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Coulomb plasmas crystallize in a number of physical systems, such as dusty plasmas, neutron star crusts,
and white dwarf cores. The crystal structure of the one-component and binary plasma has received significant
attention in the literature, though the less studied multicomponent plasma may be most relevant for many
physical systems which contain a large range of particle charges. We report on molecular dynamics simulations
of multicomponent plasmas near the melting temperature with mixtures taken to be realistic x-ray burst ash
compositions. We quantify the structure of the crystal with the bond order parameters and radial distribution
function. Consistent with past work, low charge particles form interstitial defects and we argue that they are in a
quasiliquid state within the lattice. The lattice shows screening effects which preserves long-range order despite
the large variance in particle charges, which may impact transport properties relevant to astrophysics.
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I. INTRODUCTION

Coulomb (Yukawa) plasmas consist of a set of charged
point particles interacting via a Coulomb repulsion which is
screened by a neutralizing background gas. At sufficiently
high pressure (or density) these systems can crystallize despite
even astronomically high temperatures.

The properties of these astromaterials, materials present
in stars, impact observations relevant to a number of astro-
physical phenomena. To name a few, (i) latent heat release in
freezing white dwarfs is now observed to affect the cooling
of white dwarfs [1], (ii) phase separation of heavy nuclei in
the oceans of freezing white dwarfs may release additional
gravitational potential energy which affects cooling [1,2], and
(iii) the thermal transport properties of the phase-separated
neutron star crust in accreting x-ray binaries must be known
to interpret observations of x-ray binaries in quiescence [3–5].

The one-component plasma (OCP) is now well studied and
is known to undergo a first-order phase transition between a
liquid and solid phase [4,6,7]. Phase separation and diffusion
of the binary mixture have also received attention in the
literature [8–10]. Analytic models of ternary mixtures have
been used to approximate the phase separation of mixtures
with many components near their eutectic point [3]. Past
work studying the structure of a few specific multicomponent
plasma (MCP) mixtures found that they tended to form a bcc
lattice with a number of complicated compositionally driven
defects [3,11–15].

Electron scattering in MCPs is relevant for astrophysics, as
electron-impurity scattering affects the thermal and electrical
conductivity (see, for example, [5]). Astrophysical models
use the impurity parameter Qimp = (1/n)�ini(Z̄ − Zi )2 (de-
fined as the variance in mixture charge) to calculate mixture
transport properties. However, the impurity parameter for-
malism may overpredict the electron scattering frequency by
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assuming a random distribution of impurities [16,17]. While
this assumption may be valid for nearly pure mixtures with
trace impurities, mixtures with many components may have
more complicated lattice structures which may not necessarily
enhance the electron scattering rate as much as a random
impurity distribution might predict. For example, consider a
binary ionic mixture (BIM) studied by Ogata et al. [16]. A
BIM with equal abundances of species Z1 and Z2 may have a
ground-state CsCl structure, with each ion of species 1 being
at the center of a cube of eight ions of species 2 and vice versa.
With this long-range order such a crystal would effectively
have no defects, though a large Z1/Z2 would yield a high Qimp

suggesting otherwise.
Simulations studying specific MCPs are thus well moti-

vated astrophysically. In past work, Horowitz et al. studied
the phase separation of one mixture and calculated the static
structure factor S(q) of the resulting solid to determine the
thermal transport properties [14,15]. Roggero and S. Reddy
[18] recently used a path-integral Monte Carlo approach
to determine the electron scattering rate in multicomponent
plasmas and found that the effective lattice impurity is reduced
by a factor of a few relative to theoretical calculations using
the impurity parameter. In contrast, having a large number of
species may introduce many new kinds of disorder (relative
to the OCP) even if the lattice structure is regular, as in the
BIM case considered above. Trace low-Z impurities have been
observed to form clusters of interstitial defects, suggesting
that they separate and form pockets of disorder within the
lattice [3,15]. Furthermore, phase separation may produce
crystalline domains which are locally purified in order to
accommodate the entire mixture. Grain boundaries between
such compositional domains could act as sites for electron
scattering which may be important depending on their size [3].

Beyond the astrophysical implications, results from simu-
lations of MCPs may be generalized to the study of dusty plas-
mas, an analogous system where macroscopic charged partic-
ulates are allowed to interact via the Coulomb force (often in
zero gravity) which is well studied in terrestrial experiments
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[4,19–21]. The structure of two-dimensional crystalline dusty
plasmas is well studied, particularly for binary mixtures, and
shows strong agreement with theoretical predictions such as
those from molecular dynamics (MD) simulations (especially
for properties such as crystal structure, diffusion, and phase
separation) [22,23]. Diffusion of dust particles in the lattice is
experimentally accessible with high-speed cameras and fluo-
rescent techniques [24]. These phenomena are both relevant
to astrophysics and easily accessible with MD. Therefore,
simulations studying astrophysically motivated mixtures may
motivate terrestrial dusty plasma experiments if systems with
similar charge mixtures can be produced.

In this work we study the structure of six crystalline
MCPs produced from MD simulations using the bond order
parameter and radial distribution functions. In Sec. II we
discuss our formalism, including our MD code (Sec II A),
our methods of calculating the bond order parameter and
radial distribution functions (Secs. II B and II C), and a brief
discussion of the theory of OCPs and MCPs (Sec. II D). We
describe our simulations and results in Sec. III and summarize
in Sec. IV.

II. FORMALISM

A. Molecular dynamics

Nuclei in Coulomb plasmas are fully ionized and are
treated as point particles (ions) which interact via a two-body
screened Coulomb potential

V (ri j ) = ZiZ je2

ri j
exp(−ri j/λ), (1)

where Zi and Zj are the electric charges of the ith and jth
nuclei, respectively, and ri j is the separation between them.
The exponential term is due to the screening from the degen-
erate electron gas between ions and is calculated using the
Thomas-Fermi screening length λ−1 = 2α1/2kF /π1/2 using
the fine structure constant α and electron Fermi momentum
kF = (3π2ne)1/3. For the MCP we require the electron density
ne to be equal to the charge density from the ions, i.e.,
ne = 〈Z〉n with ion number density n and average charge
〈Z〉. Electrons are not included explicitly; their effects on the
lattice are included through the potential screening.

To evolve the system we solve Newton’s equations of
motion numerically using a velocity Verlet scheme with the
Indiana University molecular dynamics CUDA FORTRAN code,
version 6.3.1. This code has been used extensively to study
astromaterials in neutron star crusts and white dwarfs and is
described in more detail in past work [3,11,15]. All simula-
tions presented in this work use periodic boundary conditions
and cubic simulation volumes.

B. Bond order parameter

We quantify the local order of the lattice around nuclei of
each species in our simulations with the bond order parameter
Q6. This allows us to evaluate the solidness or liquidness
of each nucleus with a simple metric determined from the
relative positions of its nearest neighbors. For an individual
ion, Q6 generally takes on a value between 0 and 0.5. Past
work by Lechner and Dellago [25] showed that in Lennard-

Jones mixtures at finite temperatures one expects Q6 ∼ 0.44
in a bcc lattice, which is similar to what was reported by
Caplan et al. [3] when studying phase separation in Coulomb
crystals.

We calculate Q6 (as in [26]) by

Q6 =
√√√√4π

13

6∑
m=−6

∣∣∣∣∣ 1

Nb

∑
bonds

Y6m(θ (r), φ(r))

∣∣∣∣∣
2

(2)

for each particle. Spherical harmonics Y6m are calculated from
the angles θ (r) and φ(r) of the vector between pairs of nuclei.
This is averaged over nearest neighbors and harmonics to
produce the coordinate independent Q6.

C. Radial distribution function

We calculate the radial distribution function g(r) for ions in
our mixtures. As mixtures contain many species, we must con-
sider the radial distribution functions between species gi j (r),
following the definition used by Thorneywork et al. [27],

cic jgi j (r) = 1

Nρ

〈
Ni∑

μ=1

Nj∑
ν �=μ

δ(r + rμ − rν )

〉
, (3)

where ci, j are the concentrations of the ith and jth species, N
is the total number of particles in the mixture, ρ is the total
number density, and the sums are over all pairs of particles of
species i and j. Distances rμ − rν are taken over the periodic
boundary. For an OCP we recover the radial distribution
function for i = j. For simplicity and due to the large number
of species in our mixtures, we will only consider i as the
most abundant species in the mixture (for all of our mixtures
ci � 0.25). Our normalizations are such that gi j (r) = 1 as
r → ∞.

D. Coulomb plasmas

1. One-component plasmas

We discuss one-component plasmas as they will be used
for reference when studying mixtures. The one-component
plasma is characterized by the Coulomb plasma parameter �,
calculated as

�OCP = e2Z2

aT
, (4)

with squared elementary charge e2 (approximately equal
to 1.44 MeV fm), ion charge Z , Wigner-Seitz radius a =
(4πn/3)−1/3 with n ion number density as before, and tem-
perature T (in MeV). The critical �crit = 175 occurs at the
melting temperature. It is often useful to report �crit/�, which
is linear with temperature and is unity at the melting tempera-
ture. When �crit/� < 1, the OCP can form a bcc or fcc lattice,
though the bcc lattice is typically the relevant case for neutron
stars [4,6].

2. Multicomponent plasmas

In a mixture, each component of charge Zi and concentra-
tion ci can be characterized individually by �i = e2Z2

i /aiT ,
where ai must now be defined in terms of the average charge
density of the mixture ρch, ai = (3Zi/4πρch)1/3. Averaging
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over all components gives

�MCP = 〈Z5/3〉e2

T

[
4πρch

3

]1/3

. (5)

Mixtures, having different charge densities, will generally not
share a common �crit when considering the screened Coulomb
repulsion in Eq. (1). Corrections to melting temperature and
�crit are calculated from a dimensionless screening parameter
κ = a/λ (the screening length and Wigner-Seitz radius) which
for our mixtures fall between 1.7 and 2.4, of the same order
as previous MD simulations studying astrophysical Coulomb
crystals [28]. Corrections in the literature, such as Eqs. (17)–
(19) in [29] and Eq. (4) in [6], are now widely cited and
agree with each other to order 10−2 for κ < 2. In this work
we use the corrections provided by Eq. (18) in [29], which
raise �crit from 175 to between 232 and 253 for the mixtures
considered here. This is fairly small considering the range of
�i considered in a given mixture in this work (which spans an
order of magnitude), but is sufficiently large that it must be
taken into account.

Observe that a MCP with a low �crit/�MCP, i.e., solid,
can have components of low charge, such that �crit/�i > 1,
i.e., liquid, is possible. It is these liquidlike ions present
in mixtures, as well as their effect on the crystal structure
of the MCP, that we seek to study. As low-Zi nuclei have
previously been identified as interstitial defects by inspection
in simulations by Horowitz et al., we are motivated to quantify
the degree of liquidness of these light nuclei in this work.

III. SIMULATIONS

A. One-component simulations

We perform simulations of 16 000 ions (20 × 20 × 20 bcc
unit cells) in a cubic simulation volume with periodic bound-
ary conditions at �crit/� = 0.25, 0.50, 0.66, 0.97 1.00, 1.03,
1.33, 1.50, 2, and 4. Simulations �crit/� > 1 are liquid, while
�crit/� < 1 are solid. Initial conditions for the liquid were
taken to be random ion positions in the simulation volume,
while the solid was taken to be a bcc lattice whose planes
are aligned with the simulation boundaries. Visualizations are
shown in Fig. 1.

For �crit/� = 1 we run two simulations, one using random
initial conditions and one using lattice initial conditions. At
the critical temperature both solid and liquid phases can
exist, allowing a useful temperature-independent comparison
of solidlike and liquidlike behavior. All simulations are run at
constant temperature for 106 MD time steps with temperature
renormalizations every 100 time steps following the procedure
described in Ref. [3]. All simulations are run using a time
step of 100 fm/c and an ion density of 7.18 × 10−5 fm−3.1

The total energy converges within the first few thousand time
steps for all simulations, with fluctuations of order 10−5Etot,
indicating that configurations quickly reach thermal equilib-
rium. The total energy remains approximately constant with

1This ion density is largely irrelevant as � is sufficient to fully
describe the system; however, it does determine the nearest-neighbor
spacing and gives the first minimum in the bcc radial distribution
function at 35 fm.

(a) (b)

(c) (d)

FIG. 1. MD visualizations of an orthographic projection of the
bcc (100) plane in an OCP. (a) At the lowest temperatures (�crit/� =
0.25) we find that the lattice has converged on a nearly ideal bcc
structure. (b) For greater temperatures (�crit/� = 0.66) we resolve
the thermal fluctuations in the lattice, resulting in a smearing of
points. (c) At the melting temperature (�crit/� = 1.00) the thermal
fluctuations on lattice sites produce displacements comparable to the
lattice spacing, while (d) the melted system at the same temperature
(�crit/� = 1.00) demonstrates minimal order.

fluctuations of order E/E ∼ 10−6 during the equilibrium
phase.

We calculate the bond order parameter Q6 for each ion in
the final configurations of these simulations, shown in Figs. 2
and 3. We calculate the local bond order parameter to ions
within 35 fm, which corresponds to the first minima in the
radial distribution function (Fig. 4) and thus contains the 14
nearest neighbors, i.e., each ion is at the center of a bcc unit
cell of eight nuclei, with six nuclei at the center of each
adjacent cell.

In Figs. 2 and 3, for �crit/� � 1, we observe that the
bond order parameter Q6 forms an approximately Gaussian
distribution with a mean near Q6 ≈ 0.2. This is expected for a
liquid with minimal local order. For �crit/� � 1, we observe
a strong � dependence in the distribution mean and width. For
�crit/� � 1, the distribution shifts quickly toward Q6 ≈ 0.4 as
�crit/� decreases. As �crit/� approaches zero the distribution
becomes strongly peaked around Q6 ≈ 0.5. Notably, a gap
is observed near Q6 ≈ 0.3. This region of the histogram is
largely unpopulated except for the tails of a few distributions
which are near the critical temperature. This strong separation
in Q6 for the OCP suggests that Q6 will be a useful tool
for discriminating between the solidness and liquidness of
ions in MCPs. This technique for discriminating between
solid and liquid ions has previously been used in studies of
MCP phase separation in Ref. [3], though this method was
not rigorously developed in that work. The radial distribution
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FIG. 2. Histograms of ion bond order parameter Q6 for a set
of OCPs. While the liquids all demonstrate a mean Q6 ≈ 0.2, for
solids the Q6 varies with temperature between approximately 0.4
and 0.5, where the tightening of the distribution is understood as a
reduction in thermal fluctuations on the lattice. The two simulations
at �crit/� = 1 are for a solid (S) and liquid (L), respectively, and
run at the melting temperature. A deficit of ions with Q6 ∼ 0.3
suggests that the bond order parameter is useful for discriminating
between solidlike and liquidlike ions in pure phases based solely on
the arrangement of their neighbors.

function g(r) shows the known results for bcc solids at low
�crit/� and liquids at high �crit/�. The first-order phase
transition is apparent in our two simulations at �crit/� = 1
by observing the sharpening of the peaks and the emergence
of the double-peaked peaks as opposed to the approximately
sinusoidal behavior for the liquid. It is worth noting that only
for the lowest �crit/� simulations is g(35 fm) ≈ 0, so our
calculations of Q6 using this cutoff includes only on average
14 nucleons for high-�crit/� simulations. Nevertheless, this is
a small effect which we do not study further.

We can understand the behavior of Q6 in terms of the
temperature and position-space distribution of ions, shown
in Fig. 1. For liquids, �crit/� � 1, and we expect similar
distributions of ions for all temperatures. A slight leftward

0 0.5 1 1.5 2
0.1
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0.3
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0.5

FIG. 3. Ion bond order parameter Q6 for our OCPs. Points and
error bars are the mean and standard deviation of the Q6 distributions
shown in Fig. 2. We resolve both the sharpening of the distribution
for solids with low �crit/� and the approximately constant behavior
for liquids with high �crit/�. Compare with the results for the MCP
below.
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FIG. 4. Radial distribution functions g(r) for the OCP. The color
scheme and labeling are the same as in Fig. 2. The function broadens
smoothly with increasing �crit/� between the known results for a
bcc solid and liquid, with the transition at �crit/� = 1 being resolved
clearly.

skew (toward lower Q6) that appears with increasing effective
temperature, i.e., greater �crit/�, may be interpreted as the
effect of greater average thermal fluctuations. Meanwhile,
for solids with �crit/� � 1, the reduction in thermal energy
suppresses thermal fluctuations on lattice sites, resulting in a
sharpening of the distribution of Q6 as ions converge on an
idealized lattice with high local order, as seen in Fig. 1.

With structural characterizations for the OCP complete we
move on to study the MCP.

B. Multicomponent plasmas

1. Mixtures

We study six mixtures from Mckinven et al. [30]. That
work calculated the phase separation that occurs for rapid
proton capture ash mixtures in equilibrium that were 50%
solid and 50% liquid. In this work we perform molecular
dynamics simulations of only the solid component of those
mixtures. This differs from past work which was concerned
with simulating the phase separation which included both the
solid and liquid components (see [3]).

These mixtures correspond to the burning products for
six different accretion rates of solar composition (helium
mass fraction Y = 0.2752) material. These accretion rates
are ṁ/ṁEdd = 0.1, 0.2, 0.3, 0.5, 1.0, and 10 in units of the
Eddington accretion rate ṁEdd . We refer to these mixtures
hereafter as mixtures 1–6, respectively, and refer to the con-
centrations (number abundances) of their components with
charge Zi as cZi . We note that the mixture 2 that we use in this
work is different from what is reported by Mckinven et al., i.e.,
ṁEdd = 0.2 in their Table I. That work reports a high-impurity
parameter for the solid produced by phase separation of the
parent mixture, with a large concentration of Z = 12 ions
in the solid. Further work on this mixture suggests that it
is near a eutectic point, similar to the discussion in [3]. We
have recalculated the phase separation and find this mixture
is depleted in Z = 12 nuclei, producing a much purer solid
which is comparable to the other mixtures reported in that
work [31].
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TABLE I. Summary of mixtures. A full list of species and abundances for each mixture are available in Table II. We report here the mean
ion charge 〈Z〉, the variance in ion charge Qimp, the mean ion charge to the 5/3 power 〈Z5/3〉, a reference �e such that �i = Z5/3

i �e (which
depends on temperature), the melting criteria �crit , the greatest and smallest charges included in the mixture Zmax and Zmin, and the associated
�crit/�i for those species. The total mixture �MCP = 〈Z5/3〉�e is effectively the chosen temperature we simulate at.

Mixture no. 〈Z〉 Qimp 〈Z5/3〉 �e �crit Zmax(�crit/�i ) Zmin(�crit/�i ) �MCP

1 11.2 3.1 57.2 5.841 253.4 24 (0.21) 8 (1.36) 333.9
2 23.7 7.5 196.6 1.539 238.8 26 (0.68) 8 (4.85) 302.5
3 24.8 4.6 212.5 1.340 237.9 28 (0.69) 8 (5.55) 284.8
4 26.8 8.7 241.1 1.202 236.5 30 (0.68) 8 (6.14) 289.9
5 28.0 8.5 261.7 1.087 235.5 32 (0.67) 11 (3.98) 284.4
6 32.1 27.7 334.4 1.119 232.9 44 (0.38) 16 (2.05) 374.1

TABLE II. Complete list of mixtures studied in this work, with ion charge Z , ion mass A, total number abundance N , and fractional number
abundance n = N/102 400. As described in the text, we take all ions of the same charge to have the same mass, though real mixtures will have
a range of isotopes.

Mixture no. 1 Mixture no. 2 Mixture no. 3

Z A N n Z A N n Z A N n

12 24 56771 0.55440 25 57 24788 0.24207 26 59 43766 0.42740
10 20 29091 0.28409 24 55 23909 0.23348 25 57 18638 0.18201
8 16 7330 0.07158 26 58 20671 0.20186 24 55 13079 0.12772
11 23 4489 0.04383 22 52 20160 0.19687 22 52 12154 0.11869
18 40 2771 0.02706 23 53 5770 0.05634 28 62 5020 0.04902
9 19 1638 0.01599 18 40 1570 0.01533 23 53 3166 0.03091
22 52 122 0.00119 20 48 1362 0.01330 27 63 3159 0.03084
20 48 63 0.00061 12 26 1348 0.01316 20 48 1076 0.01050
14 30 38 0.00037 21 49 1218 0.01189 21 49 839 0.00819
21 49 33 0.00032 8 16 678 0.00662 18 40 767 0.00749
24 56 24 0.00023 10 21 349 0.00340 12 25 356 0.00347
23 53 19 0.00018 11 25 327 0.00319 8 16 247 0.00241
17 37 11 0.00010 28 62 190 0.00185 10 21 81 0.00079

17 38 37 0.00036 11 25 52 0.00050
14 31 16 0.00015
15 34 7 0.00007

Mixture no. 4 Mixture no. 5 Mixture no. 6

Z A N n Z A N n Z A N n

28 65 60679 0.59256 28 65 37991 0.37100 30 69 32165 0.31411
26 60 14103 0.13772 30 70 34071 0.33272 28 64 27842 0.27189
27 63 9579 0.09354 29 69 11097 0.10836 42 100 8896 0.08687
25 57 4088 0.03992 26 60 8322 0.08126 32 76 5652 0.05519
24 55 3394 0.03314 27 63 3188 0.03113 40 96 5418 0.05291
30 68 2906 0.02837 12 24 2060 0.02011 38 90 4606 0.04498
22 52 2770 0.02705 31 73 1461 0.01426 34 80 4140 0.04042
12 24 2215 0.02163 24 56 1308 0.01277 36 84 3406 0.03326
29 69 726 0.00708 25 57 1057 0.01032 44 103 2602 0.02541
23 53 724 0.00707 22 52 756 0.00738 41 99 1681 0.01641
20 48 369 0.00360 32 74 426 0.00416 35 85 1388 0.01355
18 40 240 0.00234 23 53 189 0.00184 26 60 1296 0.01265
21 49 208 0.00203 14 28 171 0.00166 33 81 1088 0.01062
10 20 188 0.00183 20 48 136 0.00132 31 73 850 0.00830
8 16 172 0.00167 11 25 87 0.00084 39 93 714 0.00697
14 30 39 0.00038 18 40 80 0.00078 16 36 499 0.00487

17 39 157 0.00153
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The phase separation of the parent mixtures that produce
these solids is described in some detail in Table I and Fig. 1 of
Ref. [31], and we include in Table II a detailed list of the ions
and abundances used in our calculations. We exclude species
with concentrations less than 10−5. We treat all nuclei of the
same charge as having the same mass, chosen as either the
mass of the most abundant isotope or the average mass of all
isotopes rounded to the nearest integer when several isotopes
have comparable abundances, i.e., we use (Z, N + 1) when
pairs of even-even isotopes at (Z, N ) and (Z, N + 2) have
comparable abundance.

In Table I we summarize some key features of the mixtures.
It is worth noting that the �MCP reported here is different
from the �s in Table I of Ref. [31], though one might naively
expect these to be the same. The �s reported in that work is
specifically the plasma parameter for the solid part of a 50:50
solid-liquid system that is in equilibrium following phase
separation of the parent mixture. This is not necessarily the �,
i.e., temperature, the lone solid mixture freezes at, and so our
mixture here which excludes the liquid need not be simulated
at this specific temperature.

2. Simulations

The preparation of these configurations is considerably
more detailed than the OCP, as we want to study a realistic
crystal which is not heavily biased by initial conditions. To
briefly summarize, the simulations are initialized as a liquid
with a uniform random distribution and cooled until they
freeze to form a crystalline solid. This solid is then equi-
librated, i.e., allowed to evolve to equilibrium, at constant
temperature. The effective temperature we simulate at, �MCP,
is between approximately 0.6�crit and 0.8�crit .

These six simulations all contain 102 400 ions at a density
of 7.18 × 10−5 fm−3, with a time step of 25 fm/c, in a
cubic volume with periodic boundaries as before. The one
exception is the simulation of mixture 1, which includes
204 800 nucleons, which also serves as a comparison to check
for finite-size effects. These simulations are all initialized
from random positions and velocities are randomly generated
with a Maxwell Boltzmann distribution whose temperature
is chosen to be above the temperature given by Ref. [31],
given as �s in that work. This produces liquid configurations
which are simulated at constant temperature for at least 106

MD time steps (2.5 × 107 fm/c). The simulations are then
cooled by rescaling the velocities every 1000 time steps to a
Maxwell-Boltzmann distribution to decrease the temperature
by 5 × 10−6 MeV. This cooling is simulated in intervals of 106

time steps, which continues until the configuration freezes.
The instant of freezing is straightforward to identify as the
energy per particle shows a sharp decline consistent with a
first-order phase transition and the lattice structure becomes
visible by inspection, as in Fig. 1. This general equilibration
scheme has been used extensively in past work [3,14,15].

The simulation configurations generated immediately after
the phase transition, i.e., the highest temperature at which
we are certain the solid is stable and will not spontaneously
melt, is then evolved at constant temperature for 8 × 108 time
steps (2 × 109 fm/c) over two simulations of 4 × 108 time
steps (109 fm/c) each. Over the first simulation the energy

is observed to asymptotically decrease, suggesting that the
newly formed solid is relaxing to an equilibrium. Over the
second simulation we observe that the total energy is constant,
suggesting that our six configurations have equilibrated.

As the static structure factor S(q) has been used extensively
in past work, it is appropriate to comment now on our choice
to not report S(q) here. This work is considering high lattice
temperatures, i.e., T � Tmelt, which are significantly greater
than the lattice Debye temperature. This implies that the ther-
mal conductivity is dominated by electron-phonon scattering
in the astrophysically relevant regime, as in [32] (see also
[33]). Any static structure factors reported in this work would
be phonon dominated, rather than impurity dominated. Future
work may be interested in studying the S(q) for the configu-
rations generated in this work quenched to low temperature.

3. Crystal structure

Ions in our simulations crystallize and form a bcc lattice,
as in the OCP case. From inspection, the crystals formed in
our simulations of mixtures 2, 3, and 5 appear without any
immediately apparent structural defects such as dislocations
or grain boundaries, while mixtures 1, 4, and 6 may contain
dislocations, but are otherwise perfect bcc crystals. This is
expected to have only a small effect on the bond order
parameters we calculate, as a planar defect in a cubic volume

FIG. 5. Subvolume of a molecular dynamics simulation of mix-
ture 3. Each point represents one ion. The simulation is fully three
dimensional, though we present an orthographic projection of the bcc
(100) face here for clarity. The clustering on lattice sites is due to the
distribution of ions in the third dimension. The crystal forms a bcc
lattice with a single domain and without any immediately apparent
structural defects. Ions with charge near the mixture average and
above are shown in white, while those with low charge appear in red.
The colors are dimmed with increasing depth in the field, and the red
saturation shows the relative charge. Note that most interstitial ions
are red, particularly at the top left.
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FIG. 6. Histograms of ion bond order parameter Q6 for select ion species in our six MCPs: (a) mixture 1, (b) mixture 2, (c) mixture 3,
(d) mixture 4, (e) mixture 5, and (f) mixture 6. Legends show ion charge Z , in decreasing order of abundance. Relative heights of distributions
show the relative abundance of ions within a mixture, though some bin widths for the least abundant species have been rescaled for readability.
Compared to the OCP, we find a greater left skew in our distributions. Furthermore, the lowest-Z species, i.e., those with �crit/�i > 1, in the
mixture have much broader distributions with lower average Q6 relative to the mixture average.

will only involve order N2/3 ions; for simulations with 102 400
ions this effect is of order 10−2.

We find little evidence for continued phase separation,
which suggests that these mixtures may be stable under the
conditions we simulate. We show a subvolume of one con-
figuration generated during the simulation of mixture 3 in
Fig. 5. The most abundant ion species in this mixture has
Z = 26 with concentration c26 = 0.427. Ions with charges
of Z = 26 or greater are shown in white, while ions with
decreasing charge are shown with increasing redness. Ions
with charge Z � 22 have a total concentration of 0.152 and
are shown in red. Most of these red points do appear on lattice
sites, indicating that low-Z impurities are not necessarily
interstitial; nevertheless, the few interstitial points that are
easily identifiable are all low-Z ions. In the upper left region
of the figure there is a cluster of interstitial low-Z ions. This
is largely due to the projection in the third dimension; many
of these points are well separated, though it could be taken
to be evidence of clustering of light nuclei and further phase
separation, as seen by Horowitz et al. [15].

We show Q6 for select species in these mixtures in Fig. 6.
We have separated Q6 by species in each mixture to show the
trend with species charge Z (identified in the legend). The
legends present species in order of decreasing abundances
so that approximate abundances can be seen in the relative
heights of the histograms (most abundant in purple, least
abundant in red). For readability, some low-abundance species

have their bin widths rescaled and we omit a number of
species from these plots. We choose to show only the most
abundant species as well as those which clearly demonstrate
the general behavior of low-Z species.

Direct comparisons between mixtures may be difficult as
mixtures have different average charge and were simulated at
different temperatures. Nevertheless, trends are apparent. In
every mixture high-Z ions have a high average Q6 (≈0.45),
as in the solid OCP, but these distributions now have left
skew. Ions with Z much lower than the mixture average (most
visibly Z = 12 in mixtures 3 and 5) show broader distributions
with lower average Q6 (≈0.3). Physically, high-Z ions all
have more regularly arranged nearest neighbors. Below some
threshold in Z , ion nearest neighbors become less regular, and
low-Z ions are found at centers of local disorder.

In Fig. 7 we present more detailed information about
Q6 for mixtures 2 (blue triangles), 4 (light yellow squares),
and 6 (dark red circles). These are representative of all six
mixtures (mixtures 1, 3, and 5 are omitted for readability)
and a logarithmic scale is used to avoid overcrowding the
points for �crit/�i < 1. We plot all components of these three
mixtures, resolving more clearly the intermediate behavior of
trace low-Z (high-�crit/�i) species. In contrast to the OCP, all
species for which �crit/�i < 1 show approximately the same
behavior, which is approximately that of the mixture average,
i.e., there is some equivalent �OCP which describes high-Z
ions in this mixture such that �OCP ≈ �MCP. If the MCP were
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FIG. 7. Ion bond order parameter Q6 for all species in mixtures
2, 4, and 6 (mixtures 1, 3, and 5 have been omitted for readability).
Points and error bars are the average and standard deviation of
Q6 for ions of that respective species. Species with charges below
the critical value for the mixture (vertical dashed line) all show
similar solidlike behavior as �crit/� > 1, as in Fig. 6, while ions with
�crit/� < 1 are increasingly liquidlike Q6. Compare with Fig. 3.

just a linear sum of its component OCPs, we would expect
the average Q̄6 to increase asymptotically with Z to Q̄6 ≈ 0.5
as �crit/�i → 0, while the width of its distribution σQ6 should
decrease. Furthermore, near �crit/�i = 1, Q̄6 begins smoothly
decreasing. This intermediate behavior may be analogous to a
glass transition or indicative of a similar second-order phase
transition.

In Fig. 8 we show the radial distribution functions gi, j (r)
for mixture 4, again taken to be representative of all our
mixtures. These gi, j (r) are calculated between all ions of
species j and all ions of species i, where species i is Z = 28,
which comprises more than half of the mixture. Qualitatively,
these are the pairwise distributions between the dominant
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FIG. 8. Radial distribution functions g(r) for mixture 4 for all
species j relative to the dominant mixture component Z = 28.
Species are shown in order of increasing charge for ease of com-
parison with the OCP in Fig. 4 (�crit/� ∝ Z−1

i ). Observe that the
lowest charge plotted (Z = 12, �crit/�i = 3.2, purple solid line)
shows liquid characteristics, compare to the OCP at �crit/� = 1.5
(purple dash-dotted line). All other species are consistent with the
known result for a bcc solid at �crit/�MCP. The inset shows the
separation in the first peak with charge, discussed in the text.

species of the mixture and all other species. Species abun-
dant to less than c j < 4 × 10−3 are excluded due to poor
statistics. Observe that g28,12(r) (solid dark purple), for the
lowest charge species in the mixture Z = 12 (�crit/�i = 3.2),
is the known result for a liquid. We include a similar OCP,
with �crit/� = 1.5 (dashed dark purple) for comparison. We
observe that despite having a higher effective temperature,
g28,12(r) shows stronger correlations with higher-order nearest
neighbors than the true liquid as they are embedded in a solid
lattice. All other species shown here demonstrate the known
result for a bcc solid at finite temperature. This supports our
interpretation of Fig. 6 above which argues that low-Z species
are in a liquidlike state within the lattice. In the inset, the
first peak of g(r) shows a separation in charge with the first
peak shifting to greater r for greater Z . However, no such
separation is observed for higher-order peaks. We argue that
this is evidence of screening on the lattice. Lattice spacing
is preserved out to large r, so the lattice remains ordered
over a large number of lattice sites. However, the shifting
in nearest neighbors may be due to the Coulomb repulsion
between individual ions. Lower-Z ions have weaker Coulomb
repulsion relative to the lattice and so they may be closer to
high-charge neighbors than the average lattice spacing, while
high-Z ions have greater Coulomb repulsion and thus will
have greater average separation from neighbors. The absence
of any separation in the second-order peaks or higher suggests
that this is a local effect where high-Z ions are screened by
low-Z nearest neighbors so that neighboring cells have an
average charge close to the mixture average.

IV. DISCUSSION

We characterized the structure of the OCP and MCP near
the melting temperature using the bond order parameter Q6

and radial distribution function g(r), finding generally that
the structure of the MCP is more complicated than a linear
sum of the OCP behavior of its components. We interpreted
the behavior of the majority of species in our mixtures to be
that of a solid having crystal properties similar to an OCP
with equivalent �OCP = �MCP, i.e., the bond order parameter
and radial distribution functions are effectively those of the
one-component plasma at the mixture average temperature for
species where �crit/�i < 1. Trace low-Z species for which
�crit/�i > 1 show intermediate behavior between what was
shown for solid and liquid OCPs, including liquidlike radial
distributions relative to the lattice average and low average
values for the bond order parameter. This quasiliquid behavior
suggests that low-Z ions may congregate together in regions
with low local order, such as near grain boundaries or dis-
locations or in local pockets of liquid embedded within the
solid. These sorts of structural defects have been reported
for the MCPs simulated by Hughto et al. [28] and Caplan
et al. [3].

We observed screening effects in our simulations of
MCPs, with nearest-neighbor separations being affected by
ion charge but higher-order neighbors all being found at the
lattice average separation regardless of charge. This screening
behavior may be relevant to calculations of the transport
properties of the crystal, in particular the thermal and elec-
trical conductivities. Many astrophysical models rely heavily
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on the impurity parameter Qimp = (1/n)�ini(Z̄ − Zi )2 defined
as the variance in mixture charge, which does not contain
information about the lattice structure [34]. The impurity
parameter formalism was developed assuming a small number
of impurities randomly distributed in a relatively pure lattice
and may not generalize to mixture with many components
of similar abundance. Recent work by Roggero and Reddy
[18] found that, for mixtures similar to those studied in this
work, the effective impurity parameter when accounting for
lattice effects is a factor of 2–4 lower than would be predicted
from Qimp alone. We explained this physically in terms of the
lattice structure. Low-Z and high-Z impurities may tend to fall
on adjacent lattice sites, screening each other and preserving
long-range order in the lattice. For accurate calculations of
the transport properties of MCPs past work has relied on
computationally expensive MD and PIMC simulations. Taken
together with the work by Roggero and Reddy, these calcula-
tions may motivate theoretical work to efficiently determine
effective transport properties for a given mixture knowing
only the composition which do not rely on computationally
expensive simulations.

Future work may seek to study how the lattice formed by
these mixtures evolves when annealed to lower temperatures.
For example, as �crit/�i 
 1 for all species, the low-Z inter-
stitial defects may either be frozen in or migrate to lattice sites,
though this will be difficult to study directly with molecular
dynamics simulations owing to the long equilibration times
and low diffusion rates at low temperatures. Still, such simu-
lations may be interesting and their static structure factors may
provide useful insight for improving estimates of the effective
impurity parameter in accreting neutron stars.

This work may motivate future studies of structural proper-
ties in MCPs, such as diffusion, which is relatively unstudied
in the literature. Though this is conjecture, the intermediate
behavior in Q6 observed for low-Z species may generalize
to other crystalline properties, such as diffusion coefficients.
Following from linear mixing theory, low-Z ions likely have
higher mobility within the lattice, having less Coulomb energy

relative to the lattice average. Their larger (relative) thermal
energies may raise their diffusion coefficients relative to the
lattice average, having a greater tunneling probability for
lattice site hops. For example, Hughto et al. calculated dif-
fusion coefficients for the OCP and found that the diffusion
coefficients for a solid at the melting temperature are two or-
ders of magnitude lower than for a liquid [28]. We conjecture
that an intermediate diffusion regime exists in MCPs near the
melting temperature which may be studied in future work,
where low-Z constituents of the solid with �crit/�i > 1 diffuse
almost freely within the lattice, but with suppressed diffusion
relative to an purely liquid OCP due to the rigid lattice
structure. If diffusion rates evolve smoothly near �crit/�i = 1
in mixtures, then there could be a number of implications
for astrophysics. Such diffusion rates would be relevant for
the evolution of the crystal structure and composition both
during freezing and as the mixture evolves to lower effective
temperature, i.e., lower �crit/�MCP, specifically in freezing
white dwarfs and accreting neutron stars.
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