This allows
one to identify the transition to instability found in simula-
tions, as described in more detail below. Broadly speaking, the
behavior of the @ = 0 mode is related to the long-term decay
of perturbations. Discussions of stability conditions and the
relevance of w = 0-modes can also be found in Refs. [32,39].
Rearranging Eq. (15) and taking averages we find

(I9(0)) +1

~ 2 _
TOP) == 5 5

(16)

where the factor ¢ = fz iz Dz accounts for the fact that Eq. (14)
only applies to fixed points for which g is not saturated,
i.e., for values of z with z; < z < z. Finally, using the self-

consistency relation (|7(0)|?) = o2(|9(0)|?), we find
é
(1 —yo2x)? —¢o?

This quantity is finite (and nonnegative) in the phase of stable
fixed points and becomes infinite when

(I50)*) =

a7

(1 —yo?x)?
—

¢ = (18)

o
This condition signals the onset of instability. Analogous
conditions for Lotka-Volterra models with linear feedback
have been related to stability conditions derived from random-
matrix approaches; see, for example, Refs. [17,39,43] for
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FIG. 2. Species abundance distribution for the case a = 0.5 and u = 0 for different values of the heterogeneity parameter o. The upper
row [panels (a—d)] is for y = —1, the middle row [(e-h)] for y = 0, and the lower row [panels (i-1)] for y = 1. On the left [panels (a, e, i)] we
show z, (upper line) and z; (lower line), remaining panels show the species abundance distributions, for & = 10! [panels (b, f, j)], 0 = 107%3
[panels (c, g, k)], and o = 1 [panels (d, h, I)]. Solid lines are theoretical predictions for the species abundance distribution, shaded histograms

are from simulations.

further discussion. This is related to what is known as “struc-
tural instability” in ecology; see Refs. [16,42].

V. TEST AGAINST SIMULATIONS AND PHASE DIAGRAM

A. Species abundance distributions

We first discuss the resulting species abundance distribu-
tions in the regime of unique stable fixed points (i.e., the
distribution of the {x;}). In Fig. 2 we show examples of species
abundance distributions for different values of o and y for
a = 0.5 and . = 0. The shaded histograms in the figures are
from simulations, solid black lines indicate the distributions
of the unsaturated species from the theory. On the left of each
of the figure [Figs. 2(a), 2(e) and 2(i)] we show how z, (upper
line) and z; (lower line) vary with increasing heterogeneity o.

To interpret the histograms in Fig. 2 we note that the
weight of each branch of the solution in Eq. (12) is equal to
the probability of a standard Gaussian random number z to
fall between or on either side of z; and z, respectively. For
o = 0, there is no species heterogeneity («;; = 0 for all i, j);
all species abundances take the value x* = M*, where M* =
1/(1 — p) from Eq. (13a). One finds z; — —oo and z, — o0,
and the nonlinear feedback does not reach saturation.

For nonzero values of the interaction heterogeneity o,
71, and zp become finite; as a consequence there is a finite
probability of z falling outside the interval [z1, z2], and hence
the nonlinear feedback saturates for a finite fraction of species.

This results in a clipped Gaussian distribution for x*; the
fraction of species in the clipped regions increases with o.

We find that both z; and z, are decreasing functions of
y, this is consistent with Eqs. (11), where the explicit factor
of y dominates over the dependence of M*, ¢ and x on y.
As a consequence the proportion of species “clipped off” at
either side changes as y varies. We find a lower mean species
abundance M*, and more species at 1 — a than at 1 4 a for
y = —1, and a higher mean abundance with more species at
the upper bound 1 + a for y = 1.

We find similar results for a = 2; these are shown in
Fig. S1 in the Supplemental Material [52]. As the limiting
values (x* = 0 and x* = 1 + a) for the species abundances are
further apart for this case, a higher value of o is required to
spread the abundance distribution to these values. Therefore
we find less saturation for @ = 2 than for a = 0.5 at a fixed
value of the heterogeneity parameter o.

B. Test of theoretical predictions for order parameters in the
phase of unique stable fixed points

The analytical theory results in predictions for the order
parameters ¢, x, and M™* as a function of the model parameters
a, L, ¥, and o. These predictions are obtained as the solutions
of the coupled Egs. (13a), (13b), and (13c). They are valid in
the parameter regime in which the generalized Lotka-Volterra
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FIG. 3. Comparison of theoretical predictions (lines) for the characteristic order parameters against simulations (markers). Data is for
nw=0,y=-1(e),—0.5 (M),0 (*k),0.5 (x), and y =1 (+4). This is for the model with piecewise linear feedback. Left-hand column
[panels (a, c, e)] is for a = 2, right-hand column [panels (b, d, f)] for @ = 0.5. The vertical dashed lines mark the onset of instability as
predicted by the theory; analytical predictions can no longer be expected to match with simulations in the phase to the right of the dashed lines.
The graphs show the fraction of species not saturated ¢, the mean abundance M*, and the diversity M?/q as functions of o.

system converges to a unique stable fixed point, independent
of initial conditions.

A comparison of theory and simulation is shown in Fig. 3.
Theoretical predictions are indicated by solid lines, results
from simulations as symbols. We show the quantities ¢,
M* and a measure of diversity related to Simpson’s index.
Simpson’s index [54] is the probability that two randomly
chosen individuals in the community are of the same species,

S=Y. (zfx,- )*. For our model this index is given by S =

q/(NM?). A low value of this probability indicates high
diversity of species; therefore the inverse Simpson index,
S™! = NM?/q characterizes the diversity of the ecological
community. The diversity scales linearly with N; therefore, we
report the relative diversity S™! /N = M?/q. A more detailed
explanation of how these quantities were measured from
simulations and predicted from the theory can be found in
Section S2 of the Supplemental Material [52].

The vertical dashed lines in Fig. 3 indicate the predicted
onset of instability. More precisely unique stable fixed points

are predicted for small values of o, i.e., to the left of the
dashed lines. To the right of these lines the system either
has multiple fixed points, or never settles down, and in either
of these scenarios the analytical predictions for the stable
fixed point phase can no longer be expected to apply. The
figure indicates agreement between theory and simulation in
the stable phase. Systematic deviations can be found in the
unstable regime, although the predictions from the theory
appear to remain a good approximation in some cases. Similar
observations have been made in related models, see e.g.,
[25,33]. We note that solving Eqgs. (13) can lead to z; >
2 in the unstable phase. This results in the prediction of
a negative value of ¢ (the fraction of unsaturated species),
which demonstrates further that the theory does not apply in
this parameter regime.

The mean abundance, M*, tends to higher values for posi-
tive values of the symmetry parameter y, i.e., in absence of ex-
ploitative interactions and predator-prey pairs. This is shown
in Figs. 3(c) and 3(d). This can be understood from the species
abundance distributions in Fig. 2 and from the dependence
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FIG. 4. Onset of instability for the model with piecewise linear feedback. Left-hand column [panels (a, c)] is for @ = 2, right-hand column
[panels (b, d)] for a = 0.5. The vertical dashed lines mark the onset of instability as predicted by the theory. The graphs show d (top) and &
(bottom). Data is for © = 0, and y = —1(e), —0.5(H), 0(3k), 0.5(x), 1(+).

of this distribution on y. We find more species with larger
abundances for positive y, and more species with smaller
abundances for negative y. This is due to the dependence of z;
and z; on y as discussed in Sec. V A. These effects are reduced
for stronger nonlinearity, as shown in Fig. 3(d). Generally, we
find that a lower value of the saturation parameter a reduces
the dependence of the order parameters on y. We also note
that a much higher diversity of species is maintained for a
lower saturation value [cf. Figs. 3(e) and 3(f)].

C. Onset of instability

In Fig. 4 we investigate the onset of instability in more
detail. We use several indicators to detect different types of
behavior in the numerical solutions of the generalized Lotka-
Volterra equations. To characterize the (relative) variation of
species abundances over time, we calculate

_ (@) — O)7)y
(N7 )y '

In this expression, (---); indicates an average over time;
this is taken in the stationary state; reported values are time
averages over the last 1% of trajectories (numerical integra-
tion of the generalized Lotka-Volterra equations is carried out
up to final time 7y = 200). The notation {...)y in Eq. (19)
denotes an average over species, (...)y =N"'> ---. The
order parameter 4 indicates whether or not the system settles
down to a fixed point: when 7 = 0 a fixed point is reached
eventually, whereas positive values of & indicate persistent

19)

volatile dynamics. To identify the phase with multiple fixed
points, we have additionally run the following numerical
experiments. For a fixed realization of the interaction matrix
we have generated two independent random initial conditions.
We then run each of these separately and compute the relative
distance

X - 2
g = M&@0) = x)) )N)T’ 20)

(i Ny),

where x; and x] are the trajectories for the two sets of initial
conditions. This quantity is again evaluated in the stationary
state. Thus, d =~ 0 when the asymptotic behavior is indepen-
dent of initial conditions, and d > 0 otherwise.

The data shown in the upper panels of Fig. 4 shows that
d ~ 0 for small heterogeneity o independently of the symme-
try parameter y, but that a phase with dependence on initial
conditions is found when the stability threshold is crossed
(0 > o,). The results in the lower panels of Fig. 4 indicate that
the dynamics remains volatile (k2 > 0) for large values of o
when the symmetry parameter is zero or moderately negative.
The figure shows that a fixed point is almost certainly reached
for y =1 and is likely to be reached for y = 0.5, although
these fixed points are not unique.

Comparing the scales of the left- and right-hand panels
in Fig. 4 shows that the order parameters d and h are much
smaller for the lower value of the saturation a; this is due to
the tighter bounding effect of the nonlinear feedback.
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FIG. 5. Phase diagram obtained from simulations of the generalized Lotka-Volterra systems with piecewise linear feedback with N = 200.
As in Fig. 1 the colors (gray shading) indicate the dominant outcome in each part of parameter space [red (medium gray): unique stable fixed
point; green (light gray): multiple fixed points; blue (dark gray): dynamics do not converge]. Solid black lines show the onset of instability as
predicted from the generating-functional approach. Data is for u = 0, panel (a) for a = 2, panel (b) fora = 0.5.

VI. COMPARISON OF generalized LOTKA-VOLTERRA
SYSTEMS WITH NONLINEAR AND PIECEWISE LINEAR
FEEDBACK

A. Phase diagram and onset of instability

In Fig. 5 we show examples of the phase diagram obtained
from numerical integration of the generalized Lotka-Volterra
system with piecewise linear response. These are generated
in the same way as in Fig. 1. Red (medium gray) indicates
parameter values of the phase with unique fixed points, green
(light gray) indicates multiple fixed points, and blue (dark
gray) indicates volatile behavior. The black line in each panel
shows the boundary, o,, of the phase with a unique stable fixed
point, predicted by the theory. As seen in the figure the theory
is in agreement with results from numerical integration of
the generalized Lotka-Volterra system. We attribute remaining
minor discrepancies to finite integration time, finite time steps,
and finite species number.

Comparing Figs. 1 and 5, we find that the behavior of
the systems with nonlinear and piecewise linear feedback
are very similar. Unique fixed points are reached for values
of o below a critical point for all values of the symmetry
parameter y, with much higher critical values o, for lower
y. This indicates higher stability for asymmetric couplings
than in the symmetric case. Above this critical value of the
heterogeneity parameter we find multiple fixed points for pos-
itively correlated interactions, and persistent volatile behavior,
such as limit cycles, chaos, or potentially heteroclinic cycles
for negatively correlated couplings. In Figs. 1 and 5, one
notices the stabilizing effect of a lower value of the saturation
parameter « in the nonlinear feedback, i.e., for smaller a one
finds a larger red (medium gray) area indicating stable unique
fixed points, and higher critical values for o.

We have observed that the area of unique fixed points in
the phase diagrams becomes bigger for smaller values of the
number of species N. Conversely, we would expect the results
from simulations to converge to the analytical prediction in
Fig. 5(b) for higher values of N. Interestingly, this effect is
more pronounced for a = 0.5 than for a = 2. That is, for

a = 0.5 the system retains more structural stability as N is
increased than for a = 2. This underlines the stabilizing effect
of the nonlinear feedback.

To make the comparison between the two models more
precise we report results for the order parameters 4 and d from
numerical simulations of the model with nonlinear feedback
in Fig. 6, along the analytical prediction for the onset of
instability in the model with piecewise linear response. The
data shows that the system with nonlinear feedback has very
similar behavior as that with the piecewise linear feedback.
We find volatile dynamics for anticorrelated interactions past
the critical interaction heterogeneity, and multiple fixed points
for correlated interactions. The point at which 4 and d become
nonzero is very close to the onset of instability predicted by
the theory for the model with piecewise linear feedback.

B. Order parameters in the stable phase

In Fig. 7 we compare results from numerical integration
of the generalized Lotka-Volterra equations with nonlinear
feedback (markers), with the analytical solutions for piece-
wise linear feedback (lines). As seen in the figure the general
behavior of the mean abundance M* and diversity as functions
of o and y are similar in both models.

The main difference between the piecewise linear function
and the nonlinear function is how they approach their upper
and lower limits +a. The piecewise linear function gp(u)
approaches its limits linearly, and attains them at u = +a
[gp(£a) = =£a]; the nonlinear Hill function gy approaches
the limits much more slowly, and only attains them asymp-
totically. As a consequence, we have |ggy(u)| < |gp(u)| for
|u| > a/2. The differences in the two functions account for
the differences we see between the results in Fig. 7. We find
the order parameters M™ and diversity to display a much
smoother dependence on heterogeneity for the nonlinear func-
tion (markers) than for the piecewise function.

For the larger values of o shown in Fig. 7(a), we find that
M* is lower for the nonlinear function for all values of y.
For a = 2 species die before they can saturate to the lower
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FIG. 6. Onset of instability for nonlinear feedback. Left-hand column [panels (a, ¢)] is for a = 2, right-hand column [panels (b, d)] for
a = 0.5. The vertical dashed lines mark the onset of instability predicted for the piecewise feedback function from theory. The graphs show d

(top) and /& (bottom). Data is for u = 0, y = —1(e), —0.5(H), 0(3), 0.5(x), 1(+).
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FIG. 7. Comparison of theoretical predictions for M* and diversity for the piecewise feedback (lines) against simulations for nonlinear
feedback (markers). Left-hand column [panels (a, c)] is for a = 2, right-hand column [panels (b, d)] for a = 0.5. Data is for u =0, y =

—1(e), —0.5(W), 0(%), 0.5(x), 1(+).
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boundary. In this case the difference in saturation is therefore
only present at the upper limit, and this results in lower values
of M* for the nonlinear function. This is because species
are closer to upper saturation point for higher values of o,
where the nonlinear function is lower in magnitude than the
piecewise linear function. The lower value of the nonlinear
function causes these species to have lower abundances than
in the piecewise case.

For a = 0.5, species are able to reach both saturation
points before they can die, therefore the difference in the two
feedback functions affects the species both at the upper and
lower boundaries. As a consequence, we do not see the same
consistent effect of lower M* as we did in the case of a = 2;
see Fig. 7(b).

In the limit of infinite o, both the nonlinear and piece-
wise linear function are effectively equivalent. In this limit
all species abundances will be saturated at either boundary,
xi=1+4aorx;=(1—a)®(l —a). The fraction of species
saturated at each boundary is the same for either function, for
a given y. This results in the same limiting values for the order
parameters M* and diversity in both models.

VII. DEPENDENCE OF STABLE REGION ON MODEL
PARAMETERS

In the previous section we compared results from analysis
and simulations of the piecewise linear feedback to demon-
strate that our theory correctly predicts the nature of the
system in the regime of unique fixed points; see Fig. 3.
The theory also correctly predicts the critical value of o
where this regime ends, as demonstrated in Fig. 4. We then
compared predictions for the model with piecewise linear
feedback with simulation results for the model with nonlinear
feedback. We found a similar general dependence of the
system’s order parameters on o, y, and a; see Fig. 7. The
onset of instability, o., is also very similar on both models,
as shown in Fig. 6. We conclude that the predictions of our
theory for the piecewise linear feedback function are a good
approximation to the behavior of the model with nonlinear
feedback. It is therefore appropriate to use the theory we
have developed to investigate further how the stability of the
ecosystem with saturating nonlinear feedback depends on the
key model parameters.

A. Dependence of stability on the saturation parameter a

We have so far shown results only for @ = 2 and a = 0.5.
These fall on either side of the carrying capacity which was
set to one. In Fig. 8 we provide a more general picture, and
show how the critical value of the heterogeneity, o., depends
on the saturation parameter a, and on the symmetry parameter
y. In this figure we fix the mean value . = 0 of the interaction
matrix elements.

As one would expect, the range of the stable region in-
creases as the nonlinear feedback becomes more restricted
(i.e., as a is lowered). This effect is particular relevant when
the saturation parameter is lower than the carrying capacity
(i.e., for a < 1). We note that in this regime the critical
strength of the heterogeneity is a decreasing function of both
a and y. For y <0 we also note that the stability has a
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FIG. 8. Critical value of the heterogeneity parameter, o, plotted
as a color map in the a — y plane at fixed u = 0. Higher values of o,
indicate higher stability. The dashed line indicates a = 1 (saturation
parameter equal to carrying capacity); see text for further discussion.

similar dependence on the two parameters a and y, which
is demonstrated by the symmetry in the bottom left quadrant
of Fig. 8. If the saturation parameter a exceeds the carrying
capacity (a > 1), then its influence on the size of the stable
region is small.

B. Dependence of stability on cooperation parameter u

We have not yet considered how stability varies with the
cooperation parameter i, i.e., the mean interacting strength
between species. In the context of gut bacteria it has been
argued that increasing the cooperation between species of an
ecological system can reduce the system’s stability [6], with
higher stability found for more competitive systems.

Previous theoretical studies [24,25,37] of generalized ran-
dom Lotka-Volterra systems with linear feedback have found
o. to be independent of x so long as u < 0. We note that
the interaction term between the species carries the opposite
sign in Refs. [24,25] relative to our notation, implying op-
posite sign conventions in particular for the parameter u. In
Refs. [24,25] a second critical value of the heterogeneity is
found; if the strength of the heterogeneity exceeds this value,
the system displays unbounded growth. This value is found
to depend on u, and to be equal to zero for w > 1; that is to
say, when © > 1 the random generalized Lotka-Volterra sys-
tem with linear feedback always exhibits unbounded growth
regardless of the amount of heterogeneity.

The saturated nonlinear feedback in our model causes the
abundances to be constrained to the interval 1 — a®(1 — a) <
x;(t) < 1 + a, and as a consequence the system cannot display
unbounded growth. The critical value for o, however, is now
dependent on the value of u. In Fig. 9 we show how o,
varies with u and y for a = 2 and a = 0.5; these results are
from numerical evaluation of the self-consistency equations
obtained from the generating functional analysis.
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FIG. 9. Critical o, plotted as a color map in the u — y plane at fixed a = 2 (left) and a = 0.5 (right). Higher values of o, indicate higher
stability. The data along the dashed line indicates values of o, for © = 0, these are as previously given in the black lines of Fig. 5.

For a = 0.5, we find a minimum value for o, as a function
of u, see the lower right corner of Fig. 9(b). This minimum
value corresponds to a maximum proportion of unsaturated
species ¢, this is shown in Sec. S1 J and demonstrated in
Fig. 10. For values of u away from this extremal point, ¢
decreases as more species become saturated at either 1+ a
(increasing w) or 1 — a (decreasing ), this in turn gives the
system a higher stability. For ¢ = 2 we also find increasing
stability for higher values of p. However, we do not find
a minimum point for stability (as a function of ). Instead
o, monotonically decreases with decreasing u, tending to a
constant. This is because the fraction of species at the lower

saturation point (x* = 0 for a = 2) does not increase past 0.5
as u is decreased.

The transition line shown in the p-o plane shown in
Figs. 10(a) and 10(b) can be compared to the phase diagrams
for linear feedback in Refs. [24,25,39]. For linear feedback
the transition line is not dependent on p as it is in the
case of nonlinear feedback. These results are different to
those found in Ref. [6], where a model with linear feedback
was used, cooperation then does not promote stability.
For saturating nonlinear feedback we find, instead, that
stability is increased for higher values of the cooperation
parameter /.
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FIG. 10. Location of the onset of instability o., and fraction of unsaturated species, ¢, for varying p at a = 2 (left) an a = 0.5 (right).
Results in the figure are from the theory; the different values for y are indicated by different symbols [y = —0.5(H), 0(%), 0.5(x), 1(+)].
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VIII. CONCLUSIONS

In summary we have analyzed generalized Lotka-Volterra
communities with random interactions and nonlinear feed-
back. Specifically, we have studied systems in which the total
feedback on the growth rate of any one species saturates via a
nonlinear function. Simulations of such systems reveal three
different types of behavior. When the variation in interaction
coefficients is small, convergence to stable fixed points is
found for a wide range of values of the remaining model
parameters. These fixed points are found to be unique, in the
sense that the asymptotic composition of resulting community
does not depend on the starting point of the dynamics for
any realization of the random interaction matrix. This glob-
ally stable behavior is found provided the heterogeneity of
interactions o does not exceed a critical value. This critical
value in turn depends on the combination of the parameter
a indicating saturation value, the cooperation parameter u,
and the symmetry parameter . Above the critical interaction
heterogeneity two types of behaviours are observed: When
the heterogeneity in interaction coefficients is such that it
promotes symmetric interactions, we observe that the gener-
alized Lotka-Volterra dynamics can have multiple stable fixed
points, and which one is reached asymptotically depends on
the choice of initial conditions. While we often find fixed
points in simulations in this phase, the system could—in
principle—also exhibit heteroclinic cycles for larger numbers
of species N. For negatively correlated heterogeneity instead
we typically observe persistently volatile dynamics.

The critical value for o is much higher for a lower value
for y, with o, = oo for y = —1, when all interactions are
exploitative. Low values of the saturation parameter (i.e.,
strongly nonlinear feedback) increases the critical o, i.e., the
range of global stability is larger. This effect is seen in partic-
ular when the saturation value a is smaller than the carrying
capacity. Previous studies have found that stability decreases
with an increasing cooperation parameter u [6,24,25] in mod-
els with linear feedback. In this linear case the interaction with
other species is not bounded, and a high degree of coopera-
tion can lead to unlimited growth. With nonlinear feedback
the growth of abundances is bounded, and cooperation no
longer leads to unlimited growth. With nonlinear feedback
we have found that increasing the cooperation parameter p
can increase stability, even when the feedback is linear over a

wide range (i.e., when a is large); the key factor for stability
is saturation at very large or very small arguments.

We conclude by briefly speculating about potential bi-
ological implications of our findings. The human gut has
evolved with the microbiome and has adaptated to promote
to stability as this is important for good health. Our findings
suggest that one effective way to increase the system’s global
stability is to decrease y, i.e., to exhibit more exploitative
predator-prey like interactions. It may be difficult for the
human gut to have an influence over the specific interactions
types present between the species, as these will be a function
of the microbes themselves. The human gut has however, been
found to promote ecosystem stability by host feeding, immune
suppression and spatial structure [6,7]. Spatial structure has
the effect of reducing the interaction strength between popu-
lations of different species, which has the effect of reducing
o, which our model has shown to increase global stability.
Host feeding and immune suppression may work by enforcing
a bound on species population size from above and below,
which may result in a similar effect produced by nonlinear
feedback explored in this paper. We have shown that enforcing
a tight population bound (low @) promotes ecosystem global
stability but also results in a higher system diversity (Fig. 3)
which is also beneficial for health. While employing nonlinear
feedback, the cooperation within the system (parametrized by
1) can be increased without the adverse effect of destabilizing
the system [6]. This allows a more cooperative and efficient
microbiome without compromising stability. Nonlinear feed-
back has been observed in other ecosystems [50,51,55] and
one would expect evolution to utilize this beneficial effect in
the gut.
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