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Ultracold neutral plasma (UNP) experiments allow for careful control of plasma properties across Coulomb
coupling regimes. Here, we examine how UNPs can be used to study heterogeneous, nonequilibrium phenomena,
including nonlinear waves, transport, hydrodynamics, kinetics, stopping power, and instabilities. Through a
series of molecular dynamics simulations, we have explored UNPs formed with spatially modulated ionizing
radiation. We have developed a computational model for such sculpted UNPs that includes an ionic screened
Coulomb interaction with a spatiotemporal screening length, and Langevin-based spatial ion-electron and
ion-neutral collisions. We have also developed a hydrodynamics model and have extracted its field quantities
(density, flow velocity, and temperature) from the molecular dynamics simulation data, allowing us to investigate
kinetics by examining moment ratios and phase-space dynamics; we find that it is possible to create UNPs that
vary from nearly perfect fluids (Euler limit) to highly kinetic plasmas. We have examined plasmas in three
geometries: a solid rod, a hollow rod, and a gapped slab; we have studied basic properties of these plasmas,
including the spatial Coulomb coupling parameter. By varying the initial conditions, we find that we can design
experimental plasmas that would allow the exploration of a wide range of phenomena, including shock and blast
waves, stopping power, two-stream instabilities, and much more. Using an evaporative cooling geometry, our
results suggest that much larger Coulomb couplings can be achieved, possibly in excess of 10.
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I. INTRODUCTION

Knowledge of the physics of nonideal plasmas [1] is
important both at a fundamental level, to understand how
correlations and collisions impact plasma properties, and for
a wide range of applications, including astrophysics [1–3],
pulsed power [4–6], inertially confined plasmas [7], and laser-
excited solids [8–12], among other applications. Over the
past few decades, remarkable progress has been made in
the areas of convergent collision theories [13], equations of
state [14–16], and transport properties [17–19]. However, the
plasma properties that have been studied are primarily rele-
vant for macroscopically homogeneous and isotropic plasmas,
whereas real plasmas tend to have important density gradients
and transient behavior, as in the cases of implosion dynamics
in inertial-confinement fusion experiments [20] and of shocks
and instabilities [21,22], in general. It is therefore of interest
to examine the macroscopic, nonequilibrium properties of
nonideal plasmas across Coulomb coupling regimes.

Ideally, what is desired is an experimental platform that
offers precise control over the density, temperature, ionization
state, and initial density profile of a plasma. Ultracold neutral
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plasmas (UNPs) [23] offer a promising platform that meets
these requirements. UNPs are formed by photoionizing a cold
(typically millikelvin), neutral, trapped gas [24–27], allowing
the Coulomb coupling to be varied over the weakly to mod-
erately coupled regime. Through the choice of density, the
gas-cooling process, and the intensity of the photoionization
laser, the ionic density and temperature can be controlled; the
wavelength of the laser can be used to independently control
the electron temperature. Because of this level of control of
the ionization process, UNPs have a well-defined ionization
of unity, and doubly ionized UNPs can also be created [28].
Moreover, UNP mixtures can be created [29]. Importantly
for this paper, it is possible to modulate the ionization laser
spatially by using a mask to create a UNP with a desired
initial density distribution [30,31]; we will refer to such UNPs
as sculpted ultracold neutral plasmas (SUNPs). Thus, UNPs
offer a unique platform for creating well-controlled and well-
diagnosed plasmas.

Our goal is to examine how the use of masks in the pho-
toionization process can be exploited to explore a wide range
of physical phenomena. Specifically, we wish to examine how
sculpting the initial state can create well-diagnosed plasmas
that are sensitive to isolated properties of interest. We achieve
this through nonequilibrium molecular dynamics (NEMD)
simulations. We have developed an NEMD model that evolves
heterogeneous ions from an initial spatial configuration in
the presence of background electrons and neutrals, which are
implicitly included through a spatial Langevin model. While it
is established that the Yukawa model is fairly accurate for ho-
mogeneous UNPs, we introduce two modifications that allow
the use of a spatiotemporally varying screening length [32] in
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molecular dynamics (MD), and we use an electronic energy
equation that accounts for electronic temperature changes
arising from those variations. With this model of UNPs, we
explore the physics of hydrodynamics, including the perfect-
fluid limit, as well as kinetic processes associated with beams,
such as stopping power and two-stream instabilities; we ex-
plore these processes in the contexts of three different initial
density distributions.

This paper is organized as follows. In Sec. II, we introduce
our computational model for heterogeneous UNPs. Next, in
Sec. III, we discuss a coarse-graining procedure that allows
us to obtain hydrodynamic information from our MD simu-
lations, and we discuss metrics for quantifying closeness to
equilibrium. A simple hydrodynamic model is then introduced
in Sec. IV and is employed to examine whether choices for the
initial sculpted density correspond to the perfect-fluid limit
or to a highly kinetic plasma. In Sec. V, we discuss how
the simulations are initialized and show the results of the
simulations. Finally, in Sec. VI, we discuss our results and
offer concluding remarks.

II. PLASMA MODEL

The Yukawa model has been used very successfully to
model many properties of ultracold plasmas [33,34] with MD.
However, for heterogeneous, nonequilibrium plasmas, several
of the assumptions of the Yukawa model fail. In particular,
the screening length is not constant in either time or space,
and the electrons play an energetic role as a result [35–37]. In
addition, the ions exchange energy with the hotter electrons,
which surround the ions, and with the cooler residual neu-
trals, which the ions encounter as they move into nonionized
regions. Here, we develop a model that improves upon these
defects of the Yukawa model while still avoiding an explicit
evolution of the electrons (either through MD or through a
hybrid fluid-MD approach) [38], which we leave to future
work. The cgs system of units is used in everything that
follows. Also, quantities that are typically constant but taken
as time dependent in this paper will have a time argument; in
the next section, these quantities will be further generalized to
field quantities that depend on space and time.

We formulate the model in terms of a Hamiltonian H for all
of the species in the UNP, which is modeled as a three-species
plasma composed of ions (i), electrons (e), and neutrals (n).
The Hamiltonian H, neglecting neutral-neutral and electron-
neutral interactions, is the sum of the kinetic energies Kα ,
intraspecies potential energies Uαα , and interspecies potential
energies Uαβ over α and β species:

H = Ki + Ke + Uee + Uii + Uie + Uin. (1)

We wish to avoid the computational expense of directly
simulating the electrons and neutrals, so we begin with the
equations of motion for the ions, which are

ṙ j = p j

m j
, (2)

ṗ j = −∂Uii

∂r j
− ∂Uie

∂r j
− ∂Uin

∂r j
= Fii + Fie + Fin. (3)

In the right-hand side (RHS) of Eq. (3), the first term Fii

describes the ion-ion interactions; the corresponding Coulomb

potential energy can be written as

Uii =
Ni∑

j< j′

q jq j′

r j j′
, (4)

where Ni is the number of ions, r j j′ = |r j − r j′ |, and qi is the
total electric charge of an ion. In the RHS of Eq. (3), the
second term Fie corresponds to the response of background
electrons to the ion dynamics.

Next, we assume the electronic response arises from two
contributions, slow and fast, so that the resulting force Fie can
be split as

Fie = Fslow
ie + Ffast

ie , (5)

where Fslow
ie contains forces that evolve on the slower ionic

time scale to which the electrons can quickly react as a result
of their much smaller mass. With this approximation, this
instantaneous response can be included as screening of the
ion-ion interactions; the electrons are considered to evolve
implicitly with the ions [38]. With the addition of linear
screening of ion-ion interactions [39,40], a modified Coulomb
force fii can be written as

fii = Fii + Fslow
ie , (6)

where Fii is the Coulomb force without screening. The
screened Coulomb (Yukawa) potential energy corresponding
to fii can then be given as

U Ykw
ii (t ) =

Ni∑
j< j′

q jq j′

r j j′
e−r j j′ /λDe(t ). (7)

It is important to note that the U Ykw
ii (t ) continue to change

during the evolution of the plasma because the electron Debye
shielding length λDe(t ) depends on time through the electron
temperature Te(t ) and the electron number density ne(t ):

λDe(t ) =
√

kBTe(t )/4πne(t )e2, (8)

where kB is the Boltzmann constant, and the electron number
density ne(t ) is the ratio of the total number of electrons Ne

(fixed) to the occupied volume �e(t ) at a given time t , with

ne(t ) = Ne/�e(t ). (9)

The value of �e(t ) depends on the geometry of the system.
The evolution of Te(t ) is based on total-energy conservation,
which is discussed below in this section.

The fast response of electrons is incorporated through a
Langevin force [38]:

Ffast
ie = −γie(t )miṙ j + ξ (t ), (10)

where γie is the ion-electron collision frequency given by

γie(t ) = 1.6×10−9ne(t )
mp

mi

ln
(√

1 + 
2
ie

)
T 3/2

e (t )
, (11)

where mp is the proton mass. Here, we have replaced the
standard Coulomb logarithm ln 
ie [41] with a modified
form ln (

√
1 + 
2

ie ) in order to guarantee that our Coulomb
logarithm ln (

√
1 + 
2

ie ) � 0. We estimate 
ie using a standard

023207-2



SCULPTED ULTRACOLD NEUTRAL PLASMAS PHYSICAL REVIEW E 101, 023207 (2020)

Coulomb logarithm for electron-ion collisions [41]:

ln 
ie = 23 − ln
[√

ne(t )T −3/2
e (t )

]
, (12)

where Eq. (12) is solved for 
ie, which is the ratio of
impact parameters in the collision; this 
ie value is then
used in Eq. (11). In the RHS of Eq. (10), the first term
is the dissipative frictional force, which causes the ions to
slow, and the second term is the fluctuating force, which
has zero mean (〈ξ (t )〉 = 0). Both of these terms are con-
nected through the fluctuation-dissipation theorem [42], re-
sulting in the variance 〈ξ j (t )·ξl (t ′)〉 = σ 2δ jlδ(t − t ′); here,
σ 2 = 2kBTe(t )γie(t )mi ensures that the system converges to-
ward the background electron temperature Te(t ); δ jl denotes
a Kronecker delta; δ(t − t ′) denotes a Dirac delta, i.e., with
no time correlation; and 〈:〉 indicates the average over noise
realizations. (Note that the units are σ 2 ∼ g2 cm2/s3.) Thus,
in this system, the background electrons function as a heat
bath for the ions.

The last term Fin in Eq. (3) incorporates the interactions be-
tween the ions and neutral atoms. In ion-neutral interactions,
we treat an ion as a point charge that induces a dipole moment
in a neutral atom, which causes this neutral atom to behave
like an electric dipole [43–45]. Thus, ion-neutral interactions
are a consequence of ion-dipole attraction [46,47]. We incor-
porate this term as a Langevin force, similar to Eq. (10):

Fin = −γin(r)miṙ j + ζ (t ). (13)

Here, the spatial ion-neutral collision frequency γin(r) is
given as

γin(r) = 2πqi

√
α

p
n (mi + mn)

mimn
nn(r), (14)

where mn is the mass of a neutral atom; nn(r) is the neutral
number density, which varies spatially, depending on the
configuration of the sculpted plasma; α

p
n is the polarizability

of a neutral atom; and ζ (t ) is the fluctuating force due to
the neutral background. Again, both of the terms on the RHS
in Eq. (13) satisfy the fluctuation-dissipation theorem, which
ensures that the system converges toward the background
neutral temperature Tn = Ti0, where Ti0 is the initial ion
temperature, and we assume that Tn remains constant during
the simulation; the model could be improved to include the
neutral temperature and momentum evolution as well.

Using Eqs. (2), (6), (10), and (13), we can write Eq. (3) as

mir̈ j =
N∑

j′ = 1
( j′ �= j)

fii−γie(t )miṙ j + ξ j (t )−γin(r)miṙ j + ζ j (t ).

(15)

This is our equation of motion for the ions. In contrast to the
usual Yukawa model, this model does not conserve energy as a
result of the Langevin couplings to the electrons and neutrals,
which we numerically find to be quite small, and as a result of
the time dependence of the screening parameters.

We now examine our model’s failure to conserve energy
and seek a modification that will restore energy conservation.
First, consider the total energy of the ions that yields the ionic
forces in Eq. (15), that is, the sum of the ion kinetic, ion-

ion potential, ion-neutral potential, and ion-electron potential
energies. This total energy can be written as

Ei(t ) = Ki(t ) + Uii(t ) + Uie(t ) + Uin(t ), (16)

where Uii(t ) is time dependent; thus, Ei(t ) is not conserved
during the evolution of the nonequilibrium plasma. One way
to conserve energy more appropriately is to modify the present
model for an equilibrium plasma such that Uii(t ) and λDe are
no longer time dependent, i.e., such that the background elec-
tron temperature and density are fixed. However, in nonequi-
librium plasmas such as SUNPs, the background temperature
and density vary during the evolution of the plasma, resulting
in a mutual exchange of energy between ions and electrons
that, in turn, affects the ion dynamics.

The total energy Etot(t ) at time t corresponding to our
system in Eq. (1) is always conserved in reality and can be
written as

Etot(t ) = Ki(t ) + Ke(t ) + Uee(t ) + Uii(t ) + Uie(t ) + Uin(t ).

(17)

Subtracting Eq. (16) from Eq. (17) at any time t and at t = 0,
we obtain the following equations:

Etot(t ) − Ei(t ) = Ke(t ) + Uee(t ), (18)

Etot(0) − Ei(0) = Ke(0) + Uee(0). (19)

Now, subtracting Eq. (19) from Eq. (18), we obtain

Etot(t ) − Etot(0) − Ei(t ) + Ei(0)

= Ke(t ) + Uee(t ) − Ke(0) − Uee(0). (20)

Noting that Etot(t ) = Etot(0) because total energy is always
conserved allows us to rewrite Eq. (20) as

Ei(t ) − Ei(0) = −Ke(t ) + Ke(0) − Uee(t ) + Uee(0), (21)

from which we can find the temperature

Te(t ) = 2

3NekB
[Uee(0) + Ke(0)

−Uee(t ) − Ei(t ) + Ei(0)]. (22)

We employ a simple interpolation for the electron potential
energy that spans the weakly to strongly coupled regimes; this
interpolation is of the form

Uee(t ) = −Nee2

2

1

λeff(t )
, (23)

where λeff(t ) =
√
λ2

De(t ) + [5a(t )/9]2 can be interpreted as an
effective screening length [17] for the electrons, and a(t ) =
[4πn(t )/3]−1/3 is the usual ion-sphere radius (which varies in
time because of density heterogeneities). Note that the weakly
coupled energy is recovered when a � λDe, so that

U w
ee (t ) ≈ −Nee2

2

1

λDe(t )
, (24)

whereas, when a 	 λDe, we recover the strongly coupled
energy [48]

U s
ee(t ) ≈ − 9

10

Nee2

a(t )
. (25)
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Thus, Eq. (15) is coupled to Eq. (22), which is a nonlinear
equation that we can solve with an iterative solver. All but
one of the remaining terms in Eq. (22), namely, Uee(0),
Ke(0), and Ei(0), are given at t = 0 and will remain constant
during simulation, while the term Ei(t ) is updated during the
simulation using Eq. (16). At each time step, the value of Te(t )
is given and is considered an initial guess for the RHS of
Eqs. (22) and (23); an updated value Te(t + �t ) at the next
time step t + �t is then calculated as

Te(t + �t ) = 2

3NekB
[Uee(0) + Ke(0)

−Uee(t ) − Ei(t ) + Ei(0)]. (26)

The final electron temperature T f
e is obtained using the fol-

lowing process:

T f
e (t + �t ) = Te(t + �t )(1 − τ0) + Te(t )τ0. (27)

The convergence of this scheme depends on the choice of the
relaxation parameter τ0; the optimal value of τ0 is determined
empirically [49]. In this way, energy conservation is now
included in our model.

III. FIELD QUANTITIES FROM MD

As discussed above, SUNPs offer opportunities to study
hydrodynamic phenomena, such as the perfect-fluid limit,
closures, and kinetic phenomena. In this section, we formulate
the microscopic variables of MD in terms of kinetic and
hydrodynamic macroscopic variables that depend on both
space and time to allow a nonequilibrium, heterogeneous
plasma description. In addition, we develop local versions of
the Coulomb coupling parameter and metrics for assessing
deviations from equilibrium. The computational scheme for
including spatial dependencies is discussed in Sec. III.

The phase-space evolution of the ions is described by the
Klimontovich distribution function

N (r, v, t ) =
Ni∑

j=1

δ[r − r j (t )]δ[v − v j (t )], (28)

from which we can compute various moments

Mα (r, t ) =
∫

dv vαN (r, v, t ), (29)

where α is the order of the moment. The three basic hydrody-
namic moments can be computed with α = 0, 1, 2. First, the
ion number density ni(r, t ) (zeroth-order moment, α = 0) is

ni(r, t ) =
Ni∑

j=1

δ[r − r j (t )]. (30)

Next, the bulk flow ui(r, t ) (first-order moment, α = 1) is
given by

ui(r, t )ni(r, t ) =
Ni∑

j=1

v j (t )δ[r − r j (t )]. (31)

FIG. 1. Coarse-graining procedure. We obtained field quantities
from the MD particle positions through coarse-graining physical
quantities on a mesh; an example of a two-dimensional Cartesian
mesh is shown in the left panel (a). The figure on the right, panel (b),
shows the coarse grained density associated with the MD data shown
on the left, where the color scale indicates higher (H) and lower (L)
densities [58]. Meshes in other dimensions and coordinate systems
were also used.

Lastly, the ion temperature Ti(r, t ) (second-order moment,
α = 2) is given by

3kBTi(r, t )

mi
ni(r, t ) =

Ni∑
j=1

[v j (t ) − ui(r, t )]2δ[r − r j (t )].

(32)

These hydrodynamic moments, obtained directly from MD,
are exact because they are definitions that directly employ the
particle trajectory information. This is in contrast to theoreti-
cal approaches in which the coupled equations of motion for
the moments require an approximate closure; thus, deviations
from theoretical predictions that are seen in the MD can
suggest areas where SUNPs can potentially reveal information
about kinetic theory closures.

The above expressions for the moments can be formally
defined, but they do not correspond to the smooth, ensemble-
averaged quantities employed in kinetic theory and hydro-
dynamics. Thus, based on the symmetry of a system, we
locally coarse-grained the different field quantities in cylin-
drical or Cartesian coordinates. A schematic picture of a
coarse-grained mesh in Cartesian coordinates is illustrated in
Fig. 1. The coarse-graining procedure involves decomposing
space into a grid, which is typically chosen to be consistent
with the symmetries of the plasmas (and therefore a specific
coordinate system). The grid spacing is chosen to balance the
ability to resolve important gradients with the ability to yield
a reasonable average.

We can also define other field variables for SUNPs. Of
interest for nonideal plasmas is the unscreened Coulomb
coupling parameter �i(r, t ), which is readily generalized to
have spatiotemporal variations:

�i(r, t ) = q2
i

aW S (t )

1

kBTi(r, t )
=

(
4

3
πni(r, t )

)1/3 q2
i

kBTi(r, t )
.

(33)

This function reveals locations in the plasma with stronger or
weaker coupling and can suggest phase-space manipulations
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FIG. 2. Formation of a SUNP. We illustrate the creation of a
sculpted plasma using a mask. The laser radiation is incident from
the left and partially blocked by the mask, which is shown in black. A
portion of the radiation reaches the cold gas, which is near the green
plane, and that portion is photoionized (blue portion). Solid-rod,
hollow-rod, and gapped-slab plasmas are shown in (a), (b), and (c),
respectively.

(e.g., evaporation) that could allow us to design plasmas with
custom coupling profiles.

In addition, we wish to know which regions of the plasma
are in local equilibrium (local Maxwellian) or are kinetic (de-
viating from a local Maxwellian) and whether we can control
how “kinetic” the system is. Field variables that serve as
relevant metrics are the dimensionless moment ratios β1(r, t )
and β2(r, t ) [9,50] of the distribution function, which we
define as

β1(r, t ) =
〈∑Ni

j=1 [v j (t ) − ui(r, t )]4δ[r − r j (t )]
〉

〈∑Ni
j=1 [v j (t ) − ui(r, t )]2δ[r − r j (t )]

〉2 , (34)

β2(r, t ) = 3

5

〈∑Ni
j=1 [v j (t ) − ui(r, t )]6δ[r − r j (t )]

〉
〈∑Ni

j=1 [v j (t ) − ui(r, t )]2δ[r − r j (t )]
〉3 . (35)

Here, 〈X 〉 represents a quantity that has been coarse-grained
using the procedure shown in Fig. 1. These moment ratios
have been designed to be unity when the distribution function
is consistent with a drifting Maxwell-Boltzmann distribution;
that is, the plasma is near local thermodynamic equilibrium.

Note that β1(r, t ) and β2(r, t ) employ different moments; β2

has the highest-order moment and is thus more sensitive to
deviations in the tail of the distribution.

IV. HYDRODYNAMICS MODEL IN THE
PERFECT-FLUID LIMIT

The degree of control over the Coulomb coupling param-
eter allowed by UNP experiments translates into control over
expansion parameters in kinetic theory, such as the Knudsen
number [51]. Such control suggests that UNPs are an ideal
platform for exploring hydrodynamic closures. In particular,
there has recently been interest in “perfect fluids,” mainly in
the contexts of quark-gluon plasmas [52] and dense plasmas
[53]; in such fluids, the mean free path is near its minimum, a
limit in which there is essentially no transport, and the Euler
form of hydrodynamics is nearly exact. UNPs appear to be
the most natural platform for exploring the physics of perfect
fluids both because the experiments are well characterized
(e.g., with well-known density, temperature, and ionization
state) and because the transport coefficients are very small or
near their minima [17]. Here, we review a standard approach
to hydrodynamics in the perfect-fluid limit, which yields a
quantity that can be used as a metric for a perfect fluid (that
is, a fluid with the smallest possible viscosity).

We begin with the Euler hydrodynamic equations for the
nonviscous flow of a gas:

∂ρi

∂t
+ ∇·(ρiui ) = 0, (36)(

∂

∂t
+ ui·∇

)
ui + 1

ρi
∇·Pi = Fm

mi
, (37)(

∂

∂t
+ ui·∇

)
Ti + 2

3
(∇·ui )Ti = 0, (38)

where ρi = mini, and Fm is the mean-field force. This par-
ticular form of the hydrodynamics equations arises from the
assumption that the phase-space distribution is very close to
a Maxwell-Boltzmann distribution FMB(r, v, t ), as a result of
the high collisionality, and yields a simple scalar pressure and
no heat flux (Qi = 0).

Equations (36) and (38) may be rewritten as(
∂

∂t
+ ui·∇

)
ρi = −ρi∇·ui, (39)

−3

2

ρi

Ti

(
∂

∂t
+ ui·∇

)
Ti = ρi∇·ui. (40)

Adding these two equations together, which cancels the terms
on the RHSs, we obtain(

∂

∂t
+ ui·∇

)
ρi − 3

2

ρi

Ti

(
∂

∂t
+ ui·∇

)
Ti = 0, (41)

which can be rewritten as(
∂

∂t
+ ui·∇

)(
ρiT

−3/2
i

) = 0. (42)

This well-known result predicts that the quantity ρi/T 3/2
i is

constant along streamlines, an evolution known as an adia-
batic transformation for a perfect fluid.
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FIG. 3. Evolution of field quantities of a reference plasma. The coarse-grained (a) ion temperature Ti(r, t ) ≈ 9 K and (b) ion coupling
parameter �i(r, t ) ≈ 5 are shown. Note that we can observe local fluctuations in these field quantities even in the homogeneous, periodic case.

Consider the case in which the field variables are linearized
around their uniform values. Equation (42) then becomes

3

2
ρi

∂Ti

∂t
− Ti

∂ρi

∂t
= 0. (43)

Note that in this limit the spatial gradient vanishes, and the
equation is readily integrated; we thus obtain

ni(t ) = ni0

(
Ti(t )

Ti0

)3/2

. (44)

This relation implies that, under the assumptions made,
ni(t )Ti(t )−3/2 is constant everywhere. Thus, when
ni(t )Ti(t )−3/2 = C, the UNP dynamics should be those of
a perfect fluid; this condition is readily observed in the MD
simulations, as discussed below.

FIG. 4. Time evolution of the ion coupling parameter for a
reference plasma. The unscreened ion coupling parameter �i(t ) ≈ 5
(–), the effective ion coupling parameter �eff

i (t ) = �i exp(−κ ) ≈ 1.5
(–), and the real ion coupling parameter �real

i (t ) = PE/KE (-·-) are
shown.

V. SIMULATION METHODS AND RESULTS

We now turn to the NEMD computational procedure for
studying SUNPs and then present the results of our studies.
Experimentally, the ionizing beam is incident on a mask,
with spatial variations in transmissibility, and the transmitted
radiation is allowed to ionize the ultracold atoms [30,31]. In
Figs. 2(a), 2(b), and 2(c), we illustrate this strategy for the
three examples of a solid rod, a hollow rod, and a gapped slab,
respectively.

All simulations were performed using the LAMMPS package
[54] with a simulation time step �t = 0.01ωi

−1 s in the
microcanonical ensemble. In all cases, the SUNP was taken to
be singly ionized strontium (Sr+), with mi = 14.55×10−23 g,
an initial temperature of Ti0 = 1.0 mK, and a polarizability
αp = 25×10−24 cm3 [55]. The electron density ne(t ) and
temperature Te(t ) were updated at each time step according
to Eqs. (9) and (22), respectively; those updates indirectly
impact all other parts of the model, including the Langevin
parameters and the electron screening length λDe(t ), in accor-
dance with Eq. (8). The relaxation parameter in (27) was fixed
at τ0 = 0.5 in all simulations. Other parameters were chosen
according to the specific geometry of the initial configuration.
The different field quantities were calculated after disorder-
induced heating was allowed to occur.

A. Homogeneous, nonsculpted UNP: Reference case

We first discuss a reference case, which is the often-studied
homogeneous plasma. Understanding the homogeneous case
allows us to determine the impacts of heterogeneities. For
example, it is of interest to know whether Coulomb coupling
can be controlled (e.g., increased) in SUNPs relative to this
reference case. Thus, we begin by considering a periodic, non-
sculpted UNP system with no neutral atoms, i.e., γin = 0. The
Sr+ was taken to have a density of ni0 = 3.197×1012 cm−3
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FIG. 5. Evolution of a solid-rod SUNP and several radial field quantities. In (a), the time evolution of an initially cylindrical plasma is
shown in physical space; the colorbar indicates the radial velocity. The line plots in (b), (c), and (d) show the corresponding radial field
quantities. In (b), the ion density ni(r, t ) (–) is shown. In (c), the ion moment ratios β1(r, t ) (...) and β2(r, t ) (-·-) are shown. In (d), the ion
temperature Ti(r, t ) (- -) and the ion coupling parameter �i(r, t ) (–) are shown. Note that both of the β fields are nearly unity in the center of the
plasma, where the coupling is higher, indicating that near-equilibrium conditions are obtained in the central region; in contrast, a more kinetic
plasma (β 	 1) is seen at the periphery.

within a cubical box with sides of length 2.3×10−3 cm. We
held the electron temperature constant at Te0 = 100 K and the
electron density constant at ne0(= ni0) for these simulations.
All other parameters were the same as discussed above.

The contour plots in Fig. 3(a) confirm that temperatures
Ti(r, t ) throughout the plasma maintained a value of ≈9 K
and changed little over time. Similarly, Fig. 3(b) shows that
the value of �i(r, t ) stayed constant at ≈5, as expected. Also,
a comparison between Figs. 3(b) and 4 (solid line) makes it
clear where �i(t ) ≈ 5 as well. It is pertinent to mention that
the effective/screened ion coupling parameter �eff

i (t ) for a
Yukawa potential is defined as �eff

i (t ) = �i(t ) exp(−κ ), given
�i(t ) and the screening parameter κ = aaw/λDe. As shown in
Fig. 4 (dotted line), the value of �eff

i (t ) for κ = 1.091 is ≈1.5
after disorder-induced heating, as predicted [56,57].

From these simulations of a nonsculpted UNP, we thus
obtain reference values for plasma parameters, holding
(Ti(r, t ), �i(r, t )) ≈ (9 K, 5), and we will compare our results
for SUNPs to these reference values.

B. Solid-rod SUNP: Expansion phenomenon

Perhaps the simplest sculpted plasma is one in which the
laser is masked to form a sharp outer edge around an other-
wise quasiuniform cross section (see Supplemental Material
[58]). A plasma formed from such an arrangement, shown
in Fig. 2(a), has the shape of a solid rod. We explored this
geometry with a plasma of radius r0 = 1×10−3 cm (t = 0)
centered on the z axis and bounded by the surfaces z =
−1×10−3 and 1×10−3 cm. An open boundary in the x-y
plane and a periodic boundary condition in the z direction
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FIG. 6. The cross section of a cylindrical volume of radius 1.1r0

over which the different transport quantities are calculated for a
solid-rod SUNP (shown below in Fig. 7). The left snapshot shows
the plasma at the initial time t = 0, and the right snapshot shows the
plasma at t = 118.87 ns, when the plasma starts to expand in hy-
drodynamic fashion. The boundary of the volume element is shown
with a red circle. The colorbar indicates the radial velocity inside
the volume-element boundary, and the plasma particles outside the
boundary are shown with black dots (without any corresponding
scale).

were used. The initial electron temperature was Te0 = 100 K,
and the initial electron density ne0 and ion density ni0 were
ne0 = ni0 = 3.197×1012 cm−3. During this radial expansion,
the Sr+ ions collide with the surrounding static, neutral Sr
atoms, with spatial variation

nn(r) = nn0

(
1 − 1

1 + exp[c0(r − redge)]

)
, (45)

where nn0 is the neutral density at t = 0, c0 = 1×104 cm−1

is a parameter to control the width of the transition from
the ionized region to the nonionized region, and nn(r) causes
the change in the ion-neutral collision frequency γin(r) [see
Eq. (14)].

A summary of the dynamics observed in our simulation is
shown in Fig. 5. Our main interests are to determine whether
various hydrodynamic regions form, as defined through our

kinetic parameters, and whether the local coupling increases
because of the local loss of fast particles. From the top row
to the bottom row, we show the expansion of the plasma in
physical space with color coding by plasma particle velocities
[Fig. 5(a)], the radial density [Fig. 5(b)], the moment ratios
β1(r, t ) and β2(r, t ) [Fig. 5(c)], and the field quantities Ti(r, t )
and �i(r, t ) [Fig. 5(d)]. The moment ratios reveal that the
outer portions of these plasmas are quite kinetic, with very
hydrodynamic regions in the interior. That values of the radial
velocity are negative near the center and higher near the
edges suggests that fast particles are moving through the
plasma, eventually leaving behind lower-velocity particles.
(This phenomenon is more dramatic in the hollow-rod geom-
etry discussed in the next subsection.) Overall, the edges are
hotter, and the central region does, in fact, cool; the interior
temperature is substantially lower than the temperature Ti ≈
9 K observed for the nonsculpted plasma case. Also, both of
the β fields are nearly unity in this central region. Thus, the
central region of a solid-rod-shaped SUNP is relatively cooler,
which increases the coupling and makes the plasma more
collisional; the plasma in this region also behaves as a perfect
fluid, as it satisfies the adiabatic condition that resulted from
the Euler hydrodynamic model. Our model predicts couplings
as high as �i(r, t ) ≈ 10, which is comparable to the largest
coupling achieved in any published experiment to date [59].

We performed a test to establish the late-time (well after
disorder-induced heating has occurred) thermodynamic state
of the inner region (defined in terms of an integral over the
inner shells); we found that this region exhibits adiabatic
cooling according to ni(t )Ti(t )−3/2 = ni0T −3/2

i0 . This suggests
that this inner region exhibits Euler-like hydrodynamics, con-
sistent with the high values of Coulomb coupling that the
model predicts.

Other “region-averaged” quantities were computed, ac-
cording to the scheme shown in Fig. 6; Fig. 7 shows various
quantities that depend only on time. Figures 7(a) and 7(b)
show the temporal decay of ion density and ion temperature,
respectively. The temporal evolutions of the moment ratios
β1 and β2 are shown in Fig. 7(c); the values of both of these
moments remain at ≈1. In Figs. 7(a) and 7(b), solid lines are

FIG. 7. The evolution of several spatially averaged quantities of a solid-rod SUNP (see Fig. 6) of radius 1.1r0. The temporal evolution of
(a) ion density, (b) ion temperature, (c) moment ratios, and (d) the quantity in (6) is shown. The panels (c) and (d) indicate that the plasma is
largely hydrodynamic at later times, which is indicated by a star in all of the plots (t > 118.87 ns). This is confirmed in panels (a) and (b) by
fitting (dashed lines) the late time behavior to the hydrodynamic prediction, and the fit is excellent. Taken together, these results indicate how
and when the plasma approaches a well-defined hydrodynamic state, following a kinetic phase during and after DIH.
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FIG. 8. Total-energy conservation Etot(t ), given by Eq. (17), for
a solid-rod SUNP. All of the line plots are given except those for the
terms Uie(t ) and Uin(t ).

used to indicate the MD results, and the dotted lines show the
following relations:

ni(t ) = ni0

(
t

t0

)−9/4

, (46)

Ti(t ) = Ti0

(
t

t0

)−3/2

, (47)

where t � t0, and ni0 and Ti0 are the constant initial ion density
and ion temperature, respectively, at time t0 = 118.87 ns.
Finally, Eq. (46) can be combined with Eq. (47) to obtain the
following relation between ion density and ion temperature:

ni(t ) = ni0

(
Ti(t )

Ti0

)3/2

. (48)

This relation implies that ni(t )Ti(t )−3/2 = ni0T −3/2
i0 , i.e., that

this quantity should remain constant. Figure 7(d) shows the
temporal evolution of ni(t )T −3/2

i (t ) (shown as a cyan line),
which eventually maintains a constant value of ≈5.4×1010

over time (the dashed portion). Here, the time evolution of
this relation exhibits a spiky behavior, which can be avoided
by taking the ensemble average of 〈ni(t )T −3/2

i (t )〉 over several
repeated experiments and simulations.

For each of the sculpted cases, we examined the overall
energy balance based on the model. For this geometry, the
energy budgets are shown in Fig. 8. Our overall energy is

conserved (by construction), with the largest changes occur-
ring in the kinetic energy of the ions. The sources of this
energy are primarily electron cooling and a decrease in the
ion potential energy. This is somewhat analogous to disorder-
induced heating, although here much of the ionic kinetic
energy is in bulk hydrodynamic flow.

C. Hollow-rod SUNP: Implosion and expansion processes

Next, we consider a simple hollow-rod SUNP formed
by a mask as shown in Fig. 2(b) [58]. The time evolution
of such a hollow-rod SUNP is shown in Fig. 9 at four
time points. The first panel of Fig. 9 shows the plasma at
t = 0, with initial electron and ion densities of ne0 = ni0 =
6.261×1011 cm−3 within a cylindrical shell of inner radius
rinner = 1.5×10−3 cm, outer radius router = 2.5×10−3 cm, and
length along the z direction of 2×10−3 cm. The neutral density
nn(r) is given by

nn(r) = nno

[
1 − 1

1 + exp[co(r − router )]

+ 1

1 + exp[co(r − rinner)]

]
, (49)

where co = 1×105 cm−1. All other parameters are the same as
for the solid-rod SUNP discussed above. An open boundary
condition in the x-y plane and a periodic boundary condition
in the z direction were used. Color intensity corresponds to
the radial velocity. Unbalanced electric fields accelerate ions
on the inner and outer boundaries, as can be seen in the
second panel. The implosion dynamics in the inner region
generates a strong energy source, in the form of high density
and temperature, along the axis of the hollow-rod plasma. In
the final panel of Fig. 9, we see that this energy source, in
turn, causes an explosion, which results in the formation of a
cylindrical blast wave moving outward through the expanding
plasma.

Details of the expansion dynamics for the hollow plasma,
along with other field quantities, are shown for later times in
Fig. 10, in order to determine the nature of the blast wave
[58]. Figure 10(a) shows the late-time density distribution,
and Fig. 10(b) shows the cross section of the density. In the
inner region, the plasma is very uniform in all of its quantities,
including the kinetic moments, shown in Fig. 10(c), and
the temperature and coupling, shown in Fig. 10(d). Perhaps

FIG. 9. Evolution of a hollow-rod SUNP. Time moves forward from the left panel to the right panel. The radial velocity is indicated by the
colorbar; note the explosion in the outer region and the implosion that fills the hollow region. At late times, the imploding particles cross the
central axis and create an outgoing wave, as can be seen in the rightmost panel.
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FIG. 10. Late-time evolution of a hollow-rod SUNP. MD particles, representing the density ni(r, t ), are shown in row (a) as points colored
to indicate their radial velocities. Note that an outgoing wave is seen, created by fast particles that have passed through the center. In row (b),
we analyze the conditions of this shocklike structure in more detail with a radial density. Interestingly, these results reveal that this nonlinear
wave does not exhibit the usual form of a shock, but rather a type of “inverted shock”: the temperature Ti(r, t ) (−−) is larger in front of
the wave and the coupling �i(r, t ) (—) is higher behind the wave. The moment ratios β1(r, t ) (· · ·) and β2(r, t ) (-·-) are unity behind the
moving wave, but a very kinetic plasma is seen in front of the wave. However, the density shown in row (b) is shocklike, with a constant,
higher density behind the wave.

FIG. 11. Late time evolution of a hollow-rod SUNP in phase space. The phase-space evolution of a hollow-rod plasma is shown, revealing
the role of imploding particles (with negative radial velocity) as they pass through the origin and create an outgoing wave. The imploding
particles, which have been accelerated as they approach the origin, are a fast beam that overtakes the remaining plasma. The phase-space view
of this process reveals why the outgoing wave differs from a typical shock wave.
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FIG. 12. Total-energy conservation Etot(t ), given by Eq. (17), for
a hollow-rod SUNP. All of the line plots are given except those for
the terms Uie(t ) and Uin(t ).

surprisingly, this implosion dynamics leads to a very uniform
and quiescent strongly coupled plasma; further engineering
of the “inverse problem” of producing desired conditions at
late times could yield improvements. In contrast with the inner
region of the plasma, the outer region is characterized by an
outward blast wave moving through a hotter, locally kinetic
outer layer. Such wave properties have been observed and
studied previously [60–66].

The late time expansion of the plasma in phase space is
shown in Fig. 11. Note that the ions that imploded on the cen-
tral axis are moving outward at much higher velocities than
are those from the outer boundary, as can be seen by the high-
velocity branch of the plot. Thus, the acceleration inward ex-
perienced by particles initially in the inner region is larger than
the acceleration outward experienced by particles initially on
the outer surface of the plasma, and the fast particles pass
through the plasma and overtake the rest of the plasma; such a
configuration could be used to study, for example, instabilities
such as the Kelvin-Helmholtz instability. However, we also
see in phase space that there is a region of plasma near r = 0
where the velocity is near zero; this region is the near-uniform,
quiescent plasma discussed above. This dynamics can also be
seen in Fig. 12, where the energy budgets are shown. A large
increase in the ion kinetic energy is shown, which initially
comes from the kinetic energy of the electrons, but later comes
from the potential energy of the ions. Compared with the other

geometries we explore in this paper, this hollow-rod plasma
configuration is notable for its creation of both fast ions and a
near-uniform, quiescent inner region.

D. Gapped-slab SUNP: Beam formation

Next, we consider a gapped-slab SUNP, defined as a
plasma slab with a portion removed in the center, as shown
in Fig. 13(a). The gap arises from a rectangular mask, shown
schematically in Fig. 2; thus, the gap initially contains only
neutrals. The goal of this geometry is to explore plasmas
with relative drift (as in strongly coupled beams [67,68]),
fluid instabilities (such as Kelvin-Helmholtz [69,70] and
Rayleigh-Taylor [71] instabilities), two-stream [72–74] and
bump-on-tail [75] instabilities, and stopping-power [76–78]
geometries. The geometry of the gapped-slab SUNP studied
here is shown in Fig. 13. The simulation box is defined as
follows: y and z range from −0.5×10−3 to 0.5×10−3 cm, and
x ranges from −2.25×10−3 to 2.25×10−3 cm with a gap from
−1.25×10−3 to 1.25×10−3 cm, so that the width of the gap is
gw = 2.5×10−3 cm. The initial electron temperature is Te0 =
100 K, and the initial electron/ion density is ne0(= ni0) =
1×1013 cm−3. Here, gw is greater than the electron screening
length λDe0 (= 2.182×10−5 cm) at t = 0 to ensure that two
independent beams occur initially; the presence of two beams
increases the possibility of observing well-controlled instabil-
ities within the gap. The color intensity corresponds to the vx.
The time evolution shown in the four panels of Fig. 13 reveals
that two well-defined beams are indeed formed and that they
collide to form interpenetrating beams.

The phase dynamics associated with the real-space dynam-
ics in Fig. 13 is shown in Fig. 14; the color intensity again
corresponds to the vx. Note that locally near x = 0 the phase-
space structure takes the standard two-stream instability form:
initially, the plasma exists as two cold beams because only the
faster particles with a given sign of vx meet in that region. As
collisions occur between the counterpropagating beams, the
phase space fills in. Recent MD work on such instabilities [79]
suggests that instabilities will not occur in the gapped-slab
SUNP studied here as a result of the strong electron screen-
ing, and further computational and experimental explorations
are needed to tune the plasma parameters to create specific
phenomena.

FIG. 13. Real-space evolution of a gapped-slab SUNP. The gapped-slab geometry, periodic in the y-z plane, is used to explore creating
beams for studies of kinetic and hydrodynamic instabilities (e.g., two-stream, bump-on-tail, and Kelvin-Helmholtz), stopping power, and
related phenomena. Particles are color coded by vx . Note that the particles accelerate into the gap, and a beam collision occurs in the center.
This geometry can be tuned by changing the spacing, density, and screening length to obtain further control.
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FIG. 14. Phase-space evolution of a gapped-slab SUNP. The equilibration of two colliding beams is shown in phase space, with time
moving forward from the left panel to the right panel. Such a geometry can be used to study momentum-transfer processes, and potentially, if
the collisionality were much lower, it could be used to study two-stream instabilities as well.

The energy balance of this plasma is shown in Fig. 15.
While the potential energy within the ions is roughly constant,
we see an initial increase in the ionic kinetic energy associated
with the formation of the beams near the ends of the slabs.
Note that, in contrast, the kinetic energy of the electrons
decreases, which suggests that they increasingly screen the
ions; however, all energy quantities become nearly constant
after the beams meet.

VI. CONCLUSIONS AND OUTLOOK

We have explored the utility of SUNPs for examining a
wide range of kinetic and hydrodynamic processes. We have
developed a Yukawa-like model for SUNPs that accounts for
plasma expansion and contraction, electron energetics, and a
heterogeneous collisional background of electrons and neu-
trals. With this model, we examined three SUNP geometries: a
solid rod, a hollow rod, and a gapped slab. Qualitatively, these
three initial conditions have yielded structures in phase space
that correspond to hydrodynamic expansion and implosion,
nonlinear blastlike waves, and multiple beams, respectively.

We also explored our ability to control the “kineticness”
of a plasma. By reducing the coupling parameter, a plasma
can become kinetic, and in principle this can be controlled
in a spatiotemporal fashion. We have used the local moment
ratios (34) and (35) to quantify how kinetic a plasma is.
Through computational studies such as those conducted in
this paper, different levels of kineticness can be designed into

FIG. 15. Energy budget for the gapped-slab geometry. The bud-
get is based on the terms in Eq. (17).

plasma dynamics; for example, plasmas that span a range of
kineticness spatially, specific kinetic phenomena (e.g., two-
stream instability), and the quality of various hydrodynamic
closures can be studied.

Our NEMD results have yielded several predictions. First,
by choosing an initial geometry that allows for the faster
tail particles to leave the main plasma in an evaporationlike
process, leaving lower-velocity particles behind, we are able
to increase the Coulomb coupling parameter to as large as 10.
Also, consistent with the small values of transport coefficients
in the strongly coupled regime [17], we find that SUNPs can
be created to be nearly perfect fluids with moments consistent
with drifting Maxwell-Boltzmann distributions and no heat
flow. Conversely, as shown in the gapped-slab example, highly
kinetic plasmas can also be formed. As shown in Fig. 10, new
types of wave phenomena can be explored as well.

The results of this paper open several potential lines of
inquiry, of which the most important is the further experimen-
tal exploration of SUNPs. Many other options remain to be
explored computationally, including mixture SUNPs (which
could be used to examine interdiffusive mixing processes),
magnetic fields (which could potentially be used to study
the physics of magnetized UNPs but also to exert additional
confinement), tailoring laser-intensity profiles to ionize a gas
at different times, using multiple lasers and masks to allow
for noncylindrical initial densities, and so on. For example, a
variable-density mask might be used to create a “plasma pis-
ton” that could produce a steady shock. Our SUNP model can
also be improved to include more detailed electronic physics,
including spatially varying screening and heat conduction;
such a model could be built, for example, from a hybrid
MD plus hydrodynamics model or an MD plus particle-in-cell
model for the ion-electron system. In fact, for those regimes
in which a SUNP is nearly a perfect fluid, a two-species
hydrodynamics model would provide an accurate modeling
tool. A combined experimental-computational model valida-
tion research effort is desirable.
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