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Molecular-statistical theory of ferromagnetic liquid crystal suspensions
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A tensor variant of molecular-statistical theory is developed, within the framework of which it is possible
to describe the appearance of spontaneous magnetization of anisotropic ferromagnetic nanoparticles dispersed
in a nematic liquid crystal. Along with the tensor order parameters characterizing the orientational ordering of
the liquid crystal and dispersed anisometric particles, the vector order parameter determining the magnetization
of the ensemble of particles is additionally taken into account. A comparison between the previously known
phenomenological theories of ferronematics and the proposed molecular-statistical theory is made. Phase
diagrams of the suspension are constructed and the mean-field theory parameters are calculated on the basis
of experimental data available in the literature.
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Fifty years ago Brochard and de Gennes presented their
theoretical work in which they predicted unique magnetic
fluids based on nematic liquid crystals, namely, ferronematics
[1]. In the framework of the continuum theory they proposed,
the orientation of liquid crystal molecules and magnetic par-
ticles were described using only one unit vector, namely,
director n̂, i.e., the coupling of the liquid crystal molecules
with the impurity particles was assumed to be absolutely rigid.
After the synthesis of the first thermotropic ferronematics [2]
it became clear that the model of strong coupling considered
at [1] is not correct enough, because in real ferronematics the
coupling energy is finite. That is why Burylov and Raikher in
their series of papers [3–6] suggested the potential of a finite
coupling between magnetic particles and the matrix

fBR = −W

d
yp(n̂m̂)2. (1)

Here W is the surface energy density of interaction between
the particles and the liquid crystal matrix, which represents the
anisotropic part of the surface tension energy, yp is the volume
fraction of the impurity, d is the transverse diameter of the
rodlike particle (in the case of thin disks it is the disk thick-
ness), and m̂ is a unit vector of particle magnetization. For
rodlike particles the vector m̂ also defines the main axis of the
nematic order of their long axes. If W > 0, the expression (1)
is minimal at n̂ ‖ m̂, which corresponds to the planar anchor-
ing of the director and magnetization; if W > 0, the minimum
(1) corresponds to the homeotropic anchoring of n̂ and m̂
(n̂ ⊥ m̂).

Another approach to describe the orientational coupling
between the liquid crystal director n̂ and magnetization m̂
was introduced by Mertelj et al. [7]. They succeeded in
synthesizing suspensions of hexaferrite disklike platelets in a
nematic liquid crystal with spontaneous magnetization. In [8]
it was suggested that ferromagnetic ordering of such particles
is possible via their interaction with the liquid crystal matrix.
Mertelj and Lisjak drew the analogy with the ferromagnetic
solid crystal and assumed that in the obtained suspensions,
magnetic moments of nanoparticles take the role of the spins,

and the liquid crystal director n̂ corresponds to the direction of
easy magnetization [9], thus, the role of orientation coupling
between the particles and the director n̂ is performed by the
magnetic crystallographic anisotropy. Due to the condition of
uniaxial symmetry of the nematic phase, the contribution to
the volume density of the coupling energy in the lowest order
in powers n̂ · m̂ has the form [10]

fM = −1

2
κμ0M2

0 (n̂m̂)2. (2)

Here κ is a dimensionless coupling parameter, μ0 is the
magnetic permeability of the vacuum, and M0 is the value of
the suspension saturation magnetization without considering
the diamagnetic contribution of the liquid crystal.

The expressions (1) and (2) are alike; both are proportional
to (n̂m̂)2. In this Rapid Communication it will be shown that
from a microscopic perspective these two approaches can be
separated and each of them takes into account a different
mechanism of orientation coupling of liquid crystal molecules
and impurity particles. The contribution (1) is suitable for
the description of the orientation coupling between a liquid
crystal and both magnetic [11–15] and nonmagnetic particles
[16,17]. The only condition is that the particles must have a
shape anisotropy (e.g., rods or disks), because for spherical
particles W = 0. The expression (2) was used when there is
spontaneous magnetization of the disperse phase in the sus-
pension [7,10,18]. However, even in the absence of an external
magnetic field, the orientation order of both molecules and
impurity particles can be preserved in the suspension, but
the spontaneous magnetization is equal to zero. This state is
sometimes called the superparamagnetic phase (or paramag-
netic), but this is not quite correct. In the superparamagnetic
state, the magnetic moments of the particles must be randomly
oriented in space, which is only possible at temperatures
higher than the clearing point of a nematic, when the suspen-
sion no longer differs from an ordinary magnetic fluid with
isotropic dispersion medium. Below the clearing point in the
absence of spontaneous magnetization due to the orientation
coupling between the liquid crystal molecules and anisometric
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particles, the latter in the case of a planar anchoring are ori-
ented parallel and antiparallel to the director of a liquid crystal
with equal probability. Such suspensions were predicted in [1]
and were called compensated ferronematics, which are liq-
uid crystal analogs of antiferromagnetics (antiferromagnetic
liquid crystal). Therefore, it is reasonable to call the ordered
phase of the suspension with zero spontaneous magnetization
the antiferromagnetic nematic phase, and that with nonzero
magnetization the ferromagnetic nematic phase. Compensated
suspensions within macroscopic theory using the Burylov and
Raikher approach are considered in [19–21], including sus-
pensions of ferroelectric particles in a liquid crystal [22,23],
but with the rigid orientational coupling between subsystems.
Thus, expression (2) is less universal than (1) and does not
allow one to describe the compensated suspensions.

From a phenomenological perspective, expressions (1) and
(2) are equivalent, as established in [24], but they only differ-
ently determine the coupling parameter of the liquid crystal
director n̂ and magnetization m̂. Thus, the present work is
devoted to combining the approaches of Burylov and Raikher
and Mertelj et al. in the framework of molecular-statistical
mean-field theory. This model makes it possible to describe
the appearance of spontaneous magnetization of the suspen-
sion, to link the phenomenological parameters W and κ with
the mean-field parameters and the order parameters of the
suspension. As a result, the temperature dependence of the
phenomenological parameters W and κ can be obtained.

Let us consider a homogeneous single-domain liquid crys-
tal suspension as a binary mixture consisting of Nn molecules
and Np magnetic nanoparticles. The orientation of a separate
rodlike molecule of a liquid crystal at a point rα will be
described by a symmetric traceless tensor of the second rank

να
ik =

√
3

2

(
ν̂αiν̂αk − 1

3
δik

)
, (3)

where ν̂α is the unit vector along the main axis of the α

molecule of the nematic (α = 1, Nn). For an ensemble of
impurity particles the similar value is constructed:

eβ

ik =
√

3

2

(
êβiêβk − 1

3
δik

)
, (4)

where êβ is the unit vector along the main axis of the aniso-
metric ferroparticle (β = 1, Np). Henceforth the summation
over repeated tensor indices is assumed.

An important feature of suspensions synthesized by
Mertelj et al. [7] is that they used disklike platelets which
have the homeotropic type of anchoring with liquid crystal
molecules instead of the rodlike particles offered by Brochard
and de Gennes. This fact allowed one to obtain a stable
ferromagnetic ordering of the particles in the liquid crystal
matrix. Unlike rodlike particles, the vector that defines the
orientation of the platelet êβ is a normal to its surface, which
also coincides with the direction of the platelet magnetic
moment [7]. As mentioned in [24], there exists a topological
similarity between a thin disk with homeotropic anchoring
and a thin rod with planar anchoring with the liquid crystal
matrix. Thus, to avoid further confusion, by planar anchoring
ν̂α ‖ êβ is meant.

To take into account the spontaneous magnetization of
the suspension, it is necessary to introduce the vector order
parameter, which is represented by the reduced magnetization

M = 1

μNp

Np∑
β=1

μβ. (5)

The vector M is associated with the magnetization of the
suspension

M = μNp

V
M. (6)

Here μβ = μêβ are the magnetic moments of impurity parti-
cles and V is the suspension volume.

The macroscopic orientation tensors of suspension com-
ponents and the vector order parameter can be obtained as
a result of statistical averaging of the tensors (3),(4) and the
vector êβ :

ηik = 〈να
ik〉, Sik = 〈eβ

ik〉, M = 〈êβ〉. (7)

Let us represent the values (7) in terms of the unit vectors
defining the main axes of the nematic order of liquid crystal
molecules n̂ and the impurity particles m̂, for the latter m̂ is
also the axis of the polar orientation order

ηik =
√

3

2
η

(
n̂in̂k − 1

3
δik

)
, (8)

Sik =
√

3

2
S

(
m̂im̂k − 1

3
δik

)
, (9)

M = 〈êβ〉 = Mm̂. (10)

Here the scalar nematic order parameter of the liquid crystal
η and scalar nematic S and polar M particle order parameters
are introduced

η = 〈P2(n̂ν̂)〉, S = 〈P2(m̂ê)〉, M = 〈P1(m̂ê)〉, (11)

where P1(x) and P2(x) are the first and the second Legendre
polynomials, respectively.

In the mean-field approximation, the distribution function
of the molecules and impurity particles ensemble is as fol-
lows:

w = (wn)Nn (wp)Np, (12)

where wn and wp are single-particle distribution functions
of molecules and particles, respectively. Then according to
[25,26] and the assumption of Mertelj et al. about the orien-
tational coupling between a liquid crystal director and mag-
netization [7], the free energy of the suspension of hexaferrite
platelets in a nematic liquid crystal in the absence of external
fields can be presented as follows:

F
vn

λV
= −1

2
y2

nηikηik + ynτ 〈ln wn〉 + ypγ τ 〈ln wp〉
−ynypγωηikSik − ynypγωmηikMiMk . (13)

Here, yn = Nnvn/V and yp = Npvp/V = 1 − yn are the vol-
ume fractions of the suspension components (vn and vp are
the volumes of a liquid crystal molecule and a particle,
respectively) and γ = vn/vp. Here the role of the mean-field
constant [27] is played by the value λ = Ann/vn, to which Ann

030701-2



MOLECULAR-STATISTICAL THEORY OF FERROMAGNETIC … PHYSICAL REVIEW E 101, 030701(R) (2020)

is the intermolecular interaction energy. The mean-field pa-
rameters ω = Anp/Ann and ωm = Am/Ann describe the relative
role of both nonmagnetic and magnetic orientation interaction
between molecules and particles Anp and Am, respectively,
compared to the interaction only between molecules Ann. Here
τ = kbT/λ (kb is Boltzmann’s constant) is the dimensionless
temperature.

The first two terms in (13) take into account the free energy
of the nematic matrix [27]. The third one is an entropic con-
tribution of an ensemble of impurity particles [1]. The fourth
term takes into account the orientation coupling between the
molecules and particles and has a nonmagnetic van der Waals
origin [26]. The last term describes the coupling between the
nematic matrix and the magnetization of the dispersed phase
and is analogous to the magnetic anisotropy energy in a solid
ferromagnet [8]. In [28] it is experimentally established that
even spherical magnetic particles cause an additional order-
ing of the liquid crystal matrix and significantly reduce the
threshold of magnetic Fréedericksz transition in comparison
with a pure liquid crystal and suspensions of nonmagnetic
spherical particles. According to [28], this effect is explained
by non-negligible local magnetic interactions between liquid
crystal molecules and magnetic nanoparticles. Thus, in the
free energy of liquid crystal suspension of anisometric mag-
netic particles there should be two independent contributions,
which take into account the orientation coupling of the matrix
and the particles of both nonmagnetic and magnetic origin.
As noted in [29], for low-concentration suspensions in the
absence of an external field, the only physical mechanism
that aligns the nanoparticles is the interaction with the liq-
uid crystal. Therefore, the expression (13) does not include
contributions proportional to SikSik and SikMiMk , which are
responsible for direct interaction between particles. It should
be noted here that for concentrated suspensions of platelike
ferromagnetic particles based on the isotropic matrix [30,31]
omitted contributions should be responsible for the appear-
ance of ferromagnetic ordering, and in this case the effects of
excluded volume should also be taken into account.

Let us consider the average energy of the suspension U ,
which can be determined from the expression (13):

U
vn

λV
= −1

2
y2

nηikηik − ynypγωηikSik − ynypγωmηikMiMk .

(14)

Calculating the convolutions of the tensors (8),(9), and the
vector (10)

ηikηik = η2, ηikSik = 3

2
ηS(n̂m̂)2 − 1

2
ηS,

ηikMiMk =
√

6

2
ηM2(n̂m̂)2 −

√
6

6
ηM2, (15)

it is easy to obtain the volume density of the energy (14) as
follows:

U

V
= −1

2

λ

vn
yn

{
ynη

2 − ypγ

(
ωηS +

√
6

3
ωmηM2

)

+ypγ (3ωηS +
√

6ωmηM2)(n̂m̂)2

}
. (16)

From the expression (16) it is obvious that orientation cou-
pling of the liquid crystal director n̂ and the magnetization m̂
is determined by two contributions [see the multiplier prior to
(n̂m̂)2]. The first contribution does not depend on the degree
of magnetization M and contains the ω parameter, whose
origin is related to the anisotropy of the liquid crystal surface
tension [5]. This parameter is the measure of anisometry of
the particles which turns to zero if particles have the spherical
shape. This contribution provides the orientation coupling
of anisometric particles with the liquid crystal matrix, while
the particles can also be nonmagnetic [32]. It should be
noted that in the case of suspensions of ferroelectric particles
in a liquid crystal [29,33], this parameter is related to the
electric polarization of nematic molecules, which is induced
by the electrical dipole moments of the particles. The second
contribution which is proportional to (n̂m̂)2 into (16) depends
on the degree of the liquid crystal order and the ferromagnetic
order of the particles, namely, ∝ηM2. The parameter ωm can
be interpreted as a measure of the magnetic anisotropy energy.
At ω = 0 the expression (16) coincides with the one obtained
earlier in [24], where the classical density functional theory
for the liquid crystal suspension was used.

By comparing the expression (16) with (1) and (2), phe-
nomenological parameters W and κ as functions of the sus-
pension order parameters, i.e., temperature, can be deter-
mined:

W = 3

2

dynλωηS

vp
, κ =

√
6

ynypλωmηM2

vpμ0M2
0

. (17)

At fixed external electric and magnetic fields, temperature,
pressure, and homogeneous distribution of an impurity, order
parameters of the suspension are constants, and therefore
all the expression standing before (n̂m̂)2 in expression (16)
can be considered as a phenomenological constant, which
is defined from an experiment. Thus, it becomes clear from
(16) that although the proposed approaches by Burylov and
Raikher and Mertelj et al. proceed from different notions
of the orientation coupling mechanisms between magnetic
particles and liquid crystal molecules, they in fact introduce,
respectively, either dimensional W , or dimensionless κ phe-
nomenological parameters that take into account both non-
magnetic and magnetic coupling mechanisms. By combining
the contributions (1) and (2), it is possible to write down the
final expression for the volume energy density of orientational
interaction (coupling) of anisometric ferromagnetic particles
with the liquid crystal matrix in different ways:

fBR + fM = −W̃

d
yp(n̂m̂)2 = −1

2
κ̃μ0M2

0 (n̂m̂)2, (18)

where dimensional and dimensionless coupling parameters
are redefined, respectively:

W̃ = W + dκμ0M2
0

2yp
, κ̃ = 2Wyp

dμ0M2
0

+ κ. (19)

Thus, from the experiments [10,18] the value κ̃ but not κ was
determined.
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After the substitution of expressions (17) into (19) it can be
obtained

W̃ = dynλ

2vp
(3ωηS +

√
6ωmηM2), (20)

κ̃ = ynypλ

vpμ0M2
0

(3ωηS +
√

6ωmηM2). (21)

These expressions allow one to define the temperature de-
pendencies of the phenomenological coupling parameters of
liquid crystal and magnetization, respectively.

Now we come to equilibrium equations for the suspension
order parameters η, S, and M. Given the fact that for a
single-domain suspension in the absence of external electric
and magnetic fields at positive values of the parameters ω and
ωm, the main axis of the nematic order of the liquid crystal
n̂ coincides with the main axis of the nematic and the polar
order of the particles m̂ (planar anchoring), then macroscopic
tensors (8),(9) and the vector (10) can be characterized by a
single vector n̂. As a result of the free energy (13) variation
with respect to the molecule wn and particle wp orientation
distribution functions taking into account the definitions (7)
and (11), the equations of orientation equilibrium can be
obtained:

η = 3

2

∂ ln g(σn, 0)

∂σn
− 1

2
, S = 3

2

∂ ln g(σp, ζ )

∂σp
− 1

2
,

M = ∂ ln g(σp, ζ )

∂ζ
, (22)

where the function g is determined:

g(σ, ζ ) ≡ 1

2

∫ 1

−1
exp (σx2 + ζx)dx, (23)

and dimensionless parameters are introduced:

σn = 3

2τ

[
ynη + ypγωS +

√
6

3
ypγωmM2

]
,

σp = 3

2τ
ynωη, ζ = 2

√
6

3τ
ynωmηM. (24)

Equations (22) determine temperature dependencies of the
order parameters η, S, and M.

Let us estimate material parameters according to [7,18] for
the ferromagnetic suspension of hexaferrite platelets based on
the liquid crystal 5CB; the average diameter of the platelet
is D = 70 nm, the width is d = 5 nm, and the volume is vp =
πdD2/4 = 1.924 × 10−23 m3. The 5CB molecule volume can
be estimated if it is known the liquid crystal molar mass
μLC = 0.249 kg/mol and its mass density at the room tem-
perature ρLC = 1020 kg/m3 [34], then vn = μLC/(ρLCNa) =
4.054 × 10−28 m3 (Na = 6.022 × 1023 mol−1 is the Avagadro
number) and γ = vn/vp = 2.107 × 10−5. To determine the
mean-field constant for a pure liquid crystal, the formula
λ = kBTc/τc = 1.934 × 10−20 J should be used, where Tc =
308.4 K is the liquid crystal 5CB clearing point [35], and
τc = 0.2202 is a dimensionless temperature of the nematic-
isotropic liquid transition [27]. As indicated in [18] the tem-
perature of measurements is T = 298.0 K, which corresponds
to a dimensionless temperature τ = T/λ = 0.2127. Accord-
ing to [18] for the volume fraction of particles yp = 3 × 10−4

FIG. 1. Dependencies of the mean-field coupling parameters ω

(red curves with filled circles) and ωm (blue curves with open circles)
on the polar order parameter M for κ̃ = 60 (dotted curves) and κ̃ =
130 (solid curves).

the saturation magnetization of the suspension reaches M0 =
μNp/V = 50 A/m, with the coupling parameter equal to κ̃ =
110 ± 70.

We can now proceed to determining the coupling param-
eters of the mean-field theory ω and ωm for the estimations
presented above. For this purpose, we have to solve the set of
the equilibrium equations (22) with the additional equation
(21). In [7] it is claimed that the obtained suspension was
stable even after several months, but unfortunately the value
of residual equilibrium magnetization is not given. Figure 1
presents the dependence of the coupling parameters ω and
ωm on the polar order parameter M, which determines the
equilibrium value of the suspension magnetization in the
absence of external fields M = M0M. From Fig. 1 it is seen
that for the fixed parameter κ̃ , the growth of the magnetization
M corresponds to a decrease in ω (red curve with filled circles)
and an increase in ωm (blue curve with open circles). From
Fig. 1 it can also be seen that the coupling parameter κ̃ =
130 (solid curve) corresponds to the higher magnetization
M in comparison with κ̃ = 60 (dotted curve). It should be
noted here that the possible maximum magnetization value
does not correspond to ω = 0, but accordingly for κ̃ = 60
there is a maximum of M = 0.6681 at ω = 0.1129 and ωm =
0.9855, but for κ̃ = 130 there is a maximum of M = 0.8207
at ω = 0.4705 and ωm = 1.0727. Thus, after experimentally
determining the value of κ̃ and the equilibrium value of spon-
taneous magnetization in the absence of an external magnetic
field M, the parameters ω and ωm can be found, then using
the set of equations (22) the temperature dependencies of
the order parameters η, S, and M and the phenomenological
coupling parameters W̃ and κ̃ can be obtained.

Figure 2 presents the diagrams of the suspension orien-
tation phases in the plane of the reduced temperature T/Tc

(Tc, the clearing point of the pure liquid crystal 5CB)—the
coupling parameter ωm. For any material parameters there is a
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FIG. 2. Suspension phase diagrams in terms of reduced temperature and the mean-field coupling parameter ωm for (a) ω = 0, (b) ω = 0.4,
and (c) ω = 1.2. Solid lines correspond to the second-order phase transitions, and dashed lines correspond to the first-order phase transitions.

high-temperature isotropic phase (I), where all the suspension
order parameters, i.e., η, S, and M, are equal to zero. This
phase is superparamagnetic like the ordinary isotropic fer-
rofluids. With a decrease in temperature depending on the val-
ues ω and ωm there occurs a first-order phase transition (verti-
cal dashed line) into ordered orientation phases with different
magnetic properties. The first possible phase is a ferromag-
netic nematic one (FMN), where η > 0, S > 0, and M 	= 0
(in the absence of an external magnetic field, the phases with
M > 0 and M < 0 are equivalent). The second possible phase
is an antiferromagnetic nematic (AFMN) phase, where η > 0,
S > 0, and M = 0. This phase is characterized by equal frac-
tions of the magnetic impurity with the oppositely oriented
magnetic moments. The last orientation phase is possible only
with ω = 0 (spherical particles), i.e., a superparamagnetic
nematic one (SPMN), where η > 0, S = 0, and M = 0. The
relative difference in the temperatures of the transitions of
ordered phase–isotropic liquid for a pure liquid crystal and
for suspensions with the above-presented material parameters
is less than 0.1% percent, so in Fig. 2 the vertical dashed line
T/Tc = 1 corresponds to the boundary of isotropic phase exis-
tence. The filled black circles in Fig. 2 correspond to the triple
I-FMN-SPMN point at ωm = 0.9429 for ω = 0 [Fig. 2(a)]
and I-FMN-AFMN triple points at ωm = 0.7040 for ω =

0.4 and ωm = 0.4703 for ω = 1.2 [see Figs. 2(b) and 2(c),
respectively]. Figure 2 shows that with increasing ω, the I-
FMN transition can take place at lower values of ωm, and the
FMN-AFMN transition occurs at higher temperatures.

In conclusion, a simple molecular-statistical theory of fer-
romagnetic liquid crystal suspensions of anisometric particles
has been developed. The presented theory combines two
previously known phenomenological approaches in which
different expressions were offered to describe the volume
energy density of orientational coupling of the liquid crystal
director and the magnetization of impurity particles. The
model predicts the existence of I-SPMN, I-AFMN, I-FMN,
SPMN-FMN, and AFMN-FMN transitions induced by tem-
perature changes. This theory can be extended in order to
describe more complex systems, such as ferromagnetic chiral
liquid crystal suspensions [36]. Using this theory, one can also
describe orientational transitions in liquid crystal suspensions
induced by electric and magnetic fields.
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