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High-resolution Monte Carlo study of the order-parameter distribution
of the three-dimensional Ising model
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We apply extensive Monte Carlo simulations to study the probability distribution P(m) of the order parameter
m for the simple cubic Ising model with periodic boundary condition at the transition point. Sampling is
performed with the Wolff cluster flipping algorithm, and histogram reweighting together with finite-size scaling
analyses are then used to extract a precise functional form for the probability distribution of the magnetization,
P(m), in the thermodynamic limit. This form should serve as a benchmark for other models in the three-
dimensional Ising universality class.
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I. INTRODUCTION

The probability distribution P(m) of the order parameter m
is one of the most important quantities for studying the finite-
size scaling of critical phenomena. It contains the information
needed to calculate all order-parameter-related quantities such
as the susceptibility χ = K (〈m2〉 − 〈m〉2), where K is the
dimensionless inverse temperature, the Binder cumulant U =
1 − 〈m4〉/(3〈m2〉2), etc. It can also complement the use of
critical exponents in determining the critical behavior of a uni-
versality class. For these reasons it has been a major research
topic in multiple Monte Carlo studies [1–5]. With precise
calculations of these quantities, one can study the transition
temperature and critical behavior of diverse systems, e.g.,
the three-dimensional (3D) Ising model [6,7], the Lennard-
Jones fluid [8], and quantum chromodynamics [9]. A very
nice application of the magnetization probability distribution
function to determine the critical and multicritical universality
in several different spin systems can be found in Ref. [10].

According to finite-size scaling theory [1,11], and assum-
ing hyperscaling and using L (linear dimension), m (order
parameter), and ξ (correlation length) as variables, the prob-
ability distribution of the order parameter is described by the
scaling Ansatz,

P(m, L, ξ ) = Lβ/ν P̃(mLβ/ν, L/ξ ), (1)

where β is the order-parameter exponent, ν is the correlation
length exponent, and P̃(mLβ/ν, L/ξ ) is the scaling function.

The double-peaked distribution of P(m) for the simple
cubic Ising model was first numerically calculated by Monte
Carlo simulation in Ref. [1]. In Ref. [11], systems of size 203

and 303 were simulated at the critical point and an analytical
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expression for P(m) was proposed. An improved estimate for
P(m) was determined in Ref. [12], where the size of the simple
cubic lattices ranged from 123 to 583. That work established
a phenomenological formula to describe the peaks of the
distribution. In addition to the Ising model, this study tried
to extract P(m) in the thermodynamic limit from simulations
of the simple cubic, spin-1 Blume-Capel model. The tail of
the probability distribution P(m) for the 2D Ising model was
studied in Ref. [13], but the conclusion was that the true form
of the order-parameter distribution at criticality was still an
open question.

High-resolution numerical estimates for properties of P(m)
are important for developing theories and analytical methods
for the study of critical phenomena. Our goal in the present
paper is to determine the probability distribution of the order
parameter at the critical point of the simple cubic Ising model
with increased resolution and obtain a more precise expres-
sion to describe P(m) in the thermodynamic limit than was
heretofore possible.

II. MODEL AND METHODS

We consider the 3D Ising model on a simple cubic lattice
with linear dimension L and periodic boundary conditions.
The Hamiltonian is given by

H = −J
∑
〈i, j〉

σiσ j, σi = ±1. (2)

Here J > 0 is the ferromagnetic coupling, 〈i, j〉 denotes pairs
of nearest-neighbor sites, and the sum is over the 3N distinct
pairs of nearest neighbors, where N = L3 is the total number
of spins. The order parameter (average magnetization) is given
by

m = 1

N

∑
i

σi, (3)

where i denotes each of the N spins, and −1 � m � 1.
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FIG. 1. Scaled probability distribution P(m)L−β/ν as a function
of mLβ/ν at the critical point Kc = 0.221 654 626 [7]. Curves from
the top to the bottom in the inset correspond to lattice sizes L = 16,
32, 96, and 256, respectively.

We performed extensive Monte Carlo simulations using the
Wolff cluster flipping algorithm [14]. The simulations were
performed at K0 = 0.221 654, which was an estimate for the
inverse critical temperature used in an earlier, high-resolution
Monte Carlo study [6]. Data were obtained for lattices with
16 � L � 1024 (for more simulation details, see Ref. [7]).

Based on the estimate for the critical point in Ref. [7],
data were reweighted to Kc = 0.221 654 626 using histogram
reweighting techniques [15,16]. To obtain the probability
distribution P(m) at Kc, for each occurrence of the order
parameter, the corresponding population of the bin of the
histogram was incremented by exp[−(Kc − K0)E ], where E
is the total dimensionless energy of the system. The histogram
was then normalized to determine P(m).

III. RESULTS

Figure 1 shows the scaled probability distribution
P(m)L−β/ν as a function of mLβ/ν at the critical point Kc =
0.221 654 626 for finite lattice sizes (L = 16, 32, 96, and
256). Here, β and ν are critical exponents for infinite lattices,
and β/ν = 0.518 01(35) [7]. (We used this estimate in our
analysis for consistency since this work uses the same data as
that of Ref. [7].) The values of the scaled peaks P(m)L−β/ν

decrease as the lattice size L increases. Also, systematic
deviations from scaling occur in the region of the tails of the
distributions. In the thermodynamic limit (L = ∞), the prob-
ability distribution P(m) is universal up to a rescaling of m.

First, we took Ref. [12] as the blueprint for our analysis.
We performed a nonlinear least-squares fit, where the recip-
rocals of the statistical errors were taken as the weighting
factors to the fitting function, with the “improved” Ansatz of
Ref. [12],

P(m) = ALβ/ν exp

⎧⎨
⎩−

[(
mLβ/ν

m0

)2

−1

]2[
b

(
mLβ/ν

m0

)2

+ c

]⎫⎬
⎭,

(4)
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FIG. 2. The red (dark gray) line is the difference between the
Monte Carlo data and the fit corresponding to Eq. (4), while the blue
(light gray) line is the error bar for the Monte Carlo data (top: L =
16; middle: L = 96; bottom: L = 1024).

where A, m0, b, and c are unknown fitting parameters. Note
that m0 is a scale-invariant (but not universal) quantity.

Figure 2 shows the difference between the Monte Carlo
(MC) data and the fit corresponding to Eq. (4). It also illus-
trates the error bars for the Monte Carlo data. From Fig. 2 we
observe that when the lattice size L is small, e.g., L = 16, a
pattern in the difference between MC data and the fit is very
clear. This means that the fitting Ansatz, Eq. (4), does not
perform well for small L to within the statistical uncertainty.
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TABLE I. The parameters m0, b, and c for the probability dis-
tribution P(m), fitted to the Ansatz Eq. (4). The last column χ 2 per
degree of freedom (d.o.f.) characterizes the quality of the fit.

L m0 b c χ 2 per d.o.f.

16 1.41197 (26) 0.2408 (17) 0.83686 (77) 381.82
24 1.41112 (12) 0.20924 (70) 0.81938 (40) 70.96
32 1.410761 (82) 0.19520 (48) 0.81045 (21) 24.87
48 1.410437 (74) 0.18197 (43) 0.80087 (25) 6.98
64 1.410440 (46) 0.17601 (29) 0.79607 (26) 3.70
80 1.410351 (48) 0.17220 (31) 0.79303 (33) 2.23
96 1.410345 (57) 0.16977 (35) 0.79104 (34) 1.74
112 1.410250 (59) 0.16785 (37) 0.78939 (42) 1.47
128 1.410362 (71) 0.16674 (46) 0.78809 (36) 1.32
144 1.410153 (85) 0.16537 (54) 0.78693 (37) 1.24
160 1.410217 (98) 0.16462 (62) 0.78639 (42) 1.18
192 1.410189 (67) 0.16336 (85) 0.78499 (46) 1.12
256 1.410281 (87) 0.1620 (11) 0.78359 (47) 1.08
384 1.41018 (11) 0.1560 (14) 0.78198 (49) 1.04
512 1.41019 (21) 0.1590 (18) 0.78101 (63) 1.02
768 1.41097 (56) 0.1576 (47) 0.78165 (70) 1.02
1024 1.41084 (75) 0.1545 (89) 0.78076 (84) 1.01

For much larger L (e.g., L = 1024), the difference between the
distribution and the fit to the Ansatz is of the same magnitude
as the statistical error, so no systematic deviation is observed.

Table I shows the results of fitting to Eq. (4). We can tell
that the quality of fit is not good when L � 80, as the value
of the χ2 per degree of freedom (d.o.f.) is large. It decreases
for larger L, and the quality of fit becomes good for the largest
lattice sizes.

Based on the variance of the fit parameters b and c of
Eq. (4) for different lattice sizes, we have estimated their
values and errors for L = ∞ as follows:

b = 0.1553(6), c = 0.7783(4). (5)

Ref. [12] determined the less precise values b = 0.158(2) and
c = 0.776(2) which agree with our results within the error
bars.

The systematic deviation observed for smaller system sizes
led us to modify Ansatz Eq. (4) by adding various forms of
correction terms to see if a revised Ansatz could fit the data
well even for smaller lattices. We approximated P(m) by using
different forms, e.g., adding correction terms in the exponent,
adding different correction terms in the preexponential factor
(|m|ω, |m|, |m|2, . . .), and adding correction terms in both the
exponent and the preexponent factor. We have found that
the following “improved” Ansatz gives a surprisingly good
approximation to P(m) over quite a wide range of L and m:

P(m) = ALβ/ν exp

⎧⎨
⎩−

[(
mLβ/ν

m0

)2

− 1

]2[
a

(
mLβ/ν

m0

)4

+ b

(
mLβ/ν

m0

)2

+ c

]}
, (6)

where A, m0, a, b, and c are unknown fit parameters, and as
before β/ν = 0.518 01(35).
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FIG. 3. Analogous to Fig. 2, but the fit is corresponding to Eq. (6)
(top: L = 16; middle: L = 96; bottom: L = 1024).

Figure 3 is analogous to Fig. 2, but shows the difference
between the Monte Carlo data and the fits to Eq. (6). Figure 3
shows that even for L = 16 the residual discrepancy is com-
parable to the statistical error. If Eq. (6) is used as the fitting
function, the maximal difference between MC data and the fit
for L = 16 is around 0.0004, which is 1/10 of that in Fig. 2
which used Eq. (4) as the fitting function. Thus, the quality of
fitting to Ansatz Eq. (6) is much higher than that of Eq. (4)
for small L, and within the statistical errors, Eq. (6) performs
better than Eq. (4) as a fitting function.
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TABLE II. The parameters m0, a, b, and c for the probability distribution P(m), fitted by the Ansatz Eq. (6). The last column χ 2 per degree
of freedom (d.o.f.) characterizes the quality of the fit.

L m0 a b c χ 2 per d.o.f.

16 1.408684 (19) 0.02501 (21) 0.16936 (31) 0.83936 (33) 1.31
24 1.408497 (27) 0.01644 (15) 0.16064 (23) 0.82124 (36) 1.03
32 1.408456 (44) 0.01310 (14) 0.15553 (12) 0.81203 (26) 1.04
48 1.408432 (61) 0.01046 (15) 0.15002 (24) 0.80220 (27) 1.02
64 1.408588 (49) 0.00926 (21) 0.14751 (29) 0.79727 (31) 1.03
80 1.408573 (53) 0.00862 (25) 0.14555 (40) 0.79416 (39) 1.02
96 1.408611 (73) 0.00822 (27) 0.14427 (54) 0.79213 (45) 1.02
112 1.408564 (70) 0.00784 (28) 0.14347 (75) 0.79043 (51) 1.01
128 1.408714 (64) 0.00754 (36) 0.14326 (61) 0.78910 (48) 1.02
144 1.408490 (82) 0.00748 (45) 0.14207 (76) 0.78793 (55) 1.02
160 1.408580 (92) 0.00727 (56) 0.14194 (93) 0.78736 (48) 1.01
192 1.408497 (91) 0.00731 (52) 0.14053 (99) 0.78597 (42) 1.01
256 1.408672 (95) 0.00675 (65) 0.1409 (12) 0.78448 (58) 1.01
384 1.408489 (87) 0.00657 (74) 0.1396 (20) 0.78280 (89) 1.01
512 1.40852 (12) 0.00635 (93) 0.1395 (25) 0.7817 (13) 1.01
768 1.40882 (19) 0.0052 (17) 0.1423 (61) 0.7821 (17) 1.01
1024 1.40873 (27) 0.0043 (27) 0.1440 (90) 0.7806 (25) 1.01

Results for fitting to the functional form Eq. (6) are shown
in Table II. The values of the χ2 per d.o.f. show that the quality
of fit is good even for small lattice sizes. Generally speaking,
the error bars for the fit parameters (m0, a, b, and c) become
larger as L increases. This is because the statistical errors of
the raw data are greater for larger lattice sizes (see the dashed
line in Fig. 3).

Figure 4 shows the results of the fit parameters a, b, and
c of the probability distribution P(m), approximated by the
Ansatz Eq. (6). The horizontal axis is chosen to be L−ω,
where ω = 0.829 68(23) [17], so that the leading corrections
to scaling are linearized [1]. There is an apparent deviation for
L = 768 and L = 1024, but the error bars for those sizes are
so large that their contributions to the fit are less significant.
(There are many more “bins” in the histogram for very large
L so there are fewer entries in each bin.) To within statistical
errors, there are noticeable finite-size effects for a, b, and c. By
doing extrapolations to the thermodynamic limit, their values
are estimated as follows:

a = 0.0052(6), b = 0.137(1), c = 0.7786(3). (7)

Recently, a more precise estimate for β/ν =
0.518 148 9(10) was given by Ref. [17]. If we used this
more precise estimate for both Ansätze Eqs. (4) and (6), we
will have the same extrapolated values for the parameters.

It is now known that higher-order cumulants of the mag-
netization can have universal values. By using the probability
distribution P(m) of the order parameter m, we can calculate
ratios of moments of the magnetization that are simply related
to cumulants:

Q4 = 〈m4〉/〈m2〉2,

Q6 = 〈m6〉/〈m2〉3,

Q8 = 〈m8〉/〈m2〉4.

Of course, the estimation of the cumulants from the Monte
Carlo data depends upon the entire distribution; moreover,

as the order of the cumulant increases, the tails of P(m)
become increasingly important. Since the tails are effectively
truncated by lack of data from the simulation, small biases
in cumulant estimates might arise. For high-enough order,
truncation will certainly impact the value of the cumulant,
For this reason we also generated some large lattice data at a
slightly larger coupling and used multihistogram reweighing
to obtain an improved estimate of the contribution of the
wings.

Results are shown in Table III. Equations (4) and (5) and
Eqs. (6) and (7) are used together. Error bars are estimated by
using the propagation of uncertainty with correlation included
(covariances between parameters a, b, and c are taken into
account).

As can be seen in Table IV, we find very small, systematic
shifts in the estimates for Q4 and Q6 that are within the
respective error bars of the corrected and uncorrected values.
For Q8, however, the effect of truncation exceeds the error bars
by a substantial amount. Clearly, the estimation of high-order
moment ratios is not possible without substantially better
statistics in the wings.

The estimates for Q4 and Q6 by Eqs. (4) and (5) are
consistent with those from the extrapolations of our MC data,
Refs. [12,18]. Although the estimates by Eqs. (6) (7) are
higher than those from our MC data and Ref. [18], they still
agree with each other to within two error bars. This might be
because the estimates of a and b bend off for large system

TABLE III. Results for Q4 and Q6.

Q4 Q6

Eqs. (4) and (5) 1.60360 (13) 3.10555 (62)
Eqs. (6) and (7) 1.60397 (21) 3.1074 (12)
MC data 1.60352 (14) 3.10519 (62)
Typsin and Blöte [12] 1.60399 (66) 3.1067 (30)
Hasenbusch [18] 1.6036 (1) 3.1053 (5)
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FIG. 4. Variation of the fit parameters a, b, and c for Ansatz
Eq. (6) as functions of L−ω. The abscissa is chosen so that the leading
corrections to scaling are linearized [1], where ω = 0.829 68(23)
[17]. The solid lines show extrapolations to L = ∞ for L � 32.
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FIG. 5. Logarithm of the tail of the probability distribution of the
order parameter (average of the left and right tails), where mLβ/ν �
2.25, for different lattice sizes L. The lines are the best fits to Eq. (6).
Curves from the top to the bottom correspond to lattice sizes L =
256, 96, 32, and 16 respectively.

sizes, but the error bars for those sizes are so large that it is
not possible to draw a further conclusion.

Comparing the results of fitting to the two Ansätze, Eqs. (4)
and Eq. (6), one can see that the estimates for c from both fits
agree with each other to within error bars. However, the value
of b determined for Eq. (4) is larger than that for Eq. (6). We
believe that this is a consequence of the correction term corre-
sponding to b in Eq. (4) attempting to account for additional
finite-size corrections which are addressed explicitly by the
term corresponding to a in Eq. (6).

In addition, Fig. 5 shows the logarithm of the tail of
the order-parameter probability distribution, where mLβ/ν �
2.25. The values of the MC data are the averages of the left
and right tails. The solid lines are the best fits to Eq. (6). The
tail data for L = 256 fluctuate too much to present clearly
in the figure. Therefore, we applied a smoothing technique,
where each data point is the midpoint of a linear fit to ten
sequential points. The shape of the scaled probability distri-
bution differs noticeably from the thermodynamic limit, as
there are non-negligible corrections to scaling. The values of
P(m) are small in the tail region, and their statistical errors
are relatively high, thus, data in the tails contribute less to
the fit than those near the peaks. Although their contribu-
tions are less significant, Fig. 5 still indicates that the fit by
Eq. (6) performs relatively well in the tail region, at least for
mLβ/ν � 2.75.

Overall, we have observed that the functional form Eq. (6)
permits a high-quality, nonlinear least-squares fit to the P(m)

TABLE IV. Corrected and uncorrected estimates for Q4, Q6, and Q8 at L = 512, 768, and 1024.

Q4 Q6 Q8

L Corrected Uncorrected t statistic Corrected Uncorrected t statistic Corrected Uncorrected t statistic

512 1.60228(10) 1.60218(10) −0.7071 3.09910(46) 3.09869(45) −0.6371 6.7572(17) 6.7544(16) −1.1994
768 1.60222(15) 1.60198(15) −1.1314 3.09897(68) 3.09814(68) −0.8631 6.7582(24) 6.7534(24) −1.4142
1024 1.60197(23) 1.60149(22) −1.5081 3.0981(11) 3.0962(10) −1.2781 6.7690(37) 6.7468(36) −4.3004
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data. Although the quality of fit for Eq. (4) is reasonable for
large lattice sizes, it is poor for small lattice sizes. The addition
of a correction term [Eq. (6)] allows for a high-quality fit for
P(m) over a larger range of system sizes. We have observed a
noticeable finite-size effect for the fit parameters a, b, and c,
thus Eq. (6) is a high-resolution approximation expression for
P(m) in the thermodynamic limit.

IV. CONCLUSION

We have determined the probability distribution P(m) of
the order parameter m for the simple cubic Ising model with
periodic boundary conditions at the critical temperature in a
high-resolution manner. The high quality of the distribution

permitted us to obtain a precise functional form to describe
P(m) in the thermodynamic limit as given by Eq. (6). The
universal parameters of Eq. (6) have been determined as a =
0.0052(6), b = 0.137(1), and c = 0.7786(3). This expression
for P(m) and its parameters provide a valuable benchmark for
comparison with results for other models presumed to be in
the Ising universality class.
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