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Bicritical states in a vertical layer of fluid under two-frequency temperature modulation
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In this paper, the effect of two-frequency modulation of boundary temperatures on the onset of natural
convection in a layer of fluid (with Prandtl number <12.5) between two vertical parallel planes is considered.
The ratio of the two forcing frequencies and the mixing angle for the amplitude of modulation provide an efficient
way of controlling the underlying instability. At the onset of instability, the fluid layer executes harmonic and
subharmonic oscillations. The transition between harmonic and subharmonic responses is found to occur through
an intermediate bicritical state. In addition to bicritical states, the instability is found to exhibit an almost
tricritical state for a particular combination of the modulation parameters. The onset of the instability depends
upon the modulation parameters and Prandtl number of the fluid.
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I. INTRODUCTION

The problem of natural convection in a vertical layer with
differentially heated sidewalls is a well studied instability
problem. Several experimental and theoretic studies have
been performed on natural convection in viscous fluid-filled
vertical enclosures with excellent correlation between theory
and experiment [1–7].

The theoretical investigation on stability of the fluid layer
was initiated by Batchelor [3]. The findings showed that the
layer becomes unstable for a sufficiently large temperature
gradient across it. The instability in the layer was observed
to set in either as a stationary mode or as a traveling wave
mode, depending on the Prandtl number of the fluid and the
temperature gradient. For fluids with small Prandtl number,
the instability occurs in the form of a steady two-dimensional
pattern of convection cells. On the other hand, for fluids with
Prandtl number greater than 12.5, the instability is observed
to be a traveling wave mode [8].

This type of investigation has applications in thermal in-
sulation of buildings, cooling of electric transformers and
electronic devices, heat evacuation in power plants, air con-
ditioning, etc.

In order to control the heat transfer across a differentially
heated fluid layer, one way is to excite the layer through
a time-periodic external forcing. An immediate and easy
method is to shake the layer mechanically [9,10]. Yet another
way is to heat the sidewalls time periodically. Such a periodic
external forcing results in a time-periodic basic state consist-
ing of a steady component and a time-periodic component
with zero temporal mean. After a sufficiently large temper-
ature gradient is developed across the fluid layer, the layer
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is observed to execute oscillations which may be harmonic,
subharmonic, or quasiperiodic depending on the modulation
parameters and Prandtl number of the fluid [10,11]. In some
cases, the instability may arise as oscillations having two dis-
tinct wave numbers; the corresponding state is called a bicrit-
ical state. The basic state can be stabilized or destabilized by
proper tuning of the amplitude and the frequency of modula-
tion. These types of phenomena have been addressed theoreti-
cally and experimentally in well known instability problems
such as the classical Stokes layer instability [12,13], Fara-
day instability [14–18], the temperature-modulated Rayleigh-
Bénard convection [19–26], and Rayleigh-Bénard convection
under gravity modulation [9,27–29].

Recently, Singh and Bajaj [30] have found that the features
analogous to the aforementioned instability problems can be
realized numerically in natural convection in a vertical fluid
layer with time-periodic heating of the boundaries. This work
is a continuation of the earlier paper of the authors [30] and
aims at the investigation of the temperature modulated natural
convection in the vertical fluid layer (hereafter referred to as
TMNC) for bicritical states. The time-periodic modulation is
assumed to consist of a mixture of two frequencies, which
is known to be more appropriate than single-frequency forc-
ing for studying bicritical states [15,16,25,31–35]. To seek
bicritical states in TMNC, we employ the well known Fourier-
Floquet analysis.

The problem is described in Sec. II in which the basic
state is obtained. A linear instability analysis of the basic
state is carried out by reducing the problem to an equivalent
generalized eigenvalue problem for the control parameter.
The numerical results are discussed in Sec. III for Prandtl
number of air. Prandtl number dependence of the instability is
discussed in Sec. IV. The conclusions are presented in Sec. V.

II. SYSTEM AND PERTURBATION ANALYSIS

We consider a viscous, incompressible, and Newtonian
fluid between two rigid planes x = ±d/2, d > 0 obeying
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Oberbeck-Boussinesq approximation [36]. The lateral left and
right planes are maintained at temperatures T ∗

1 − ε∗F (ω∗t∗)
and T ∗

2 + ε∗F (ω∗t∗), respectively, where T ∗
1 > T ∗

2 � 0 and

F (ω∗t∗) = cos χ cos{mω∗t∗ + φ} + sin χ cos{nω∗t∗},
wherein ε∗ � 0 and ω∗ > 0 are the amplitude and the basic
frequency, respectively. The two forcing frequencies are ω∗

1 =
mω∗ and ω∗

2 = nω∗, where m and n are coprime positive
integers. The parameter χ � 0◦ is the mixing angle which
controls the relative amplitudes of the modulation correspond-
ing to the two forcing frequencies. The angle φ ∈ [0◦, 180◦]
denotes the phase shift between the two forcing frequencies.

The length, time, velocity, and temperature are scaled by
the quantities d , 1/ω∗, κ/d , and �T ∗ = T ∗

1 − T ∗
2 , respec-

tively, where κ is the thermal diffusivity of the fluid. Using
these scales in the balance equations for mass, momentum,
and heat, the following dimensionless parameters arise:

Ra = αd3ρ0g�T ∗

κη
; σ = η

ρ0κ
,

ε = ε∗

�T ∗ ; ω = d2ω∗

κ
, (1)

where Ra is the Rayleigh number and σ is the Prandtl number.
Also, ε and ω are the dimensionless amplitude and basic

frequency of modulation, respectively. In this view, ω1 = mω

and ω2 = nω are the dimensionless measures of the two
forcing frequencies. The various other symbols appearing in
(1) are defined as follows: g and η are the gravitational acceler-
ation and the coefficient of viscosity of the fluid, respectively;
ρ0 is the fluid density at the reference temperature T ∗

0 =
T ∗

1 +T ∗
2

2 ; α = 1
ρ0

∂ρ

∂T ∗ , where ρ is the fluid density at temperature
T ∗ given by the equation of state as follows:

ρ = ρ0{1 − α(T ∗ − T ∗
0 )}. (2)

For convenience, we take

T = T ∗ − T ∗
0

�T ∗ (3)

as the dimensionless form of the temperature of the fluid.
The fluid layer is confined to interior of the domain  =
[− 1

2 , 1
2 ] × R × R (see Fig. 1). The dimensionless fluid ve-

locity in the basic state corresponds to an antisymmetric
parallel time-periodic shear flow along the vertical with the
vertical component RaVe(x, t ) having zero net flux across the

layer, that is,
∫ 1

2

− 1
2

Ve(x, t )dx = 0, and a time-periodic basic

temperature T = Te(x, t ) such that

Ve = x

6

(
x2 − 1

4

)
+ εσ Re

⎡
⎣ 2∑

j=1

f1(x, ω j ) − fσ (x, ω j )

(1 − σ )ιω j
exp{ι(ω j/ω)t + ι(2 − j)φ}

⎤
⎦, σ �= 1

Te = −x + ε Re
[
eι(mt+φ) f1(x, ω1) + eιnt f1(x, ω2)

]
, (4)

where Re[·] denotes the real part of [·] and

fσ (x, ωi ) = sinh
{√

ιωi
σ

x
}

sinh
{

1
2

√
ιωi
σ

} , σ > 0. (5)

Note that f1 = fσ |σ=1. Also observe that Ve is a continuous
function of σ so that

Ve|σ=1 = lim
σ→1

Ve. (6)

For (x, y, z) ∈  and t > 0, let

(u(x, y, z, t ), v(x, y, z, t ),w(x, y, z, t )) and θ (x, y, z, t )

be infinitesimal perturbations in the basic fluid velocity
(0, RaVe, 0) and the basic fluid temperature Te, respectively.
Then, within the framework of the linear instability theory,
perturbation equations subject to the no-slip conditions at the
rigid walls are reduced (after eliminating v, w and the pressure
terms from the governing equations) to the following partial
differential equations (PDEs):

ω

σ

∂∇2u

∂t
+ Ra

σ

(
Ve∇2 − ∂2Ve

∂x2

)
∂u

∂y
= ∇4u − Ra

∂2θ

∂y∂x
, (7a)

ω
∂θ

∂t
+ u

∂Te

∂x
+ RaVe

∂θ

∂y
= ∇2θ, (7b)

(
u,

∂u

∂x
, θ

)∣∣∣∣
x=± 1

2

= (0, 0, 0). (7c)

Since the basic state (4) is 2π periodic in t , Fourier-Floquet
analysis of the system (7a)–(7c) can be performed. For this
purpose, we use the highly efficient Kumar-Tuckerman ap-
proach [25,37]. In view of the fact that the perturbations
remain bounded on  and periodic in y and z, we expand u
and θ in the following appropriate Fourier-Floquet form:

(
u
θ

)
=

N∑
�=1

M∑
q=−M

(
a�q��(x) + ιb�q��(x)
ιc�qS�(x) + d�qC�(x)

)

× exp {ιk · y + ι(s + q)t}, (8)

where y = (0, y, z) and the wave vector of the perturbations is

k = (0, k cos β, k sin β ), 0 � β <
π

2
(9)

with the wave number k = ‖k‖. The basis functions ��,
��, S�, and C� are defined in the Appendix. The positive
integers N and M in expansions (8) are chosen large enough
for numerical convergence. The real number s in (8) is the
Floquet exponent. The instability response is harmonic or
subharmonic accordingly as s = 0 or 1

2 , which in view of (8)
corresponds to a 2π - or 4π -periodic solution of the dimen-
sionless system.

Using expansions for u and θ from (8) in (7a) and (7b);
taking L2(− 1

2 , 1
2 ) product of (7a) with � j , � j and (7b) with

S j and C j (1 � j � N), the system can be reduced to the
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FIG. 1. A geometric view of the modulated fluid layer. Here,
F (t ) = cos χ cos{mt + φ} + sin χ cos{nt}.

following 4N linear algebraic equations in the unknowns ajq,
b jq, c jq, and d jq:

Lqζq − ε cos χ (eιφVω1ζq−m + e−ιφVω1ζq+m)

− ε sin χ (Vω2ζq−n + Vω2ζq+n)

= Ra cos β{Uζq + ε cos χ (eιφWω1ζq−m + e−ιφWω1ζq+m)

+ ε sin χ (Wω2ζq−n + Wω2ζq+n)} (10)

for each fixed q ∈ {−M,−M + 1, . . . , M − 1, M}, where
the overhead bar is the complex conjugate and ζq =
(a1q . . . aNq b1q . . . bNq c1q . . . cNq d1q . . . dNq)′ is the
4N × 1 matrix of unknowns. The 4N × 4N block matrices
Lq, U, Vω1 , Vω2 , Wω1 , and Wω2 are given in the Appendix
A. The system (10) leads to the following generalized matrix
eigenvalue problem:

Aζ = (Ra cos β )Bζ , (11)

which is solved numerically to obtain Ra cos β as one of its
real positive eigenvalues. We take a trial value of k for fixed
values of the other parameters and solve (11) numerically in
order to obtain Ra. The procedure is repeated for the other
values of k. The critical Rayleigh number for the onset of the
instability is then computed using the following:

Rac = min
s

inf
k,β

Ra(σ, ε, ω, χ, φ, m, n, s, k) sec β. (12)

The critical wave number kc is the value of k corresponding
to Rac. We shall denote by kH

c and kSH
c the critical wave

numbers corresponding to harmonic and subharmonic types
of oscillations, respectively, whenever two distinct critical
wave numbers coexist for the same value of Rac.

After a careful numerical analysis of the present problem,
we have taken N = 10 and 20 � M � 40 for m/n = 1

2 for

75
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85
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80
85

2 2.5 3 3.5
75
80
85

2 2.5 3 3.5 2 2.5 3 3.5

FIG. 2.
√

Ra vs k for ε = 0.25, ω = 2, m = 1, n = 2, φ = 0◦,
σ = 0.71. Solid curve: harmonic response; dashed curve: subhar-
monic response; bullet: a point of local minimum of

√
Ra.

convergence. However, for small values of ω and higher
frequency ratios such as m/n = 2

3 or 4
5 , larger values of N

as well as M are required to include the effect of corre-
sponding nonzero matrix entries for numerical convergence
and accuracy. After several numerical experiments, we have
taken 10 � N � 15 and 30 � M � 80 depending on the given
frequency ratio and ω.

We have fixed 0 � ε � 0.5, 0◦ � χ � 90◦, 0◦ � φ �
180◦, and 0 < ω � 20. Most of the numerical calculations
have been performed for the Prandtl number of air (σ = 0.71),
the phase angle φ = 0◦, and the frequency ratio m/n = 1

2 .
Dependence of the onset of TMNC on σ , φ, and the ratio m/n
is discussed separately.

III. RESULTS AND DISCUSSION

We observe from (12) that Rac corresponds to β = 0 so
that k = k ĵ and the instability appears as oscillating rolls
oriented in the vertical direction. This also confirms that in
TMNC two-dimensional perturbations are more dangerous
than three-dimensional ones.

The marginal curves in (k,
√

Ra) plane are shown in Fig. 2
for various values of χ , and for ε = 0.25, ω = 2, m : n =
1 : 2, φ = 0◦, and σ = 0.71. The remaining details about
the graphics are given in the figure caption. For each fixed
value of the mixing angle χ , the marginal curve consists of
either a single harmonic branch, or two consecutive harmonic
branches, or an alternation of harmonic and subharmonic
branches, depending on the value of χ . For all values consid-
ered of χ , the onset of the instability occurs for Rac > Ra0,
where Ra0 is the critical Rayleigh number corresponding to
the no modulation case, that is,

Ra0 = lim
ε→0

Rac. (13)

For the Prandtl number of air, Ra0 ≈ 5706.3. For mixing
angles of 0◦, 10◦, and 20◦ when the forcing frequency ω1 is
dominant, the onset of the instability is the harmonic response
corresponding to a unique global minimum. On increasing
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FIG. 3. Marginal curve in (k,
√

Ra) plane for χ = 27.06◦, ε =
0.25, ω = 2, m = 1, n = 2, φ = 0◦, and σ = 0.71. Solid curve:
harmonic response; dashed curve: subharmonic response; bul-
let: points for the global minimum value Rac = 5984.5, where
kH

c = 2.64, 2.98.

χ further, a bicritical state occurs for χ ≈ 27.06◦ where two
distinct critical harmonic wave numbers coexist and is given
by

kH
c = 2.64, 2.98; Rac = 5984.5. (14)

The marginal curve for this special state is shown separately
in Fig. 3 in which the two minima each marked as bullet
correspond to (14). A relatively narrow subharmonic branch
also exists to the left of the wider harmonic branch.

For χ = 30◦ and 40◦ (Fig. 2), alternate harmonic and
subharmonic tongues appear in the (k,

√
Ra) plane and the

onset of instability is still in the form of harmonic oscillations.
In the marginal curves χ = 50◦, the local minimum values of
the control parameter Ra corresponding to the two harmonic
and subharmonic branches are close to each other. We observe
an interesting state of coexistence of two distinct critical
harmonic wave numbers for χ ≈ 61.125◦ (see Fig. 4) given
by

kH
c = 2.58, 3.00; Rac = 5966.7. (15)

The corresponding local minimum for the subharmonic
tongue occurs for (kSH , Ra) ≈ (2.78, 5976.2). These numer-
ical values indicate a state very near to a tricritical situation
(Fig. 4). It would be interesting to explore the nonlinear
pattern of TMNC in a neighborhood of such a state.

A. Effect of mixing angle on the onset

Figure 5 shows the variation of
√

Rac with χ for σ =
0.71, ε = 0.25, 0.3406; m : n = 1 : 2, φ = 0◦, 90◦; and ω =
2.5, 5. The value ε = 0.3406 has been chosen here since
it corresponds to a bicritical state under single-frequency
forcing (χ = 0◦) of TMNC [30]. The thick (pink) dotted curve
is drawn for a different data set (φ,ω, ε) = (0◦, 2, 0.25) in
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FIG. 4. Marginal curve in (k,
√

Ra) plane for χ = 61.125◦, ε =
0.25, ω = 2, m = 1, n = 2, φ = 0◦, and σ = 0.71. Solid curve:
harmonic response; dashed curve: subharmonic response; bullet:
the global minimum Rac ≈ 5966.7 where kH

c = 2.58, 3.00; star: the
point (kSH , Ra) ≈ (2.78, 5976.2).

which each asterisk (∗) corresponds to a bicritical state, with
coexistence of two distinct critical harmonic wave numbers.

We first explain the curve ε = 0.25 which shows that the
onset of TMNC remains harmonic and occurs for Rac >

Ra0. The critical value Rac is an increasing function of χ

for 0◦ � χ � 27.06◦. A maximum value of Rac occurs for
χ ≈ 27.06◦ which corresponds to a bicritical state with the
coexistence of two distinct values of kH

c (also see Fig. 3).
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72

73

74

75

76

77
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FIG. 5.
√

Rac vs χ for ε = 0.25, 0.3406; σ = 0.71, m = 1, n =
2. Thick solid curve, thick dashed curve, dashed curve: harmonic
response; solid curve, dashed curve: subharmonic response; solid and
dashed curves: ε = 0.3406; dotted curve: ε = 0; bullet: a bicritical
state with coexistence of kH

c and kSH
c ; asterisk: a bicritical state with

coexistence of two distinct values of kH
c .
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For χ > 27.06◦, Rac decreases rapidly with χ until the min-
imum value Rac ≈ 5872.3 occurs for χ ≈ 46◦. A maximum
of 1.87% decrease in Rac is observed for χ ∈ [27.06◦, 46◦].
For χ ∈ [46◦, 61.125◦], Rac increases with χ when another
bicritical state occurs for χ ≈ 61.125 (also see Fig. 3). The
critical Rayleigh number decreases monotonically with χ for
χ ∈ [61.125◦, 90◦]. These changes in Rac can be understood
as follows. For the initial segment [0◦, 27.06◦], the dom-
inant modulation frequency is ω1, while for χ > 61.125◦,
the second modulation frequency ω2 is dominant. For χ ∈
[27.06, 61.125] the amplitudes of the two modulation fre-
quencies are comparable. The value ε = 0.25 is not sufficient
to obtain more bicritical states, so we have computed Rac for
another data set of parametric values (ε, ω) = (0.3406, 2.5).
The discussion of the corresponding numerical results is as
follows.

1. Case I: φ = 0◦

The value φ = 0◦ corresponds to the two forcing fre-
quencies in phase. The critical curve ω = 2.5 is composed
of alternate harmonic and subharmonic parts separated by
bicritical states as χ is varied from 0◦ to 90◦. For χ =
0◦, that is, for single-frequency modulation, the preferred
mode of the onset of TMNC is harmonic with (kH

c , Rac) ≈
(2.69, 6056.5). The harmonic instability response driven
and dominated by single-frequency modulation occurs for
Rac > Ra0 for approximately 0◦ � χ < 10◦. The critical
Rayleigh number decreases continuously on raising χ from
0◦ until a local minimum is reached at about χ = 30◦
where (kc, Rac) ≈ (2.66, 5473.1). Beyond this minimum,
Rac increases with χ when a bicritical state occurs for
χ ≈ 41.12◦ and (kH

c , kSH
c , Rac) ≈ (2.56, 2.89, 5519.1). For

41.12◦ < χ < 67.815◦, the instability response is subhar-
monic. Here, Rac decreases with χ up to χ = 45◦ and,
thereafter, Rac starts increasing with χ when another bicritical
state is encountered for χ ≈ 67.815◦ with (kSH

c , kH
c , Rac) ≈

(2.91, 2.60, 5692.2). For 67.815◦ < χ < 73◦ the instability
response is harmonic and still another bicritical state occurs
for χ ≈ 73◦ where the instability corresponds to Rac > Ra0.
For 73◦ < χ < 88.3◦, the instability response is subharmonic,
where χ = 88.3◦ corresponds to one more bicritical state
which is also a local maximum beyond which the instability
response is harmonic and Rac decreases with χ . For 10◦ �
χ � 70◦ approximately, the instability occurs for Rac < Ra0

and corresponds to combined effect of the two forcing fre-
quencies. Thus, when the two forcing frequencies are in
phase, the modulation leads to a significant lowering of
Rac values along with some bicritical states observable for
Rac < Ra0.

The nature of the variation of Rac with χ for the larger
value ω = 5 is different. Here, only subharmonic response
occurs with an absolute minimum for χ ≈ 41◦, and a bicrit-
ical state for χ = 84.52◦ with kSH

c = 2.60, kH
c = 3.01, and

Rac ≈ 6048.8.

2. Case II: φ = 90◦

On the other hand, for φ = 90◦, the onset of the instability
due to the modulation corresponds to Rac > Ra0 for all values
of χ and the two values considered of ω, where the usual

0 30 60 90 120 150 180
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76

76.2

76.4

76.6

76.8

77

77.2

77.4

FIG. 6.
√

Rac vs φ for ε = 0.25, ω = 2, m = 1, n = 2, σ = 0.71.
Bullet: a bicritical state with coexistence of two distinct values of kH

c .

pattern of decrease of Rac with χ starting from zero until a
local minimum and then increase of Rac with χ is observed
to occur. The preferred mode of the onset is harmonic except
one bicritical state corresponding to ω = 5 and χ = 0◦. The
difference between the values of Rac corresponding to the two
values of ω is small for χ < 45◦.

Based on these observations, it may be concluded that it
would be preferable to take the amplitudes of the two forcing
frequencies in phase for the nonlinear study patterns in TMNC
near bicritical states.

B. Dependence of the onset of instability on φ

Figure 6 shows the variation of
√

Rac with φ for ε =
0.25, ω = 2, m = 1, n = 2, and σ = 0.71. The three different
curves correspond to χ = 15◦, 45◦, and 61.125◦. The insta-
bility response in each case is found to be harmonic and
corresponds to Rac > Ra0 for all values of φ. The dotted (red)
curve χ = 15◦ shows that for the fixed parametric data, Rac

is a decreasing function of φ for 0◦ � φ � 90◦, where the
curve has an absolute minimum at φ = 90◦. In particular, the
two frequencies are in phase for φ = 0◦ and out of phase
for φ = 180◦. For φ from 90◦ to 180◦, Rac increases with φ.
The curve is approximately symmetric about the line φ = 90◦,
which indicates that when the first forcing frequency ω1 is
dominant (χ = 0◦), a lowering of Rac can be achieved under
modulation for φ = 90◦. A similar variation of Rac occurs
with φ when the second forcing frequency ω2 is dominant
(χ = 61.125◦) as can be seen from the dashed (blue) curve
in Fig. 6.

The variation of Rac with φ for χ = 45◦ is different from
that of the earlier two cases. Here, both of the forcing frequen-
cies have the same amplitude and are therefore equally op-
erative. The corresponding critical curve in (φ,

√
Rac) plane

consists of three parts. For the first part, that is, 0◦ � φ � 27◦
approximately, Rac increases rapidly from 5872.3 to 5966.6
where the corresponding values of kc are 2.68 and 2.61,
respectively. For φ = 27◦, the onset of TMNC is found to be
with the coexistence of two distinct values of kH

c = 2.61, 2.98.

023109-5



SINGH, KAUR, AND BAJAJ PHYSICAL REVIEW E 101, 023109 (2020)

1 3 5 7 9 11 13 15
68

70

72

74

76

78

80

82

FIG. 7.
√

Rac vs ω for ε = 0.5, σ = 0.71, φ = 0◦, m : n = 1 : 2.
The dotted horizontal curve is for ε = 0. Solid and dotted parts
of each curve represent harmonic and subharmonic responses, re-
spectively. Bullet: a bicritical state with coexistence of kH

c and kSH
c .

Solid triangle: the bicritical state for Rac ≈ 5268.7; kH
c = 2.46, 2.89;

ω = 1.852.

Beyond φ = 27◦, Rac decreases with φ until an absolute min-
imum occurs for φ = 90◦. For φ � 90◦, Rac increases with
φ up to φ = 152.6◦ when another bicritical state is reached
in which two distinct harmonic wave numbers kH

c = 2.59
and 3.00 coexist for Rac ≈ 5968.3. For φ > 152.6◦, Rac de-
creases with φ. Here also, the critical curve is approximately
symmetric about the line φ = 90◦. Thus, bicritical states in
TMNC in the vertical fluid layer can be easily observed for
an appropriate combination of the modulation parameters and
tuning of the phase angle φ under two-frequency excitation,
where the domain of validity is much wider than the one in
the case of single-frequency modulation.

C. Role of basic frequency ω

Since the modulated fluid layers respond strongly to the
forcing frequency for the onset of the instability, it is impor-
tant to understand the dependence of the control parameter
on ω. This is shown in Fig. 7 for ε = 0.5, σ = 0.71, φ = 0◦,
m = 1, and n = 2. The critical curves are drawn for four
typical values of χ = 0◦, 15◦, 45◦, and 90◦. Each critical curve
is composed of distinct concave upward arcs joined through
sharp peaks. Each such peak corresponds to the instability
response with coexistence of two distinct wave numbers of the
perturbations and always is the case of a bicritical state. For
a given value of χ , these peaks generally occur at relatively
high values of Rac as ω is increased. Clearly, most of the
peaks occur for values of ω in the range 1–6 while the high
frequency modulation has negligible effect. So, to observe
the effect of modulation, it is necessary to investigate the
dependence of Rac on ω for 0 < ω < 6 where the instability
response corresponds to Rac < Ra0 for all values considered
of χ . The peak point marked as solid triangle on the critical
curve χ = 90◦ corresponds to Rac ≈ 5268.7 with coexistence
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FIG. 8.
√

Rac vs ω for ε = 0.5, σ = 0.71, φ = 0◦, and χ = 45◦.
The dotted horizontal curve is for ε = 0. Solid and dotted parts of
each curve represent harmonic and subharmonic responses, respec-
tively. Bullet: a bicritical state with coexistence of kH

c and kSH
c . Star:

the bicritical state for Rac ≈ 6375.9; kSH
c = 2.17, 2.92; ω = 6.64.

of two critical harmonic wave numbers kH
c = 2.46, 2.89 for

ω ≈ 1.852.
For large values of ω, we have found that limω→∞ Rac =

limε→0 Rac, which coincides with the case when modulation
is absent. This can be explained as follows. For large enough
value of ω, modulation effects do not penetrate into the
interior of the fluid layer from the bounding planes, which
results in negligible contribution of the modulation to TMNC.
A controlled time-periodic heat transfer through natural con-
vection in air such as in the cooling of electronic devices uses
a time period of few seconds or milliseconds, which for the
present case correspond to ω roughly between 1 and 30 (see,
for detail, Singh and Bajaj [30, pp. 415]).

D. Role of frequency ratio m : n

To see the effect of the frequency ratio, we have obtained
Fig. 8, which shows the variation of

√
Rac with ω for three

different frequency ratios 1 : 2, 2 : 3, and 4 : 5. Here also
each critical curve consists of concave upward arcs meeting
at cusp points, which correspond to bicritical states. The point
marked star in Fig. 8 corresponds to the bicritical state for
Rac ≈ 6375.9 and kSH

c = 2.17, 2.92. At a given value of ω,
the value of Rac for the frequency ratio 1 : 2 is smaller than
the one that occurs for the other two-frequency ratios. This
is merely due to increased magnitudes of the two forcing
frequencies ω1 and ω2 for the ratios 2 : 3 and 3 : 4. The onset
of TMNC still corresponds Rac < Ra0 for small frequencies.
However, Rac increases with ω at a higher rate on changing
m : n from 1 : 2 through 2 : 3 to 3 : 4. It is useful to analyze
the root mean square wave number

krms
c :=

√(
kH

c

)2 + (
kSH

c

)2

for the peak points corresponding to the bicritical states. For
the frequency ratio 1 : 2, both of the bicritical states in Fig. 8
correspond to krms

c ≈ 3.77. In fact, for the three frequency

023109-6



BICRITICAL STATES IN A VERTICAL LAYER OF … PHYSICAL REVIEW E 101, 023109 (2020)

ratios considered here,

krms
c ≈ 3.77 ± 0.14.

A careful numerical investigation of these observations sug-
gests that for a fixed value of m : n, the difference �krms

c
between the krms

c values for two consecutive bicritical states
obtained on changing ω is found to be an invariant. These
estimates are useful in locating bicritical states in TMNC for
a given value of ω.

IV. PRANDTL NUMBER DEPENDENCE

After several numerical calculations for Rac where σ ∈
[0, 5], ε = 0.5, ω = 2, m = 1, and n = 2, we have found that
Rac is as usual an increasing function of σ for all values of χ .
For example, the instability response is harmonic near σ = 0
until a bicritical state occurs for about σ = 0.4254 which
corresponds to(

χ, kH
c , kSH

c , Rac
) ≈ (0◦, 2.92, 2.53, 3272.2). (16)

For 0.4254 � σ � 0.6007, the instability response of TMNC
is subharmonic and another bicritical state appears for σ ≈
0.6007. This alternation of Rac between harmonic and sub-
harmonic type responses continues as σ increases. However,
Rac remains an increasing function of σ as is the case with
the unmodulated natural convection. A similar variation of
Rac with σ is found to occur for χ > 0◦ so we omit the
corresponding numerical calculations.

A. Low frequency response for 0 < σ < 1

Low frequency modulation (see Smorodin et al. [38])
corresponds to ω such that

ω  min

{
1,

1

σ

}
.

The low frequency modulation effects on the onset of TMNC
are significant for fluids with small Prandtl number where
for 0 < σ < 1, we have ω  1. Figure 9 shows the variation
of Rac/Ra0 with ω for the Prandtl number of mercury, that
is, σ = 0.015 where Ra0 ≈ 116.296 [see (13)]. The other
parametric values are ε = 0.5, φ = 0◦, m = 1, and n = 2. The
curves correspond to five values of χ as shown in the legend.
Clearly, for any fixed value of χ the ratio Rac/Ra0 increases
upon increasing ω from 0 until a maximum is reached at
some value of ω beyond which the ratio starts decreasing
with ω and eventually approaches 1 for sufficiently large ω

(not shown in Fig. 9). A maximum of approximately 15%
decrease in Rac is achieved on incrementing χ from 0◦ to 40◦.
These inferences indicate that for very small ω the onset of
the instability in TMNC is in the form of oscillations having
frequency same as that of the modulation. Similar results
are expected for Prandtl number of air. We conclude that
under low frequency modulation, subharmonic oscillations
and hence bicritical states are not likely to occur in TMNC.

V. CONCLUDING REMARKS

The present research is a continuation of the previous work
of the authors on TMNC [30]. To investigate the existence of

0 0.5 1 1.5 2
0.85

0.89

0.93

0.97

1.01

FIG. 9. Rac/Ra0 vs ω for the Prandtl number of mercury
(σ = 0.015), where Ra0 = limε→0 Rac ≈ 116.296. The other values
are ε = 0.5, φ = 0◦, m : n = 1 : 2. The five curves correspond to
χ = 0◦, 10◦, 20◦, 30◦, and 40◦.

bicritical states in TMNC, it is more appropriate to modulate
the fluid layer through a mixture of two forcing frequencies in
the time-periodic temperature gradient across the layer. Such
a forcing results in a basic state oscillating time periodically
with two forcing frequencies. The linear instability analysis
of the basic state uses the classical Fourier-Floquet analysis.
Most of the numerical results have been presented for the
Prandtl number of air and fluids with Prandtl number less than
12.5 are considered throughout.

The instability of TMNC under two-frequency modulation
exhibits either harmonic oscillations or subharmonic oscilla-
tions, depending on the temperature modulation parameters.
A transition between these harmonic and subharmonic types
of oscillations is found to occur through an intermediate
bicritical state. This state oscillates with two distinct critical
wave numbers, which can come in any one of the following
combinations: (a) one harmonic and one subharmonic wave
number, (b) two distinct harmonic wave numbers, (c) two
distinct subharmonic wave numbers. Also, for a combination
of modulation parameters, a nearly tricritical state is expected
in TMNC.

Apart from the usual control of convection in the two-
frequency TMNC regarding advancement or delay of the heat
and mass transfer by taking suitable amplitude and basic
frequency for modulation, the bicritical states in TMNC are
found to occur for any fluid with Prandtl number <12.5 and
the frequency ratio via proper tuning of the modulation pa-
rameters. Thus, the two-frequency forcing of TMNC provides
a much wider parameter space than that with single-frequency
forcing for realizing bicritical states.

The numerical calculations also suggest that the difference
between the root mean square wave numbers corresponding
to two consecutive bicritical states in the (ω,

√
Rac) plane

is an invariant of TMNC. As expected, the numerical results
show that the instability of the temperature-modulated natural
convection in a vertical fluid layer can exhibit bicritical states
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for a wide range of the modulation parameters. The present
research work may be helpful in practical applications where
rapid periodic heat transfer occurs such as in the cooling of
electronic devices without any mechanical vibrations.

The numerical work of this paper is limited to examining
the TMNC in fluids with σ < 12.5 where the onset of the
instability is a steady mode for unmodulated, differentially
heated boundaries. The mode of the instability in fluids with
σ > 12.5 in the present context is expected to be a quasiperi-
odic mode as in [29]. The work for quasiperiodic response of
TMNC is in progress.
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APPENDIX

The basis functions �� and �� in (8) are Chandrasekhar
functions [5,36,39] given by

��(x) = cosh λ�x

cosh λ�

2

− cos λ�x

cos λ�

2

, (A1)

��(x) = sinh μ�x

sinh μ�

2

− sin μ�x

sin μ�

2

(A2)

for each � = 1, 2, . . ., where the real numbers λ� and μ�

satisfy

tan
λ�

2
+ tanh

λ�

2
= 0; cot

μ�

2
− coth

μ�

2
= 0. (A3)

Also, the functions S� and C� in (8) are given by

S�(x) = sin{2�πx}; C�(x) = cos{(2� − 1)πx}. (A4)

For each q = −M, . . . , M, the following block matrices have
been used in (11):

Lq =

⎛
⎜⎜⎜⎝

L1(q) O O O

O L2(q) O O

O O L3(q) O

O O O L4(q)

⎞
⎟⎟⎟⎠ − U0, (A5)

U0 =

⎛
⎜⎜⎜⎝

A1 O O O

O B2 O O

O C2 C3 O

D1 O O D4

⎞
⎟⎟⎟⎠, (A6)

U = k

6

⎛
⎜⎜⎜⎝

O A2 6A3 O

B1 O O 6B4

O O O C4

O O D3 O

⎞
⎟⎟⎟⎠. (A7)

For each i = 1, 2, define

Vωi =

⎛
⎜⎝

O O O O
O O O O
O Gωi

2 O O
Hωi

1 O O O

⎞
⎟⎠, (A8)

Wωi = k

2ιωi(1 − σ )

⎛
⎜⎜⎜⎝

O Eωi
2 O O

Fωi
1 O O O

O O O σGωi
4

O O σHωi
3 O

⎞
⎟⎟⎟⎠. (A9)

To define various matrices in the aforementioned block matri-
ces, we proceed as follows: O denotes the N × N zero matrix.
For P and Q in ∈ L2(− 1

2 , 1
2 ), we have the scalar product

〈P, Q〉 = ∫ 1
2

− 1
2

P(x)Q(x)dx. Letting h(x) = x(x2 − 1
4 ), we have

for all 1 � j, � � N the following matrix entries:

(L1(q)) j� = ιω

σ
(s + q)(〈�′′

� ,� j〉 − k2δ� j ), (A10)

(L2(q)) j� = ιω

σ
(s + q)(〈� ′′

� , � j〉 − k2δ� j ), (A11)

(L3(q)) j� = (L4(q)) j� = ιω(s + q)
δ j�

2
, (A12)

(A1) j� = (
λ4

� + k4
)
δ� j − 2k2〈�′′

� ,� j〉, (A13)

(A2) j� = 1

σ
〈h(x)� ′′

� ,� j〉 − 1

σ
〈h′′(x)��,� j〉

− k2

σ
〈h(x)��,� j〉, (A14)

(A3) j� = 2 π�〈cos{2�πx},� j〉, (A15)

(B1) j� = 1

σ
〈h′′(x)��,� j〉 − 1

σ
〈h(x)�′′

� , � j〉

+k2

σ
〈h(x)��,� j〉, (A16)

(B2) j� = (
μ4

� + k4
)
δ� j − 2k2〈� ′′

� , � j〉, (A17)

(B4) j� = (2� − 1)π〈sin{(2� − 1)πx}, � j〉, (A18)

(C2) j� = 〈��,S j〉 (A19)

(C3) j� = −(4π2�2 + k2)
δ� j

2
, (A20)

(C4) j� = −〈h(x)C�,S j〉, (A21)

(D1) j� = 〈��, C j〉; (D3) j� = −〈h(x)S�, C j〉, (A22)

(D4) j� = −[(2� − 1)2π2 + k2]
δ� j

2
, (A23)

For σ > 0, define for each i = 1, 2

Mωi
σ (P, Q) = 〈 fσ (x, ωi )P, Q〉,

Nωi
σ (P, Q) =

〈
P

∂

∂x
fσ (x, ωi ), Q

〉
. (A24)
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The following matrix entries are used in (A8) and (A9):(
Eωi

2

)
j�

= Mωi
1 (� ′′

� ,� j ) − (ιωi + k2)Mωi
1 (��,� j )

+
( ιωi

σ
+ k2

)
Mωi

σ (��,� j ) − Mωi
σ (� ′′

� ,� j ),

(A25)(
Fωi

1

)
j�

= (ιωi + k2)Mωi
1 (��,� j ) − Mωi

1 (�′′
� , � j )

−
( ιωi

σ
+ k2

)
Mωi

σ (��,� j ) + Mωi
σ (�′′

� , � j ),

(A26)

(
Gωi

2

)
j� = −1

2
Nωi

1 (��,S j ), (A27)

(
Gωi

4

)
j� = −Mωi

1 (C�,S j ) + Mωi
σ (C�,S j ), (A28)

(
Hωi

1

)
j� = −1

2
Nωi

1 (��, C j ), (A29)

(
Hωi

3

)
j� = Mωi

1 (S�, C j ) − Mωi
σ (S�, C j ). (A30)
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