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Local details versus effective medium approximation: A study of diffusion in microfluidic random
networks made from Voronoi tessellations
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We measured the effective diffusion coefficient in regions of microfluidic networks of controlled geometry
using the fluorescence recovery after photobleaching (FRAP) technique. The geometry of the networks was
based on Voronoi tessellations, and had varying characteristic length scale and porosity. For a fixed network,
FRAP experiments were performed in regions of increasing size. Our results indicate that the boundary of the
bleached region, and in particular the cumulative area of the channels that connect the bleached region to the
rest of the network, are important in the measured value of the effective diffusion coefficient. We found that the
statistical geometrical variations between different regions of the network decrease with the size of the bleached
region as a power law, meaning that the statistical error of effective medium approximations decrease with the
size of the studied medium with no characteristic length scale.
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I. INTRODUCTION

Diffusion in porous media has been studied in several
biological contexts, such as protein transport inside the cell
[1,2], signaling in the brain [3,4], drug delivery in tumors [5],
and transport of ions in muscles [6,7]. It is acknowledged that
diffusion is slowed down in porous media both due to impen-
etrable obstacles that reduce the available space for diffusion
and to the intricate trajectories that particles need to describe
in order to circumvent the obstacles. The first effect can be
quantified in terms of the porosity of the medium, φ. The
second effect is usually described in terms of tortuosity, λ >

1, which quantifies the increase in path length that diffusive
particles travel within the medium. Hence, when diffusion of
some species is measured in the porous medium filled with a
given fluid, an average, or effective diffusion coefficient, Deff,
is obtained, which is smaller than the diffusion coefficient that
would be measured for the same species in the same fluid but
in free space, D0.

Typical experimental values of Deff/D0 are ≈0.44 for
packed beds of beads [8], ≈1 for the brain extracellular space
[4], and between 0.23 and 0.59 for the endoplasmic reticulum
[9]. In real biological situations, however, one has to deal
with complex processes that further slow down the diffusive
transport, such as a usually unknown viscosity of the ambient
fluid, binding of the diffusive molecules to macromolecular
complexes, hindering to diffusion due to molecular crowding
[10,11] or geometrical blockage of large diffusive molecules
in narrow passages [12], and permeating boundaries [13].
In order to asses the relevance of these effects, it would be
desirable to isolate them from the purely geometrical ones of
the medium.

*mcordero@ing.uchile.cl

Theoretical models describing the porous medium as the
space around a loosely packed bed of solid spheres [14], or a
collection of twisted capillaries [15], yield values of Deff/D0

of the same order of magnitude as experiments. However,
these models have poor predictive power when applied to
real cases, since it is not clear if they capture the essential
geometrical features of a particular medium. Numerical sim-
ulations have delivered useful information [16], but due to
practical limitations they have usually simplified the studies
to periodic lattices of polyhedral obstacles [17], which are
inherently anisotropic and unrealistic.

Effective medium approximations have been developed to
describe the effective diffusion coefficient of porous media
based on Voronoi and Delaunay tessellations [18–20]. Ef-
fective medium approximations imply a description over a
length scale much larger than any characteristic geometrical
length scale of the medium. In this way, local geometrical
details are averaged and only global features emerge. How-
ever, measurements and simulations of diffusion in porous
media are performed in samples of finite size or in reduced
regions within a sample, and hence the results can reflect
the effective properties of the medium and/or local details of
the measurement position [21]. The correct description of a
porous medium as an effective one depends on the correct
determination of a minimum length scale over which the
medium can be described as an effective one. We explore
this idea by studying diffusion in networks of channels at
different length scales compared to the characteristic scale
of the networks. For this, we propose an experimental ap-
proach in which two-dimensional networks of microchannels
are fabricated from Voronoi tessellations to simulate random,
globally isotropic porous media. We measure the diffusion of
fluorescein in water, a small molecule for which geometrical
hindering is negligible in the micrometric channels used,

2470-0045/2020/101(2)/023110(10) 023110-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4297-8798
https://orcid.org/0000-0002-5601-6103
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.023110&domain=pdf&date_stamp=2020-02-26
https://doi.org/10.1103/PhysRevE.101.023110


PONCE AND CORDERO PHYSICAL REVIEW E 101, 023110 (2020)

FIG. 1. Left: Photography of an assembled microfluidic channel.
Inlet and outlet tubes are visible. Right: Fluorescence micrography
of a region of one microfluidic network. White areas correspond to
channels, filled with the fluorescent solution.

as well as binding and permeation through the walls. The
diffusive properties of the networks are measured locally in
different regions of the sample with the fluorescence recovery
after photobleaching (FRAP) technique [22–25]. In order to
test the accuracy of the effective medium approximation, the
dispersion of the measured diffusivity in different places of the
networks is monitored as the size of the measurement regions
is systematically increased. Our results are then qualitatively
explained with a simple model that relates the effective dif-
fusivity measured with the FRAP technique to the permeable
perimeter of the measurement region.

II. MATERIALS AND METHODS

A. Design of networks

Random networks of channels were designed and fabri-
cated [26]. Briefly, Voronoi polygons were generated from a
set of n random seed points inside a square region of sides
15 mm. The edges of the Voronoi polygons, which become
the microchannels after the fabrication process, were then
assigned with a given width w between 13 μm and 125 μm.
The disorder of the network can be adjusted from the initial set
of seed points, by imposing a minimum distance d between
any pair of points. This is quantified by the parameter α =
d/d0, where d0 =

√
2A0/(n

√
3) is the distance between the

seed points in a completely regular network (a honeycomb
network), A0 = (15 mm)2 being the area of the square region
[27]. Hence, α = 1 corresponds to a completely regular hon-
eycomb lattice, while disorder increases as α decreases. In our
study, we arbitrarily fixed α = 0.3.

Inlet and outlet sections were added at opposite sides of the
network, and then the designs were used to fabricate negative
masters of the microchannels through optical lithography in
SU-8 photoresist (GM1070, Gersteltech Sarl). The height of
the molds was set at 50 μm. From the masters, microfluidic
networks were fabricated in polydimethylsiloxane (PDMS)
(Sylgard 184, Dow Corning) using standard soft lithography
techniques [28]. Inlet and outlet access holes were punched
before sealing the PDMS networks against a glass slide by
oxygen plasma activation. An example of a microfluidic net-
work is shown in Fig. 1.

For each network we can control the number n of seed
points, which determines an average length channel 〈L〉. Inde-
pendently, we can control the width w of the channels. Larger
channel width increases the porosity φ of the network, which

 = 0.09  = 0.24  = 0.42  = 0.62

FIG. 2. Micrographies of networks with different porosities (net-
works B–E from Table I). As the width of the channels increases,
the reticular aspect of the network is lost. Color is inverted, so dark
regions represent fluorescent-filled channels.

we define as usual,

φ = Achannel

A0
, (1)

where Achannel is the total area of the microchannels in the net-
work. As φ increases, the network resembles less a collection
of narrow channels, as shown in Fig. 2.

Several designs with different number of seed points and
different channel widths, hence different φ, were fabricated.
All the channels used in this study are listed in Table I.

Besides the random networks, one circular chamber of
diameter 1.5 cm and height 50 μm was fabricated with SU-8
walls on a glass slide, filled with the fluorescent solution and
closed with a cover slip in order to measure diffusion in free,
two-dimensional space. Finally, a flow-focusing microchannel
was used to measure the diffusion coefficient in flow by mea-
suring the widening of a central fluorescent solution sheathed
by two water streams [29].

B. FRAP experiments

After fabrication, the networks were filled with an aqueous
solution of fluorescein (Kingscote Chemicals) at a concentra-
tion of 0.5 mM. Microchannels were mounted on an inverted
microscope (Nikon TS100) with epifluorescence illumination,
and observed with a CMOS camera (DCC1545M, Thorlabs)
at a rate between 1 and 1/5 frames per second (fps).

The effective diffusion coefficient of fluorescein was mea-
sured through the FRAP technique. The technique consists
in irreversibly inactivating (bleaching) the fluorescence of
fluorescein molecules with a high intensity excitation il-
lumination in a small region. Afterwards, fluorescence is
observed with a lower intensity excitation illumination. As
bleached molecules diffuse out of, and nonbleached fluores-
cent molecules diffuse into the bleached area, the fluorescence
is recovered in the bleached region. Fluorescence recovery
curves are then fitted with a model based on the diffusion
equation [30,31] (see the Appendix for details on the fitting

TABLE I. Networks used within this study.

Network n 〈L〉(μm) w(μm) φ

A 500 458 82 0.22

B 2000 227 13 0.09
C 38 0.24
D 75 0.42
E 125 0.62

F 10000 101 24 0.25
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 = 1.9  = 2.5  = 5.4  = 6.8  = 7.8 = 3.2  = 4.2

FIG. 3. Color-inverted micrographies of bleached areas with dif-
ferent γ . Images correspond to network E in Table I.

procedure) and an effective diffusion coefficient is obtained.
In our experiments, bleaching was achieved using the highest
intensity of the epifluorescence excitation illumination, fo-
cused into the sample with a 10X, 0.25 NA objective during
5 s. The radius R of the bleached area was controlled with a
diaphragm between 134 μm and 1.4 mm. The time scale for
diffusion in a two-dimensional circle of radius R is given by

τ0 = R2

4D0
. (2)

Considering the diffusion coefficient of fluorescein in water
at room temperature, which was measured at D0 = 6.66 ×
10−10 m2/s (see Sec. III A), τ0 ranges between τ0 = 7 s and
τ0 = 454 s for the given values of R. For the smaller values
of R, the bleaching duration is not negligible in front of
τ0. However, our fitting method uses an approximate initial
condition after the bleaching, as explained in the Appendix.

Recovery of the fluorescence was observed through a 2X,
0.06 NA objective using a dimmed excitation illumination
to minimize further bleaching (1/32 times the intensity used
for bleaching), during a period of time that ranged between
15 min and 60 min, depending on R.

Depending on the radius of the bleached zone, more or less
details of the network are included in the bleached area. To
quantify the effect of geometrical details on the recovery of
fluorescence, we define the homogeneity parameter

γ = R

〈L〉 . (3)

A value of γ < 1 indicates that only a fraction of a straight
channel is bleached. On the other hand, γ � 1 means that
many straight segments of the networks are included in the
bleached area, and geometric details of the network are aver-
aged in the bleached region. Examples of different bleached
areas with various values of γ are shown in Fig. 3.

C. Recovery curves

Recovery curves were obtained in the following manner.
Prior to the experiment, a prebleaching image of the network
was recorded with the 2X objective and low excitation inten-
sity. A binary mask M of the bleached region was obtained
by dividing the prebleached image and the first postbleaching
image, then binarizing with application of a threshold [see
Figs. 4(a)–(c)]. A complementary mask, Mc was also obtained
by subtracting the mask M to the binarized prebleaching
image, as shown in Fig. 4(d). The average fluorescence in the
bleached and complementary regions were then computed as

Fin =
∑

i, j Ii j (t )Mi j∑
i, j Mi j

, (4)

Fout =
∑

i, j Ii j (t )Mc
i j∑

i, j Mc
i j

, (5)

FIG. 4. Procedure for obtaining the bleached and complementary
masks. (a) Image before photobleaching. (b) First image after photo-
bleaching. (c) and (d) Bleached and complementary masks.

where Ii j (t ) represents the gray value of the pixel (i, j) of the
postbleaching image I at time t , and Mi j and Mc

i j represent the
value of the masks M and Mc at the pixel (i, j).

As fluorescent molecules diffuse into, and bleached
molecules diffuse out of the bleached area, the average fluo-
rescence of the bleached area, Fin increases and the average
fluorescence of the complementary region, Fout, decreases.
However, unwanted, inhomogeneous, non-negligible bleach-
ing occurs during observation of the fluorescence recovery,
causing Fin(t ) not to increase monotonically, and Fout(t ) to
decrease both due to diffusion and bleaching, as shown in
Fig. 5(a). To correct for this, images of the same region of the
microfluidic network are obtained with the same illumination
and acquisition protocol, but without the initial bleaching. In
this way, only the bleaching due to observation is recorded
as a reference. The average fluorescence of the bleached
and complementary regions for these reference images are
computed in the same way, as

F ref
in =

∑
i, j I ref

i j (t )Mi j∑
i, j Mi j

, (6)

F ref
out =

∑
i, j I ref

i j (t )Mc
i j∑

i, j Mc
i j

, (7)

where I ref
i j represents the gray value of pixel (i, j) of the refer-

ence image I ref at time t . Hence, the fraction of fluorescence
recovered due to diffusion in the bleached area with respect to
the complementary region is defined as

F (t ) = Fin(t )/F ref
in (t )

Fout(t )/F ref
out (t )

. (8)

Effective diffusion coefficients are obtained by adjusting
F (t ) to a numerically obtained model recovery curve, similar
to what is described in Ref. [30] but taking into account the
intensity profiles for observation and bleaching, as explained
in the Appendix. The recovery curve F (t ) is not normalized
between 0 and 1, as is usually done, in order to increase the
sensitivity of the fit. An example of a recovery curve F (t )
together with the best fit is shown in Fig. 5(b).
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FIG. 5. (a) Evolution of the average fluorescence of the bleached
and complementary regions. (b) Recovery curve F (t ) and the cor-
responding fit. The curves corresponds to a FRAP experiment in
network F with γ = 13.2.

The fitting procedure has two fitting parameters, the
amount of bleaching, G, and the characteristic time scale

τ = R2

4Deff
, (9)

from which the effective diffusion coefficient, Deff, is
obtained.

III. RESULTS

A. Absolute diffusion coefficient of fluorescein

The absolute diffusion coefficient of fluorescein in wa-
ter, D0, was measured in two different ways. First, FRAP
measurements were performed in the circular quasi-two-
dimensional chamber. Two different bleaching radii were
used, R1 = 198 μm and R2 = 567 μm. The same numeri-
cal fitting procedure used in the random networks was em-
ployed here, yielding the values of D(1)

0 = (6.77 ± 0.23) ×
10−10 m2/s and D(2)

0 = (6.35 ± 0.25) × 10−10 m2/s, respec-
tively. Errors represent the standard deviation of five repeti-
tions, and are below 5%.

(a)

1 mm

(b) (c) (d)
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FIG. 6. (a)–(d) Images of FRAP experiments with varying num-
ber of feeding channels. All cases correspond to network A in Table I.
Dashed red circles indicate the bleached region. (e) Normalized ef-
fective diffusion coefficient, Deff/D0 for different number of feeding
channels, N .

In order to validate our fitting model, the diffusion co-
efficient was determined independently in the flow-focusing
microchannel as reported in Ref. [29] and compared to
the values presented above. Briefly, a central stream of the
fluorescent solution and two flanking water streams were
injected at constant flow rates. For a fixed location of the
microchannel, the fluorescence intensity profile of the central
stream was obtained and fitted to a Gaussian curve. The
width of the Gaussian curve increases with the downstream
location, from which the diffusion coefficient was obtained at
D(3)

0 = (6.87 ± 0.61) × 10−10 m2/s. The error corresponds to
the standard deviation of seven measurements performed with
different flow rates.

All results thus obtained agree within experimental error,
which validates our fitting procedure. In average, the free-
space diffusion coefficient for fluorescein in water was con-
sidered to be D0 = (6.66 ± 0.69) × 10−10 m2/s.

B. Number of feeding channels

We investigate the effective diffusion coefficient in small
bleached regions located at the intersection between channels,
as shown in Figs. 6(a)–6(d). The objective is to establish
the role that the number of channels that converge into the
bleached region, N , has in the recovery process. These exper-
iments were performed in network A with a bleaching radius
R = 251 μm, which is smaller than the average length of the
network’s channels (γ = 0.5).

For each number N of converging channels, five regions
were randomly selected in the network. The average effective
diffusion coefficient, Deff, normalized by D0 is plotted as
a function of the number of feeding channels in Fig. 6(e),
with error bars representing the standard deviation of the five
measurements. The effective diffusion coefficient increases
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FIG. 7. (a) Normalized effective diffusion coefficient, Deff/D0

as a function of γ for network F. (b) Standard deviation of Deff,
normalized by Deff, for ten realizations in arbitrary locations of the
same network, at fixed γ . The dashed line marks the 5% accuracy
limit of our measurements.

with the number of feeding channels, from a value of ≈0.25D0

for N = 2 to ≈0.45D0 when N = 6.

C. Effective medium

In order to determine the minimum radius R for which the
network can be considered as an effective medium, we per-
formed FRAP experiments using a single network (network
F from Table I) and we vary the size of the bleached region,
from γ = 1.33 (R = 134 μm) to γ = 13.59 (R = 1373 μm).
For each value of γ , ten FRAP experiments were performed in
random locations of the network to obtain an effective diffu-
sion coefficient Deff and its statistical variation �Deff from the
average and standard deviation of the obtained coefficients.

The results are shown in Fig. 7. In all cases, Deff/D0 < 1,
indicating that the geometry of the network slows down the
diffusion coefficient, as expected. The average values of Deff

vary between 0.55D0 and 0.62D0 in a nonmonotonic way as
γ is increased in a decade [Fig. 7(a)].

The dependence of the fractional error �Deff/Deff with γ is
shown in Fig. 7(b). For a small bleached area, the dispersion
in the fitted diffusion coefficient is larger than 20%. As the
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FIG. 8. Normalized effective diffusion coefficient, Deff/D0 as a
function of the porosity φ for fixed γ = 3.99.

size of the bleached region increases, �Deff rapidly decreases.
For γ � 10, �Deff becomes comparable to the characteristic
error of the method, which is estimated at ≈5% [dashed line
in Fig. 7(b)], according to the measurements for D0 presented
in Sec. III A.

D. Available area

Finally, in order to determine the effect of the available
area for diffusion, we perform experiments in networks with
the same geometry but varying channel width (networks B–
E from Table I). In these networks, the original Voronoi
polygons are the same, and only the channel width is varied.
In all cases, we fix the size of the bleached region at γ = 3.99
(R = 790 μm). Six locations were randomly chosen in the
geometry to perform the FRAP experiments. We used the
same six bleaching positions in all networks, as can be noted
in Fig. 2, although minor displacements occurred between
different networks.

The results are shown in Fig. 8. The point φ = 1 cor-
responds to a hypothetical network for which channels are
so wide that merge into a quasi-two-dimensional chamber,
in which case the absolute diffusion coefficient D0 should
be recovered. The error bar in this case corresponds to the
propagated error of the three different measured values of
D0 (Sec. III A). As channels become more slender and φ

decreases, the normalized effective diffusion coefficient de-
creases. In these cases, the error bars represent the standard
deviation in the Deff obtained in all six locations for each
network. Note that, for the chosen size of the bleached region,
the dispersion in the results between different regions is
expected to be higher than the precision of the method (5%),
which is consistent with the values obtained for the error bars
(between 5% and 11%).

IV. MODEL FOR DETERMINATION OF A
CHARACTERISTIC LENGTH SCALE

FRAP experiments in small regions of our random net-
works of channels, presented in Sec. III B, demonstrate the
relevance of the number of channels that feed the bleached
region with the diffusing species. On the other hand, the
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dependence of Deff with the size of the bleached region was
studied in Sec. III C, in an attempt to establish the scale
at which the random network can be approximated as an
effective medium. In order to relate these two results, we
present here a model based on the diffusion equation and
on the statistical characteristics of the geometries used to
fabricate the networks.

Consider, similarly to the experiments, the region consist-
ing of the intersection between a two-dimensional random
network and a circle of radius R, to which we call �. As-
suming an excitation illumination of uniform intensity, I , the
fluorescence recorded within � is given by

F�(t ) = qI
∫

�

c(r, t )d2r, (10)

where c(r, t ) is the concentration of nonbleached fluorescein
molecules and q is a constant that accounts for all efficiencies
of absorption, emission and detection of fluorescence. In the
following, we will omit the constants q and I .

Neglecting the unwanted bleaching due to observation that
occurs in the experiments, the rate of change of fluorescence
recorded within the region is given by the incoming flux of
fluorescent molecules into �. In comparison with free space,
where the diffusive flux comes across the whole circumfer-
ence of radius R, in the random network the incoming flux
comes only through the N feeding channels that intersect the
circumference,

Ḟ�(t ) = −
N∑

i=1

Ji. (11)

The fluxes Ji are given by Fick’s first law integrated in the
corresponding portion of the circumference, of perimeter Pi,
and oriented at an angle θi,

Ji = −D0

∫
Pi

∇c · r̂d
 ≈ −D0
∂c

∂r

∣∣∣∣
(R,θi,t )

Pi. (12)

Assuming isotropy, we write

Ḟ�(t ) = D0
∂c

∂r

∣∣∣∣
(R,t )

N∑
i=1

Pi (13)

= Deff2πR
∂c

∂r

∣∣∣∣
(R,t )

, (14)

where we can identify the effective diffusion coefficient as

Deff = D0

2πR

N∑
i=1

Pi. (15)

This suggests that an important feature of a patterned space
in its diffusing properties, at least as measured with FRAP
experiments, is the fraction of open area that transports the
diffusing species into the bleached region. This picture is
incomplete, since the concentration field in the effective
medium, say ceff, is different to the actual concentration of
the species, c, and should appear in Eq. (14). However, if we
assume that the argument is qualitatively correct, it yields to
an interesting conclusion regarding the definition of a length
scale appropriate to define an effective medium, at least in
channels based of Voronoi polygons like ours, as we shall
present next.
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0.4

0.5
(a)

10-1 100 101 102
10-2

10-1

100

101(b)

FIG. 9. (a) Perimeter fraction of feeding channels as a function of
γ . (b) Fractional error of the perimeter fraction of feeding channels
as a function of γ . The solid line represents the fit of Eq. (16).

As illustration, we consider the geometry of network F
in Table I. All initial Voronoi polygons were stored in a
MATLAB routine and shrunk to produce the simulated network
of 24 μm-wide channels. At 121 equally spaced locations, cir-
cles of increasing radius R were drawn and the total perimeter
of feeding channels, P = ∑

Pi, was computed for each loca-
tion and radius. Results are presented in Fig. 9 as a function
of γ , which is defined, as in the experiments, as γ = R/〈L〉.
The average perimeter fraction, P/2πR, is shown in Fig. 9(a).
Little variation occurs in the whole investigated range of
γ , which spans over two decades. Error bars represent the
standard deviation of the perimeter fraction, �P/2πR, which
decrease dramatically as γ increases. Figure 9(b) presents the
normalized standard deviation of P . As demonstrated by the
linear trend in the log-log plot, �P/P follows a power law
with γ , which was fitted as

�P
P = 0.34 γ −0.49. (16)

The fractional error, �P/P , is important to determine
whether or not the network can be considered as an effective
medium at the scale γ . Here, �P/P quantifies the effects
of geometrical variation of inlet area between the different
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regions of the random network, and thus, for a truly effective
medium in which the location of measurement is irrelevant,
�P/P should be zero. Our results indicate that �P/P de-
creases with γ , i.e., that the variations in geometry between
different regions decrease as the size of the considered region
increases. Although the power law does not allow us to de-
termine a characteristic length scale over which the effective
medium approximation can be used, our results do indicate
that the statistical differences between regions can be made
as small as wanted by considering sufficiently large regions.
Typically, one should aim to decrease the dispersion to the
accuracy limit of the method, which was estimated at 5%
in our case. Experimentally, for our Voronoi-based random
networks, this limit was reached for bleached regions of
radius approximately 10 times larger than the mean cell length
[Fig. 7(b)].

V. DISCUSSION

We have presented here an experimental approach to in-
vestigate the relevance of the geometry of porous media
to diffusion properties measured with the FRAP technique.
Our experiments are performed in controlled microfluidic
environments, whose geometry is based on Voronoi polygons.
However, other two-dimensional geometries can be used as
well, such as assemblies of circular obstacles or regular
polygons. This could be interesting in order to determine the
relevance of geometrical features that are not present in the
Voronoi tessellations, such as dead ends, large accumulation
chambers, or large-scale anisotropy. Moreover, a similar mi-
crofluidic approach could complement recent efforts in the
numerical reconstruction of cellular structures [9,32]. Indeed,
microfluidic networks of virtually any two-dimensional ge-
ometry can be fabricated, which can aid in determining the
role of geometry in the diffusive transport. Unfortunately,
however, no standardized methods exist yet to fabricate com-
plex three-dimensional microfluidic geometries, limiting the
applicability of this idea to two-dimensional networks.

The method used in this work to generate the porous media,
based on Voronoi polygons, can be used to vary independently
the whole geometry of the network (i.e., its tortuosity) by
changing the seed points used to generate the polygons, or its
porosity, by changing the width of the channels. Keeping con-
stant the tortuosity of the networks demonstrates the relevance
of the porosity in the effective diffusion coefficient (networks
B–E and Fig. 8). It is less evident to keep the porosity constant
and vary the tortuosity in a systematic way. Comparison
between networks C [φ = 0.24, Deff = (0.80 ± 0.06)D0, see
Fig. 8] and F [φ = 0.25, Deff = (0.76 ± 0.03)D0, Fig. 7(a)]
suggests that reduction of available space, and not the partic-
ular path length, is the major geometric source of the slowing
down of diffusion in porous media compared with free space.
These results are consistent with existing work with aligned
and staggered polygons [5].

The FRAP technique that we have used measures
long-time, large-scale, collective diffusion of fluorescent
molecules. Unlike other methods based on single molecule
tracking, FRAP is unable to detect anomalous diffusive behav-
ior. Hence, no length scale can be extracted below which sub-
diffusive behavior occurs [21,33]. Although at larger scales

simple diffusive transport is recovered, the obtained values of
Deff only correspond to the effective property of the network
if the bleached region is sufficiently large to contain enough
geometrical information of the network. Our experiments
with increasing size of the bleached region show that, in
general, the measured Deff decrease for larger bleached areas
[Fig. 7(a)], which is consistent with previous works [33]. For
γ � 3, variation in Deff is less important, suggesting that we
have reached the simple diffusion regime.

For small regions where the number N of feeding channels
can be easily counted, Deff was found to increase with N . At
this small scale neither the effective medium approximation
nor the simple diffusion regime are expected to hold. Hence,
the values of Deff found in these experiments do not represent
the effective diffusivity of the network, but reflect local details
in and around the bleached region. Therefore, these results in-
dicate only that fluorescence recovers faster when the number
of feeding channels is larger.

For larger regions, where N is not easily determined, we
have measured values of Deff that fluctuate around a mean
value, with a dispersion that decreases as the size of the
bleached region increases. To explain both results, we have
presented a simple model, which states that the dispersion
of the effective diffusion coefficient measured in different
regions can be explained by the variations of the perimeter
fraction that connects the bleached and the outer regions.
From the model, we found no characteristic length scale over
which these variations become negligible. Note that this does
not mean that no characteristic length scale could be defined
for a Voronoi network in other ways. Indeed, a characteristic
length scale can be defined, for example, as the mean length
of the Voronoi polygons edges, which corresponds to L in
our case. However, we have failed in relating this length
scale to an appropriate size for which the network can be
statistically approximated to a homogeneous medium. Also,
our finding does not prevent the existence of a mean effective
diffusion coefficient for each Voronoi network, and hence
a corresponding effective medium description. Instead, we
find that the value of Deff measured at different locations of
the network will present deviations around the mean value,
and that these statistical variations decrease as a power law
with the size of the bleached region, with exponent ≈ − 0.5,
and thus can be made as small as the inherent accuracy limit
of the FRAP method.

VI. CONCLUSIONS

In conclusion, we have presented an experimental ap-
proach to measure the effective diffusion coefficient of net-
works of channels, isolating the geometrical effects only. Our
networks are random collections of channels based on Voronoi
tessellations. Systematic FRAP measurements with increasing
sizes of the bleached region show that the effective medium
approximation improves as the bleached region increases. We
have shown that the measured effective diffusivities fluctuate
around a mean value with a dispersion that decreases as the
measurement region increases. Our model suggests that this
dispersion decreases as a power law with the size of the
bleached region.
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These results call for caution in the analysis of FRAP
experiments in biological systems, where bleaching a suffi-
ciently large region is not necessarily possible and multiple
equivalent regions in the same system may not be available.
Several measurements in different samples is a logical choice,
and in that case, together with the natural geometrical vari-
ability that can occur between samples, one should consider
also the error associated to the finite extent of the bleached
region in the effective medium approximation.
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APPENDIX: MODEL FITTING

The model used for fitting differs from traditional models
[30] in the use of the measured profiles of the bleaching and
observation illumination intensities, similar to Ref. [34]. For
the model, we define the intensity in the bleached and outer
regions, F model

in and F model
out , assuming that they are proportional

to the concentration of nonbleached fluorescent molecules,
c(r, t ) and to the excitation intensity of the observation illu-
mination, Iobs(r),

F model
in = 2π

∫ R

0
Iobs(r)c(r, t )d2r, (A1)

F model
out = 2π

∫ Rout

R
Iobs(r)c(r, t )d2r. (A2)

In Eq. (A2), we defined Rout as the radius of the largest circle
that can be inscribed within the field of view.

The concentration is obtained from the solution of the
diffusion equation using the Fourier transform,

c(r, t ) = 1

2π

∫
e−i�k·�r ĉ(k, 0)e−Deffk2t d2k, (A3)

where ĉ(k, 0) is the Fourier transform of the concentration
profile at t = 0. Note that we are assuming radial symmetry
and the existence of an effective medium.

Let Ib(r) be the bleaching illumination profile, then

c(r, 0) = c0e−GIb(r), (A4)

where G is the product between the absorption coefficient of
the fluorescent solution and the duration of the bleaching.

After some algebra we obtain

F model
in =

∫ ∞

0

αJ1(Kα)

K
(Kφ(K ) − J1(K ))e−K2T dK + α2

2
,

(A5)

F model
out =

∫ ∞

0

J1(K ) − αJ1(Kα)

K
(Kφ(K ) − J1(K ))e−K2T dK

+ 1 − α2

2
, (A6)

where α = R/Rout, K = kR, T = t/τ , and the auxiliary func-
tion φ is

φ(K ) =
∫ 1

0
e−GIb(r)J0(Kr)rdr. (A7)

The model equation used for fitting is, then

F model = F model
in

F model
out

. (A8)

In order to obtain the observation and bleaching illumi-
nation profiles, we used the circular quasi-two-dimensional
chamber. For the observation illumination profile, we assumed
that the concentration of nonbleached fluorescent molecules
is uniform before any measurement. One prebleaching image,
F0, was obtained and averaged over circular regions of one
pixel width. The resulting profile is, up to a constant, equal
to the observation illumination profile Iobs. Since the constant
cancels out in Eq. (A8), we normalize the result by the value at
r = 0, where the observation illumination intensity is largest.

For the bleaching illumination profile, the solution was
bleached for 5s with the corresponding diaphragm aperture
and one image, Fb, was immediately obtained. This image was
divided pixel by pixel by the reference one, F0, and the result
was averaged over circular regions of one pixel width. The
result, according to Eq. (A4) corresponds to

Fb(r)

F0(r)
= e−GIb(r). (A9)

To eliminate the factor G, we use the value at the center,

Ib(r)

Ib(0)
= ln [Fb(r)/F0(r)]

ln [Fb(0)/F0(0)]
. (A10)

The constant Ib(0) can be absorbed in G, so its value is
irrelevant.

For small values of R, the characteristic diffusion time
scale τ0 may be comparable to the 5 s of bleaching time. In
fact, the postbleaching image Fb corresponds to the initial
condition for diffusion in the quasi-two-dimensional chamber,
and includes the diffusive transport that occurs during the
bleaching. Therefore, our measured Ib can be considered as
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FIG. 10. Examples of observation and bleaching profiles. The
dashed lines show R = 198 μm and 1/e.
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FIG. 11. (a) Recovery curve (black line) and best fit (red line).
The dashed and dot-dashed lines represent the model curves with G
decreased and increased in 10%, respectively. In (b), the same curves
are normalized between 0 and 1. The curves with G decreased and
increased in 10% are virtually indistinguishable from the best fit.

the bleaching profile that would lead to the measured initial
condition if the bleaching was instantaneous.

Figure 10 shows the observation and bleaching illumina-
tion profiles obtained for R = 198 μm. The bleaching radius
R was obtained from the bleaching profile as the location
where Ib falls below 1/e. Note that the observation profile is
quite flat. Note also that there is noise in Ib. However, we did
not find any improvements in the fitting process by smoothing
the curve.
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F in
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inre
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FIG. 12. Recovery curve based only on the bleached region, from
the same data of Fig. 5.

Unlike common practice, we do not normalize the recovery
curve between 0 and 1, because our bleaching is not complete
and in this way we improve the sensitivity of the fit. The model
has two fitting parameters, G and τ , but the value of G has
a large influence on the initial value of F model, as shown in
Fig. 11(a), while the value of τ influences the overall shape
of the curve. Thus, the use of the raw curve F (t ) facilitates
the fitting of G, letting, in practice, τ as the only parameter
for the shape of the recovery curve. Instead, normalized
curves change very little with changes in the value of G, as
shown in Fig. 11(b), and therefore the sensitivity of the fit
is poorer.

Finally, a comment regarding the use of the bleached and
outer regions. Since we use a fluorescence microscope, the
illumination can fluctuate slightly in time, leading to noise in
the fluorescence signals. This is illustrated in Fig. 12, which
shows Fin/F ref

in for the same data of Fig. 5. Normalization with
the fluorescence recorded outside the bleached region cancels
out this noise, leading to a much smoother recovery curve F (t )
as shown in Fig. 5(b).
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