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The generalized Schrodinger-Newton system of equations with both local and nonlocal nonlinearities is widely
used to describe light propagating in nonlinear media under the paraxial approximation. However, its use is
not limited to optical systems and can be found to describe a plethora of different physical phenomena, for
example, dark matter or alternative theories for gravity. Thus, the numerical solvers developed for studying light
propagating under this model can be adapted to address these other phenomena. Indeed, in this work we report
the development of a solver for the HiLight simulations platform based on GPGPU supercomputing and the
required adaptations for this solver to be used to test the impact of new extensions of the Theory of General
Relativity in the dynamics of the systems. In this work we shall analyze theories with nonminimal coupling
between curvature and matter. This approach in the study of these new models offers a quick way to validate
them since their analytical analysis is difficult. The simulation module, its performance, and some preliminary

tests are presented in this paper.
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I. INTRODUCTION

The Theory of General Relativity is currently the most
accepted model to describe gravity since it can explain most
of the current observations. However, there are some conun-
drums in the theory, namely, the dark matter and dark energy
problems and the ultraviolet completion of the theory [1].
Hence, alternative theories of gravity have been proposed
in the literature. One such model is the nonminimal matter-
curvature coupling, where, in addition to a replacement of
the scalar curvature by a generic function of it, the matter
sector is nonminimally coupled to a further generic function
of the Ricci scalar [2]. Proposing such modifications requires
that these models have to pass through a series of tests to
be considered as valid candidates [2-6], see, for example,
Ref. [7] for a review. However, as already happens with
general relativity, the analytic treatment of these new hy-
potheses is extremely difficult due to the complexity of the
models and, even though numerical solvers can be used, they
normally require huge amounts of computational resources.
Fortunately, there are certain situations where some approxi-
mations reduce the original mathematical model to a general
Schrodinger-Newton system where, although the analytical
treatment remains difficult, one can use the vast numerical
models developed over the years to study and simulate this
system. In particular, those used in the context of optics where
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this model is widely used to describe light propagating in
nonlocal optical systems [8—11].

Light propagating in nonlinear and nonlocal systems, un-
der the paraxial approximation, is described by a Schrodinger-
Newton system, which consists in a Schrédinger equation
coupled with a Newtonian-like potential (or, more generally,
a Poisson potential), where the former is responsible for de-
scribing the evolution of the envelope of the beam through the
medium, and the last one for describing the distribution of the
refractive index, and examples of materials where this model
is used are nematic liquid crystals [8,9,12], thermo-optical
materials [10,11], and quantum gases [13,14]. Indeed, the
Schrodinger-Newton model is capable of describing a much
wider set of systems, ranging from boson stars [10] to dark
matter [11] and superfluidity [9,15], to name a few, and due
to the similarities between these mathematical descriptions,
this system has been proposed and used for implementing
optical analogues [9-11,15], where systems that are hard
or even impossible to study are emulated in the laboratory
under controlled conditions. Over the years, many numerical
models have been developed and improved to simulate this
class of systems and in the last years, at our research group,
we have developed a set of high-performance solvers based
on GPGPU supercomputing to numerically study this class
of systems, and successfully applied them in the study of
superfluidity in nematic liquid crystals [9] and persistent
currents in atomic gases [16]. Due to generality of our imple-
mentation, these solvers can be applied to other systems and
in this work we explore how they can be used to study these
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alternatives to gravity. In particular, we begin by showing
how the Schrodinger-Newton system can be used to describe
light propagating in different nonlocal systems, and then the
approximations required to reduce the original nonminimal
coupling models to this mathematical description. The ensued
implementation, tests and performance are also discussed.

II. PHYSICAL MODEL

The general form of the Schrodinger-Newton system is
given by the following set of equations:

Y

] —

- = AV*Y + Boy + Gy M)y, (1
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where the field ¥ = (X, t) represents the wave function of
the system under study, such as the optical or mass density
for optical or gravitational systems, respectively. The function
G(|¥|*) accounts for the possibility of the system having
different local nonlinearities, the ¢ = ¢ (X, ) accounts for the
nonlocal character of the system and is governed by a general
Newtonian-like potential given by Eq. (2), and A, B, C, and
D are constants. The parameter 7 has different interpretations
according to the system: for example, in optical systems t
has dimensions of distance, in gravitational systems, Bose-
Einstein condensates or in polariton fluids it has dimensions
of time. Equations (1) and (2) can be further generalized if
one considers multiple wave functions coupled through the
different nonlinearities of the system, however for the present
work this generalization is unnecessary.

A. The Schriodinger-Newton equations in optical systems

As mentioned before, the Schrodinger-Newton system can
be used to describe the propagation of an optical beam through
a nonlinear medium. If we consider Eq. (1) alone, we have a
mathematical description of the propagation of an envelope £
of a light beam, under the paraxial approximation, through an
optical medium

LOE 1,
<

where ky and k = ngk, are the wave numbers in the vacuum
and inside the medium, respectively. The operator V7 is the
two-dimensional Laplacian applied in the two dimensions
transverse to the direction of propagation. The refractive index
distribution in the transverse plane is given by An. In the
case of a medium with local (G(]¥|?)), and nonlocal (¢)
nonlinearities, we have that An o ¢ + G(||?), where the
nonlocal field is governed by equation (2). For example,
in Kerr materials, the local nonlinearity is G(|y|?) o [y|2,
but higher orders can be considered [17], as well as other
types, see Ref. [18]. In thermo-optical materials [10,11,15]
the nonlocal field is governed by

1
viAn——zAn=—§—“|E|2, (4)
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where o is the nonlocal interaction length scale (o ~
d/2, with d corresponding to the diameter of the medium
[10]), n and ¢ are the thermo-optical and linear absorption

coefficients, respectively, and « is the thermal conductivity.
For nematic liquid crystals [8,9,19] we have that

vV20 —2¢0 = —2|E|?, Q)

where 6 represents the perturbation induced in the molecular
director due to the electric field and 8 ¢, ¢ is related to the
pretilt of the molecular director and v is the normalized elastic
coefficient.

B. The Schrodinger-Newton for nonminimal coupling models

The idea behind alternative models of gravity is to modify
the Einstein-Hilbert action to account for several phenomena
that are not explained by general relativity. In particular,
the nonminimal matter-curvature coupling model consists in
replacing the Ricci scalar or curvature scalar, R, with a general
function of it f;(R), and coupling to the matter Lagrangian
density with the curvature through another general function,
f2(R) [2]. These modifications lead to

1
§= /d4x\/—_g[§f1(R)+f2(R)ﬁmi|, (6)

where g is the determinant of the metric, g,,. In the lim-
its fi(R) > R and f>(R) — 1, in units such that Mlz, =
(8mG)~' =1, general relativity is recovered. In the New-
tonian limit, this model predicts that the usual gravitational
potential has to be corrected to

¢ = oy + 9c, @)

where ¢y is the Newtonian potential, which obeys a modified
Poisson equation

BaV* — Vipy = (da — B)V?p — yp, ®)

where o = f"(0)/f{(0) is a constant that measures deviations
from general relativity in the pure gravity sector and the prime
denotes derivations with respect to R, and y = f2(0)/f{(0)
and 8 = f,(0)/f/(0) can be parametrized, assuming spherical
symmetry, in the following form:

General Relativity

1
=12
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where A measures the strength of the nonminimal coupling
and ry = M /4m corresponds to the Schwarzschild radius. The
potential ¢¢ is due to the nonminimal coupling and reads [20]

ro »
¢c =1n 1_<r+r0) . an

Let us consider a pure nonminimal coupling (o = 0),
which is translated into

Vign = BVip +yp. (12)

At large scales, matter can be modeled as a perfect fluid [21],
hence, from the full Vlasov-Poisson system, it is possible to
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obtain a set of hydrodynamic equations capable of describing
the dynamics of the density p and velocity v of the fluid

0
201V (pB) =0,

o7 (13)

v . . VP
—+(v-V)v+7+V¢=0,

” (14)

where we have assumed a polytropic relation of the form
P = wp", with w and n being coefficients to be chosen for
each physical situation. Equations (13) and (14) correspond to
the continuity and Euler equations, respectively. The benefit
in beginning with this hydrodynamic approach is that, by
applying the Madelung transformation [22], this set of equa-
tions is transformed into a Schrodinger-Newton system. This
correspondence is normally used to establish a hydrodynamic
analogy for quantum mechanics [21], however, in this work
we use this approach in the opposite direction. This transfor-
mation is achieved by writing ¢ = ,/pe’®/", where v work
as an analogous of the reduced Planck constant, 7, p = |1,D|2
and ¥ = V®. In addition, plugging these redefinitions into in
Egs. (13) and (14), it follows that
2
ivaa—‘t” = —%vzw +[VVe+én + e+ Vo, (15)
where Vg = Vzﬁ/ (2,/p) is the Bohm quantum potential
and V), is given by

_Jwln(p) n=1
V”_{%p"l n>1vn<0 (16)

Through this set of transformations and approximations, we
obtain a set of equations that corresponds to a general form of
the Schrodinger-Newton system. Hence, it can be solved by
adapting the solvers initially developed for Eqgs. (1) and (2).

III. IMPLEMENTATION AND PERFORMANCE ANALYSIS

The original solvers developed for simulating the optical
systems were implemented with a modular structure, with an
hardware-neutral paradigm, and were based on GPGPU super-
computing. These solvers are integrated into a more general
one, HiLight, which offers the possibility of simulating differ-
ent light-matter systems with different interactions and levels
of approximation. Analyzing, in particular, the Schrodinger-
Newton solver, this was implemented using standard beam
propagation methods, where the Schrodinger equation (1) is
solved with the Symmetric Split-Step Fourier Method since
it is the most efficient one [23] and takes advantage of the
well-optimized Fourier methods implemented for GPGPU. To
maintain consistency and efficiency, Eq. (2) is also solved
with spectral methods. All the solvers were written in C++
and the GPGPU implementation with an hardware-neutral
approach was done through the ArrayFire library [24]. The
implementation was initially tested, and the works [9,16]
already published based on these solvers assures its phys-
ical correctness. For further details on the implementation,
features of the method and applications see [25-30]. After
performing the required adaptations to solve equation (15),
we tested the solver performance when running with different
hardware platforms, GPUs and CPUs, as well as with different
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FIG. 1. Speedup comparison for different hardware and software
configurations with an high-end CPU in single-thread. The insets
are a zoom of the NVIDIA 840M (laptop GPGPU) results. The
simulations where performed in a 2D grid with 2V point along the
x axis and 2" points along the y axis.

Application Programming Interfaces (APIs) (integrated with
the Arrayfire), namely CUDA and OpenCL.

Figures 1 and 2 present the speedup results against a
high-end CPU running in single- and multithread mode, re-
spectively, in double precision (corresponding to a number
representation of 64 bits), and for large mesh points the GPG-
PUs outperform CPUs. In particular, with our most powerful
GPGPU (NVIDIA - TITAN V), the solver can be more than
600 or 80 times faster when compared with the CPU in
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FIG. 2. Speedup comparison for different hardware and software
configurations with an high-end CPU in Multithread. The insets
are a zoom of the NVIDIA 840M (laptop GPGPU) results. The
simulations where performed in a two-dimensional grid with 2V
point along the x axis and 2V points along the y axis.
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A

FIG. 3. Slices of a 2D simulation over the time evolution for an
initial Gaussian mass distribution in the original (A) and modified
(B) version of the Theory of General Relativity. In these simulations
the parameters My =25, v=1, w=1.02, n =1, and A = 1 were
used. The variables x and ¢ are in arbitrary units.

single- or multithread mode, respectively. Even with a
GPGPU from a personal laptop (NVIDIA 840M), the speedup
results can be greater than 6.5. In this configuration, and when
we compare with the CPU in multithread mode, the laptop is
slower, however, we have to remember that we are comparing
with a powerful CPU, and against the laptop CPU, the GPGPU
is much faster. Furthermore, the speedup results also show that
the optimal hardware-software configuration depends on the
mesh size of the problem.

Lastly, the results demonstrate the advantage of using a
GPGPU based implementation. With this adapted solver we
are now able to perform numerical simulations of cosmologi-
cal systems under different models of gravity with reasonable
simulation times.

IV. RESULTS

The modified solver was then used to evaluate the differ-
ences in the evolution of a two-dimensional (2D) distribution
of matter under different gravitational models. In every case,
the simulation was initiated by considering a Gaussian distri-
bution of the number density of massive particles, sufficiently
dense to constitute a fluid. Using the optical analog model
generated by the standard general relativity and a nonminimal
coupling model, as described by Eq. (15), we allowed the
number density distribution to evolve. The results are shown
in Figs. 3 and 4, and they correspond to slices of the 2D sim-
ulation at y = 0. Even though the two models start from the
same initial distribution, their distinct gravitational character
results in completely different processes of self-organization.
Accordingly to the results predicted by general relativity, the
initial distribution as a whole slowly collapses at the center of
the Gaussian. On the other hand, the results predicted for the
nonminimal coupling reveal two distinct dynamical processes:
part of the distribution collapses at the center of the initial
distribution, after which appears to stabilize. As a result of
this rapid accumulation of mass, are formed shock waves that
can be seen in Fig. 3. Meanwhile, another component of the
initial distribution appears to escape the gravitational well at
the center, as it overcomes the escape velocity.

These results seem to complement the analytic analysis of
Ref. [20], where it was shown that the choice /parametrization,
Eq. (11), leads to a stronger gravitational pull due to the
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—— General Relativity
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FIG. 4. Normalized initial and final profiles of Fig. 3.

fact that the nonminimal coupling is acting as an effective
pressure. Furthermore, analytical solutions to which compare
the numerical results are scarce in the literature [31] and
often depend on some approximations. Therefore a careful
approach is mandatory, entailing a level of detail which lays
outside the scope of the current paper and should be explored
in future studies.

Figure 4 shows the initial and final profiles of number
density distribution. Clearly, the two models of gravity pro-
duce distinct outcomes thus showing the usefulness of this
method, in comparison with analytical methods, as test-bed
to investigate alternative models of gravity.

V. CONCLUSIONS

This article describes how solvers initially developed to
simulate the propagation of light in nonlinear and nonlocal op-
tical media under the paraxial approximation can be adapted
to investigate the dynamics of matter generated by different
models of gravitational interaction.

In detail, we have demonstrated that for nonminimal cou-
pling theories of gravity under certain approximations the
evolution equations of matter coincide with those used to
model light propagation. As a result, the study of extensions
of the Theory of General Relativity and their implications in
processes of self-organization of matter can benefit from the
development of high performance tools in optics based on
GPGPU technologies. These technologies allow for acceler-
ation factors up to 600 in calculation times when compared
with the conventional approach based on CPUs, while per-
mitting to simulate problems with high spatial and temporal
resolution. Thus, these solvers provide an efficient test-bed
to evaluate nonminimal coupling models against observations
of the dynamics of astronomical objects. At the same time,
these solvers bridge nonlinear optics and gravity, suggesting
the possibility to emulate gravitational dynamics produced by
different models in optical experiments.
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