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Electron-ion coupling factor for temperature relaxation in dense plasmas
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We compare two formulas obtained from first principles to calculate the electron-ion coupling factor for
temperature relaxation in dense plasmas. The quantum average-atom model is used to calculate this electron-ion
coupling factor. It is shown that if the two formulas agree at sufficiently high temperature so that the potential
energy is of limited importance, i.e., when the plasma is said to be kinetic, and are consistent with the
Landau-Spitzer formula, then they strongly differ in the warm-dense-matter regime. Only one of the two is shown
to be consistent with quantum molecular dynamics approach. We use this point to determine which formula is
valid to describe temperature relaxation between electrons and ions in warm and hot dense plasmas.
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I. INTRODUCTION

Electrons and ions subsystems can often be found in out-
of-equilibrium conditions in laboratory plasmas. This appears
when matter is perturbed by intense femtosecond laser pulse,
charged particles, or strong shock wave. In inertial confine-
ment fusion, this happens also when α particles exchange
their energy with the electrons and the ions of the surrounding
environment at different rates due to their mass dissimilarity.
This brings about a difference between electron and ion
temperatures that should be treated with care to understand
the ignition phenomenon of a thermonuclear plasma when the
two subsystems try to reach an equilibration temperature [1].
If each species thermalizes relatively rapidly and can be con-
sidered in equilibrium at temperatures Te and Ti, respectively,
then the equilibration of the ion and electron temperatures can
take time compared to their own internal equilibration time
since they usually interact weakly with each other.

Since the pioneer papers of Landau [2] and Spitzer [3] on
classical and weakly coupled plasmas, various attempts have
been made to calculate the electron-ion coupling factor or g
factor in dense plasmas. This quantity is the rate that governs
the relaxation of electron and ion temperatures in plasmas
while ensuring the conservation of energy between the elec-
tron and ion subsystems. Among these works, Daligault and
Dimonte [4] established a practical formula to calculate the
g factor including self-consistently the effects of screening
and electron degeneracy and assuming a weak electron-ion
interaction approximation. Recently, Daligault and Simoni [5]
proposed a new formula to compute this g factor in dense
plasmas that goes beyond the weak-interaction approxima-
tion. The two approaches have the property of being relatively
easy to calculate with a quantum average-atom model [6–14].
Indeed, Faussurier and Blancard [15] already used an average-
atom model to calculate the g factor with the expression
established in Ref. [4].
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In this work, we use a quantum average-atom model to
calculate the g-factor formulas proposed by Daligault and
Dimonte [4] and Daligault and Simoni [5]. The two ex-
pressions are compared to study the temperature relaxation
between electrons and ions. If they agree with each other in
kinetic plasmas and with the Laudau-Spitzer expression in
these conditions, then it is shown that they deeply disagree
in the warm-dense-matter regime. At electron temperature
of 1 eV in solid-density plasmas, they can differ by nearly
two orders of magnitude or even more. Only one of the two
is consistent with quantum molecular-dynamics simulations
[16], i.e., the most recent one. The paper is organized as
follows. In a first, theoretical, part, we present the average-
atom model used to compute the g factor in dense plasmas
and the two expressions of this g factor. In a second part, we
present various numerical calculations to select what is the
expression of the g factor that should be used safely to study
temperature relaxation between electrons and ions in warm
and hot dense plasmas. The last part is the conclusion.

II. THEORY

A. The average-atom model

The nonrelativistic average-atom model in a muffin-tin
approximation to describe the electronic structure in dense
plasmas is well known. We assume that the electrons are in
local thermodynamic equilibrium at Te and ions at Ti. In the
present approach, the electronic structure does not depend on
Ti; only the equation of state depends on Ti. Using finite-
temperature density-functional theory [17–19], the average-
atom equations read[

− h̄2

2me
∇2 − Z2e2

r
+ e2

∫
dr′ n(r′)

|r − r′| + Vxc(r)

]
ψa(r)

= εaψa(r), (1)

where h̄ is the reduced Planck constant, e the elementary
charge, me the electron rest mass, and Z the nuclear charge. εa

is the one-electron energy and a = (n, �) for bound states and
a = (ε, �) for continuum states. In this case, the one-electron
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energy is simply ε. Vxc(r) is the finite-temperature exchange-
correlation potential [20]. The wave function ψa(r) is equal to

ψa(r) = 1

r
Pa(r)Y ma

�a
(θ, φ)χσa , (2)

where Y m
� (θ, φ) is a spherical harmonic and χσ is a two-

component electron spinor. The bound and free radial wave
functions are normalized such that∫ +∞

0
drPn�(r)Pn′�(r) = δnn′ (3)

and ∫ +∞

0
drPε�(r)Pε′�(r) = δ(ε − ε′). (4)

The total electron density of the average-atom n(r) = nb(r) +
n f (r), where

4πr2nb(r) =
∑

n�

2(2� + 1)

1 + e(εn�−μ)/kBTe
Pn�(r)2 (5)

and

4πr2n f (r) =
∑

�

∫ +∞

0
dε

2(2� + 1)

1 + e(ε−μ)/kBTe
Pε�(r)2, (6)

where kB is the Boltzmann constant. The chemical potential μ

is such that ∫ RWS

0
4πr2[nb(r) + n f (r)]dr = Z, (7)

where RWS is the Wigner-Seitz radius with 4πR3
WSNi/3 = 1,

where Ni is the ion density. For r > RWS, Vei(r) = 0, where

Vei(r) = −Z2e2

r
+ e2

∫
dr′ n(r′)

|r − r′| + Vxc(r). (8)

The Kohn-Sham potential Vei(r) is short range. These equa-
tions are solved self-consistently using the RADIAL package
[21]. Particular attention should be paid to the calculation
of phase shifts for the continuum wave functions, especially
at high temperature. Another point to consider is that these
self-consistent equations may not converge due to sharp reso-
nances in the continuum or oscillations of a subshell that can
be bound or free. The maximum orbital quantum number is
set to 15. We do not describe the density of states between
−0.0001 Ry and 0.0001 Ry.

B. The g factor

Let us introduce the basic equations to describe the
electron-ion temperature relaxations in dense plasmas [15].
Ions are classical particles, whereas electrons are treated as an
ideal Fermi gas that can be degenerate or not. By definition,

d

dt
Ui(Ti ) = −g(Ti − Te) (9)

and
d

dt
Ue(Te) = −g(Te − Ti ), (10)

where Ui(Ti ) = 3
2 NikBTi. This system of equations ensures

the conservation of the energy density U = Ui + Ue. The

relaxation rate g or g factor is usually expressed in W/m3K.
In the present work, it depends only on Te like Ue. Ui depends
only on Ti. Daligault and Dimonte [4] proposed to calculate
the g factor as follows:

g = − NikB

2π2mi

∫ +∞

0
dkk4|V̂ei(k)|2 ∂Imχ0

e (k, ω)

∂ω

∣∣∣∣
ω=0

, (11)

where mi is the atomic mass of the element. In this expression,
V̂ei(k) is the Fourier transform of the electron-ion interaction-
potential Vei(r) and χ0

e (k, ω) is the dynamic density response
function of the electron gas. χ0

e (k, ω) is related to the dynamic
dielectric function in the random-phase approximation [4,15].
To obtain this expression, we have neglected electron-ion
correlations and assumed a weak interaction between elec-
trons and ions. Another expression for the g factor that goes
beyond this approximation has been proposed by Daligault
and Simoni [5]. The g factor now reads

g = h̄3Ni

π2memiTe

∫ +∞

0
dkk5 f (εk )[1 − f (εk )]σtr (k), (12)

where εk = h̄2k2/2me and f (ε)=1/(eε/kBTe−η+1), η=μ/kBTe

is the reduced chemical potential, and σtr (k) is the transport
cross section for the binary collisions which reads

σtr (k) = 4π

k2

∑
�

(� + 1) sin2[δ�(k) − δ�+1(k)], (13)

where δ�(k) is the phase shift of the �th partial wave at wave
number k for the electron-ion potential Vei(r). As stated in
Ref. [5], formula (12) is applicable to any temperature Te. In
particular at Te = 0, we have [22]

g = h̄kBNik4
F

π2mi
σtr (kF ), (14)

where kF is the Fermi wave number. We can clearly see why
Eqs. (11) and (12) are well suited for the average-atom model.
For clarity, the acronym JD09 is associated with Eq. (11) and
JD19 with Eq. (12). Note that the ionic internal energy could
depend on Te if, for instance, we introduce the ion-ion inter-
action energy using an OCP approach [23]. The dependence
with respect to Te is then due to the average ionization that
allows to define a plasma coupling parameter. The calculation
of the internal ion-ion energy can be complicated, especially
at low temperature in the warm-dense-matter regime. Since
our aim is to see what happens on the temperature relaxation
using either the JD09 or the JD19 approaches, we prefer not
to add another ingredient. In Ref. [23], it has been seen that
the internal ion-ion energy has a noticeable but small impact
on the temperature relaxation process. It mainly modifies the
equilibration temperature.

III. NUMERICAL APPLICATIONS

We plot in Figs. 1 and 2 the g factor as a function of Te in
solid-density aluminum and gold plasmas, respectively. Note
that the JD09 and JD19 formulas to calculate the g factor in
the average-atom model do not depend on Ti. This temperature
is thus irrelevant and is not specified. This explains why we
only consider Te in Figs. 1 and 2. Formulas (11) and (12) are
compared to the Landau-Spitzer (LS) formula [24,25]. We can
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FIG. 1. Electron-ion coupling factor as a function of electron
temperature in a solid-density aluminum plasma (see text).

see that the various formulas agree with each other at high
temperature in kinetic plasmas. In this regime, the potential
energy is of limited importance [26]. The Landau-Spitzer is
not valid at low temperature. As for JD09 and JD19, we can
see that they disagree at low temperature by nearly two orders
of magnitude. In Fig. 2, we can see that JD19 agrees with
quantum molecular dynamics (QMD) approach [16] even if
the curvatures are not the same between QMD and JD19. The
fact that Eq. (12) leads to better results compared to QMD
may by due to the scattering phase shifts that are very sensitive
to the electronic structure compared to Eq. (11) in which
appears the Fourier transform of the electron-ion potential
times the dynamic density response function. The key point
could be the assumption that the interaction between electrons
and ions is weak to established Eq. (11), whereas no such
assumption is made to obtain Eq. (12). So, from a theoretical
point of view, we may expect that Eq. (12) leads to results
that are in better agreement with QMD at low temperature in
the warm-dense-matter regime where electron-ion interaction
is strong and the electronic structure difficult to calculate,
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FIG. 2. Electron-ion coupling factor as a function of electron
temperature in a solid-density gold plasma (see text).

especially for an element like gold. At high temperature,
we may expect that both approaches lead to similar results
since in this case the electron-ion potential is weak compared
to the kinetic energy. This situation can be viewed as a
reminiscence of the calculation of the electrical resistivity
in dense plasma using the Ziman approach in the weak and
strong isolated scatterers [27]. In the weak isolated scatterer,
the Born approximation may be used to get the differential
scattering cross section. The electron-ion interaction potential
is weak and can be treated as a pseudopotential. In the formula
for the differential scattering cross-section appears the Fourier
transform of this weak electron-ion interaction potential. On
the contrary, for strong isolated scatterers, the Born approx-
imation should be abandoned and one should use the phase
shifts of the electron-ion potential to obtain the differential
scattering cross section. We can conclude that JD19 is sound
at low temperature, whereas JD09 should not be used in this
warm-dense-matter regime. Note that the JD19 g factor is an
increasing function of Te at low temperature and then reaches a
maximum before decreasing with Te at high temperature. For
solid-density aluminum, the maximum temperature is equal
to 123.1 eV and for solid-density gold, we find 984.4 eV.
Since this result appears to be new and only relies on a
few cases, more calculations should be performed to confirm
this observation. Another point to be mentioned concerns the
Landau-Spitzer approach in which the average ionization Z̄ is
calculated using the Thomas-Fermi model [25]. In the present
regime, the LS g factor is proportional to Z̄3/T 3/2

e , i.e., to
�3/2, where � is the ion-ion coupling factor. We have the
ratio of two quantities that increase with Te. There is thus a
competition between the way Z̄ increases as a function of Te

compared to the way T 3/2
e is rising. We have a phenomenon

similar to the � plateau [28] for the LS g factor. We call this
fact the g-plateau phenomenon. At some densities, the LS g
factor can be almost constant over a wide range of electron
temperatures. In Fig. 1 we are above the density at which this
phenomenon takes place and in Fig. 2, we are below. There
is a density at which we have something similar to a critical
point in log-log graph. For aluminum, this happens near
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FIG. 3. Landau-Spitzer electron-ion coupling factor as a function
of electron temperature in aluminum plasma at 1.4 g/cm3 and gold
plasma at 62 g/cm3.

023206-3



GÉRALD FAUSSURIER PHYSICAL REVIEW E 101, 023206 (2020)

100 101 102 103 104

Electron temperature (eV)

10-3

10-2

10-1

100

R
at

io

Aluminum
Gold

FIG. 4. Ratio of the JD19 g factor with respect to the JD09 g
factor as a function of electron temperature in solid density aluminum
and gold plasmas (see text).

1.4 g/cm3 and for gold near 62 g/cm3. We plot in Fig. 3 the
LS g factor in aluminum and gold plasmas at these densities
to appreciate the g-plateau phenomenon. In Fig. 4, we plot the
ratio of the JD19 g factor with respect to the JD09 g factor
as a function of electron temperature in aluminum and gold
solid-density plasmas. We can appreciate the way they differ
at low temperature and how they match at high temperature.
In this regime, the convergence of the ratio with respect to
one is rather slow. To keep on studying the difference between
JD09 and JD19, we plot in Fig. 5 the temperature relaxation
in an aluminum plasma at solid density starting with initial
temperatures T 0

e = 100 eV and T 0
i = 10 eV. The difference

between JD09 and JD19 is noticeable. For JD09, the relax-
ation temperature is reached around 0.8 ps, whereas for JD19,
it is between 2 and 3 ps. The equilibration temperature is equal
to 92 eV.
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FIG. 5. Temperature relaxation in solid-density aluminum
plasma starting with initial temperatures T 0

e = 100 eV and T 0
i =

10 eV.

IV. CONCLUSION

We have used a nonrelativistic average-atom model to
compare two ways to calculate the electron-ion coupling
factor for temperature relaxation in dense plasmas. If they
agree at high temperature, then they greatly disagree at low
temperature where only the more recent expression is con-
sistent with quantum molecular dynamics approach. At high
temperature, both approaches are consistent with the Landau-
Spitzer formula. The numerical examples shown in this work
indicate that the more recent formula for the g factor should
be preferred in practical applications.
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