
PHYSICAL REVIEW E 101, 023108 (2020)

Coupling effects and thin-shell corrections for surface instabilities of cylindrical fluid shells
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We show that when linear azimuthal perturbations on the surfaces of a fluid shell are regrouped according to
αm, they can be divided into Bell model terms, coupling terms, and the newly identified thin-shell correction
terms, where α is the ratio of Rout to Rin, and m is the mode number of a given unstable mode on the surfaces. It
is also revealed that αm is a convenient index variable of coupling effects, with which we show that the evolution
of instability is composed of three stages, i.e., strongly coupled stage, transition stage, and uncoupled stage.
Roughly, when αm < 6, the fluid shell is in the strongly coupled stage, where both coupling effects and the
newly identified thin-shell corrections play important roles. Strong feed through is expected to be observed.
The uncoupled stage is reached at αm ∼ 36, where Bell’s model of independent surface holds. In between is the
transition stage, where mode competitions on the two surfaces are expected to be observed. These results afford
an intuitive picture which is easy to use in guiding the design of experiments. They may also help to quickly
grasp major features of instability experiments of this kind.
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I. INTRODUCTION

When a heavy fluid squeezes a light fluid, Rayleigh Taylor
instability (RTI) [1,2] takes place at their interface. This
phenomenon is also observed at the interfaces of multilayered
targets of inertial confinement fusion (ICF) [3–6] and magne-
toinertial fusion (MIF) [7–10] during the implosion process.
It has been regarded as one of the most damaging factors
that may serious challenge the controllability of confinement
fusion [4–6]. The instability not only destroys the geometrical
symmetry of targets, but more seriously, it mixes hot fuel
materials at the center with surrounding cold materials [5,6].
This may greatly reduce the burning efficiency of fuels and
cause the failure of ignition [11]. Therefore, understanding the
development of instability becomes an important issue of ICF
and MIF.

In a simple planar configuration, the growth rate σ of an
infinitesimal perturbation at the interface of two semi-infinite
incompressible fluids is determined by σ = √

At gk, where g is
the acceleration, k is the wave number of the perturbation, and
At = 2|�ρ|/ρ̄ is the Atwood number, with |�ρ| the density
difference and ρ̄ the average density of two fluids. Several
improvements of this result, which include various effects,
e.g., coupling effect [12], compressibility [13–15], rotation
[16,17], and ablation [18–20], have been proposed in the
past several decades. In a convergent geometry, however, the
curvature and speed of the interfaces also contribute to σ ,
as was revealed by Bell and Plesset (BP) [21,22]. Recently,
several groups further developed theories of the BP effect.
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For example, Wang et al. [23] developed a weakly nonlinear
model with the BP effect in cylindrical geometry, Epstein
[24] considered the influence of uniform compression and
geometrical convergence simultaneously, and Amendt et al.
[25] considered the BP effect in their design of ICF target with
a slightly modified BP model.

Surface instability of a fluid shell with finite thickness
is more challenging. Interaction between the two surfaces
contributes a further complexity in addition to the BP effect
[23,26,27]. When the instability develops, the interaction
between the two interfaces provides the possibility that per-
turbations on the unstable surface induce the development
of ripples on the previously stable surface on the other side
[28–30]. Several groups have tackled the problem. Mikaelian
[31] derived a linear model to describe the BP effect and cou-
pling between surfaces for a series of concentric cylindrical
shells. Velikovich and Schmit [32] provided general linear
perturbative solutions for spherical shells and solutions of
helical and axial perturbations on cylindrical shells. In parallel
with the development of theories, a number of experiments
have been carried out to investigate instabilities with BP effect
and coupling effect [33–37]. Special attentions have been paid
to cylindrical geometry for its convenience to diagnostics.

Equipped with much improved experimental tools, there
is a revived interest in the ICF community to reinvestigate
the instability problem of a contracting fluid shell to reveal
the details of how the instability grows. It is desirable that,
in addition to mathematical formulas and curves, one can
summarize some intuitive physical pictures or some rules of
thumb for coupled fluid shells that are easy to use in guiding
the design of targets or experiments. For this purpose, we
propose to regroup linear perturbations on the surfaces of a
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FIG. 1. Schematic illustration of a contracting cylindrical shell
considered in this work. Rin and Rout here are inner and outer radii of
undisturbed surfaces.

fluid shell with respect to αm, where α is the ratio of Rout

over Rin, and m is the mode number of a given unstable mode
on the surfaces. The linear evolution equations can then be
divided into Bell model terms, coupling terms, and the newly
identified thin-shell correction terms according to the order of
αm. We find that by using αm as a convenient index variable
for coupling effects, the evolution of instability is composed
of three stages, i.e., strongly coupled stage (roughly αm < 6),
transition stage (approximately 6 < αm < 36), and uncoupled
stage (roughly αm > 36). At the strongly coupled stage, cou-
pling effects and the newly identified thin-shell corrections
play important roles, and strong feed through is expected to
be observed at this stage. In the uncoupled stage, Bell’s results
[21] of two independent surfaces are recovered. Between
these two is the transition stage, where mode competitions on
the two surfaces are expected to be observed.

The rest of this article is organized as follows. In Sec. II,
we show how to divide the linear evolution equations on
the surfaces of a fluid shell into different groups according
to the order of αm, and how the coupling terms and thin-
shell corrections are determined. In Sec. III, a systematic
physical picture of coupling effects and thin-shell corrections
is presented. Finally, we conclude our work with a short sum-
mary in Sec. IV with its potential application in experiments
mentioned.

II. THEORETICAL MODEL AND FORMULAS

We consider a thin shell of cylindrical symmetry, i.e.,
without axial variations, which is a configuration convenient
for experimental measurements [33,34], as schematically dis-
played in Fig. 1. The shell is composed of incompressible and
inviscid fluid of density D. A cylindrical coordinate system
attached to the center is used to describe the position of each
point on both surfaces. Time dependent radii of undisturbed
inner and outer surfaces are denoted as Rin(t ) and Rout(t ),
respectively. During the contraction, the volume of the shell
is viewed as a constant, which leads to the relation

π (Rout)
2 = π (Rin )2 + πA, (1)

with πA indicating the constant cross-section area of the shell.
In term of the ratio

α(t ) ≡ Rout(t )/Rin(t ), (2)

one can write the velocity and the acceleration of inner surface
as

Ṙin = RoutṘout√
(Rout)2 − A

= αṘout, (3a)

and

R̈in = αR̈out − α3

(
Ṙout

)2

Rout
+ α

(
Ṙout

)2

Rout
, (3b)

respectively, where the dots above letters represent time
derivatives. From the definition of α in Eq. (2) and Eq. (3a), it
is easy to get a symmetrical expression RinṘin = RoutṘout.

If one further assumes that the contraction of the shell is
irrotational, then the velocity of the fluid can be written as the
gradient of a velocity potential �, which is the solution of the
Laplace equation

�2� = 0,

constrained by the two boundary conditions

D

(
∂�

∂t
+ 1

2
(��)2

)
= 0 (4)

and
∂S(ρ, θ, t )

∂t
+ �� · �S(ρ, θ, t ) = 0, (5)

at each surface. Here S(ρ, θ, t ) = 0 gives the time dependent
motion of the surface in the cylindrical coordinates. ρ and θ

are radial and azimuthal coordinates of a surface, respectively.
Note that the perturbations along the axial (z) direction are
not considered. For small perturbations ηtot on the cylindrical
shell surfaces, it is convenient to express S as

S ≡ ρ − R(t ) − ηtot(θ, t ). (6)

The disturbed inner and outer surfaces of the shell
are then ρ = Rin(t ) + ηtot

in (θ, t ) and ρ = Rout(t ) + ηtot
out(θ, t ),

respectively.
We follow Bell’s work [21] to consider a perturbation in the

form of cos mθ . Here m is used to indicate the mode number
of a certain perturbation. Only cosine part of the perturbation
is used, as the sine part will provide similar result [21]. The
total perturbation ηtot of both surfaces can then be written as
power series of a formal parameter ε as

ηtot
n = εηn cos mθ + O(ε2), (7)

where the subscript n takes “in” or “out,” representing the
inner or outer surfaces. Note that ε in the expansion is only
a formal parameter used to keep the order of perturbations. It
will be set to be 1 later in numerical calculations.

A. Perturbative solutions to the first order

To the first order of ε, combining with RinṘin = RoutṘout,
velocity potential � is then derived from Laplace equation as

� = RinṘin ln ρ + εa(t )ρm cos mθ + εb(t )ρ−m cos mθ, (8)
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where the time-dependent functions a(t ) and b(t ) can be solved with boundary conditions

∂�

∂ρ
= Ṙin + εη̇in cos mθ + O(ε2), (9)

at ρ = Rin + εηin cos mθ , and

∂�

∂ρ
= Ṙout + εη̇out cos mθ + O(ε2), (10)

at ρ = Rout + εηout cos mθ , which are obtained from linearization of Eq. (5). Substituting Eq. (8) into Eq. (4) on both surfaces,
one obtains the governing equations for ηin and ηout as

Bell model of inner surface︷ ︸︸ ︷
η̈in + 2

Ṙin

Rin
η̇in − (m − 1)

R̈in

Rin
ηin

Thin-shell correction︷ ︸︸ ︷
−2m

1

α2m − 1

R̈in

Rin
ηin =

Amplitude coupling term︷ ︸︸ ︷
−2m

αm−1

α2m − 1

R̈in

Rin
ηout

Velocity coupling term︷ ︸︸ ︷
−2m

αm−1(−α2 + 1)

α2m − 1

Ṙin

Rin
η̇out︸ ︷︷ ︸

Coupling terms

, (11)

Bell model of outer surface︷ ︸︸ ︷
η̈out + 2

Ṙout

Rout
η̇out + (m + 1)

R̈out

Rout
ηout

Thin-shell correction︷ ︸︸ ︷
+2m

1

α2m − 1

R̈out

Rout
ηout =

Amplitude coupling term︷ ︸︸ ︷
+2m

αm+1

α2m − 1

R̈out

Rout
ηin

Velocity coupling term︷ ︸︸ ︷
−2m

αm−1(−α2 + 1)

α2m − 1

Ṙout

Rout
η̇in︸ ︷︷ ︸

Coupling terms

. (12)

Note that Eqs. (11) and (12) can also be expressed in dif-
ferent, but mathematically equivalent, forms, e.g., Eq. (10) of
Ref. [31]. These various forms represent different motivations
to tackle the problem. In this work, we regroup all terms
with respect to the order of α, and divide them into three
groups according to their effects as “Bell model,” “coupling
terms,” and “thin-shell correction.” The coupling terms on the
right-hand side of Eqs. (11) and (12) are roughly on the order
of α−m for large α, i.e., for a thick fluid shell. They can be
further divided into “amplitude coupling” terms (ACT) and
“velocity coupling” terms (VCT) according to their different
origins. The thin-shell correction (TSC) terms get their names
from the factor 1/(α2m − 1). When the thickness of the shell
decreases and α approaches 1, these terms become important.
They also help to maintain the symmetry m → −m.

When Rout(t ) or Rin(t ) is explicitly specified, ηin and ηout

can then be obtained from Eqs. (11) and (12). Since α ≡
Rout/Rin is always greater than 1, it is not surprising to see that
the coupling terms and thin-shell corrections can be dropped
out when m or α is large. Keeping the leading terms, the two
equations can be simplified to be

η̈in + 2
Ṙin

Rin
η̇in − (|m| − 1)

R̈in

Rin
ηin = 0, (13)

and

η̈out + 2
Ṙout

Rout
η̇out + (|m| + 1)

R̈out

Rout
ηout = 0, (14)

which recovers Bell’s result [21] on a single cylindrical inter-
face and shows the decoupling of the two surfaces. However,
as we shall show in the following discussions, the thin-shell
correction and coupling terms in Eqs. (11) and (12) play
dominant roles to small m mode perturbations of a thin shell,
and thus cannot be neglected to get a correct physical picture.

B. Linear instability of two coupled surfaces

For a single surface, the instantaneous growth rate σ of
an unstable mode would be enough to describe the linear
instability of the surface. However, for a fluid shell, its two
surfaces may be closely coupled, which makes it questionable
to treat each surface independently while treat the coupling
effects as a small perturbation to the surfaces. To get a
systematic description of the coupled surfaces, we describe
the perturbations on both surfaces with a two-component state
vector � ≡ [ηin, ηout]T. The linearized governing equations
Eqs. (11) and (12) can then be represented as

d2�(t )/dt2 = Ĥ (t )d�(t )/dt + Ĝ(t )�(t ), (15)

and the 2 × 2 matrices Ĥ and Ĝ are

Ĥ (t ) ≡
[

−2 Ṙin
Rin

, −2m αm−1(−α2+1)
α2m−1

Ṙin
Rin

−2m αm−1(−α2+1)
α2m−1

Ṙout
Rout

, −2 Ṙout
Rout

]
,

and

Ĝ(t ) ≡
[ (

m − 1 + 2m 1
α2m−1

) R̈in
Rin

, −2m αm−1

α2m−1
R̈in
Rin

2m αm+1

α2m−1
R̈out
Rout

, −(
m + 1 + 2m 1

α2m−1

) R̈out
Rout

]
.

Assuming � approximately has the form of

�(δt ) ∝ exp[ξδt]

[
ω

β

]
, (16)

in a small time interval δt , one can derive a characteristic
equation

(ξ 2 − ξ Ĥ + Ĝ)

[
ω

β

]
= 0 (17)

from Eq. (15). Here, ω and β are components on the inner
and outer surfaces, respectively. They are usually complex
numbers, and |ω|2 + |β|2 = 1. In general, there are four so-
lutions for ξ , denoted as ξi, i = 1, ..., 4, and each of ξi has
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an eigen-vector [ωi, βi]T. The real part of each ξi is the
instantaneous growth rate σi. Note that assuming � having the
form of Eq. (16) implies the motion parameters (e.g., Ṙn, R̈n,
etc.) of the unperturbed shell vary much slower than those of
perturbations, which we find applies to typical experimental
conditions [32].

One can define instantaneous coupling factor

�i ≡ 2(|ωi|/|βi|)/(1 + |ωi|2/|βi|2), (18)

which describes relative growth speed of perturbations on
outer and inner surfaces for a certain unstable mode associated
with ξi, as explained in Ref. [38]. According to the definition,
�i varies in the interval from 0 to 1. The two surfaces are
independent when � approaches 0. While � = 1 the two
surfaces are strongly coupled.

In general, the coupling effect of an unstable mode depends
on the growth rate σi and the coupling factor �i. In a planar
configuration, the two surfaces of a fluid layer in a vacuum
environment only have one unstable mode with σ = √

kg and
� = 2 exp(k�)/[1 + exp(2k�)], where � is the thickness of
the fluid layer and k is the wave number [2,39]. Since σ

here is independent of the thickness, the coupling effect of
a fluid layer therefore only depends on the coupling factor
�. This particular physical picture was further used to un-
derstand the coupling effect of a cylindrical shell of finite
thickness [2,28,39]. However, it may seriously underestimate
the complexity brought about by the σ . As we shall show
in the following sections, the magnitudes of σi and �i in a
cylindrical configuration vary with the contraction of the shell,
which leads to a major modification of the physical picture.

III. NUMERICAL RESULTS AND DISCUSSIONS

It is possible to get expressions of ηn from Eqs. (11) and
(12) as function series of t , Rout (t ), Rin(t ) and their time
derivatives, although it might be tediously long. Furthermore,
with the lengthy expressions, one might lose the major physi-
cal picture, which is of great interest in implosion experiments
and ICF target designs. We thus use numerical solutions to
display important features of perturbation growth on both
surfaces of a contracting cylindrical shell. In particular, we
pay particular attention to the coupling effects between the
two surfaces and finite thickness corrections.

To clearly display the influence of coupling effects and
thin-shell corrections in different phases of contraction, two
representative trajectories of Rout (t ), i.e.,

Rout (t ) =
[

1 −
(

t

tmax

)2
]

Rout (0), (19)

and

Rout (t ) =
[

1 −
(

t

tmax

)]
Rout (0), (20)

are investigated in detail, where 0 � t < tmax, and tmax is set
to be 10 in later calculation. Rin(t ) ≡

√
[Rout (t )]2 − A is then

also known and always greater than zero. The first trajectory
represents an accelerated contraction, and the second one
gives the feature of coasting contraction [40,41]. The degree
of contraction is described by the convergence ratio Cr ≡

accelerated contraction coasting contraction

(a) (b)

(c) (d)

(e) (f)

m=3 m=3

m=4 m=4

m=8 m=8

FIG. 2. Profiles of a fluid shell in accelerated (a, c, e) and
coasting (b, d, f) contractions at Cr = 1 (black dots), 1.3 (blue dashed
lines), and 1.7 (red solid lines), for mode number m = 3 (a, b), 4 (c,
d), and 8 (e, f). The corresponding α are 1.11, 1.21, and 1.49. Their
initial amplitude perturbations on outer surfaces have the same value
ηout (0) = 0.01.

Rout (0)/Rout (t ) [42], which increases monotonically during
the process.

Linear evolution of perturbations on a cylindrical shell
are shown in Figs. 2 and 3 for mode number m = 3, 4, and
8, which gives a general picture of instability development.
Perturbation growth in the accelerated contraction specified
by Eq. (19) is displayed in the left column of each figure, and
the growth along coasting trajectory Eq. (20) is presented in
the right column for a close comparison. The initial aspect
ratio of the shell [39] Rout (0)/[Rout (0) − Rin(0)] is set to be
10, which is close to the ratio used in the experiments [43,44]
and in ICF fuel capsules [39].

Initial perturbations are introduced in two ways follow-
ing typical experimental setups [34,45] to highlight coupling
effects between the two surfaces. One is ripples on the
outer shell surface, i.e., amplitude perturbation ηout (0) on
the outer surface. Evolution of the perturbation is displayed
in Fig. 2. The other is the perturbation of initial velocity
on the outer surface, i.e., the velocity perturbation η̇out (0)
which is associated to pressure fluctuations or laser induced
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accelerated contraction coasting contraction

(a) (b)

(c) (d)

(e) (f)

m=3 m=3

m=4 m=4

m=8 m=8

FIG. 3. Profiles of a fluid shell in accelerated (a, c, e) and
coasting (b, d, f) collapse at Cr = 1 (black dots), 1.3 (blue dashed
lines), and 1.7 (red solid lines), for mode number m = 3 (a, b), 4 (c,
d), and 8 (e, f). The corresponding α are 1.11, 1.21, and 1.49. Their
initial velocity perturbations on outer surfaces have the same value
η̇out(0) = 0.04v̄.

imprintings [46–48]. Figure 3 displays the development of
velocity perturbations. The unit of ηout (0) is Rout (0), while
the unit of η̇out (0) is v̄ ≡ Rout(0)/tmax for the convenience of
further discussions. In both figures, the surfaces at Cr = 1,
1.3, and 1.7 (corresponding to α = 1.11, 1.21, and 1.49)
are drawn with different lines to show the evolution of
instability.

Qualitatively, there are two features that can be imme-
diately recognized from the figures. First, compared to the
coasting contraction, the amplitude of perturbations on the
outer surface is larger in accelerated contraction at the same
convergence ratio Cr (and therefore the same α). This is a
typical feature of RT instability, where the growth speed of
a surface deformation increases with the surface acceleration
and mode number m. Second, with the increasing of mode
number m, the inner surface becomes less deformed, which
suggests that coupling effects are more important at small m.
This is in line with the fact that the coupling terms in Eqs. (11)
and (12) are roughly proportional to α−m. With the increasing
of m, the coupling term becomes less important at the same α.

1

1
1

(only ACT)
(only VCT)

out
(only ACT)
(only VCT)

2

2
2

in

1
(only ACT)
(only VCT)
1
1

2
(only ACT)
(only VCT)
2
2

Cr

(a)

(c) (d)
I II III I II III

(b)

FIG. 4. Instantaneous growth rates σ1 (a), σ2 (b) and the instan-
taneous coupling factors �1 (c), �2 (d) for unstable mode m = 4 in
an accelerated contraction. The green vertical dashed dots represent
αm = 6, and the pink vertical dashed dots represent αm = 36.

A. Coupling effects

Figures 4(a) and 4(b) display the growth rates of a fluid
shell as a function of Cr up to 2.2 [corresponding to Rin(t ) ≈
0.13 and α ≈ 3.53] in an accelerated contraction, where σ1

and σ2 are the growth rates of the two most unstable modes,
denoted by blue and red lines, respectively. Note that for a
shell system, the third mode is a complex-conjugated mode of
the second one. It shares the same σ and � as those of the
second mode. The fourth mode is stable. It damps out quickly
in the evolution. For illustrating purposes, an intermediate
mode number m = 4 is chosen here. Note that σ1 is not always
the maximum growth rate. In fact, it is overtaken by σ2 at the
transition stage of contraction. The contribution of ACT to the
growth rates, i.e., the growth rates calculated without VCT, are
plotted as down-triangles in the figures, while those of VCT
are plotted as square-dots. The growth rates

σin = 	
⎛
⎝

√
(|m| − 1)R̈in

Rin
+

(
Ṙin

Rin

)2

− Ṙout

Rout

⎞
⎠, (21)

and

σout = 	
⎛
⎝

√
− (|m| + 1)R̈out

Rout
+

(
Ṙout

Rout

)2

− Ṙout

Rout

⎞
⎠, (22)

solved from Eqs. (13) and (14) are also presented in dash-
lines for large Cr as references of uncoupled limit of the two
surfaces. Coupling factors for the first and second unstable
modes are displayed in Figs. 4(c) and 4(d). Contributions of
ACT and VCT are also presented in the same figures.

As displayed in Fig. 4, the evolution of instability is
decomposed into three stages, i.e., strongly coupled stage
(Region I in the figure), transition stage (Region II), and
decoupled stage (Region III). The two boundaries of the
stages are displayed as green and pink vertical dashed-dots
in the figure. It turns out αm is a convenient index variable to
distinguish these stages. When αm approaches 1, the coupling
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terms in Eqs. (11) and (12) diverge roughly according to
1/(α − 1), suggesting a strong-coupling limit. When αm goes
to infinity, the coupling terms diminish roughly according
to α−m, which is the decoupled limit. More importantly, αm

gives roughly the same boundaries for all unstable modes
of different m. This will be convenient for experiments and
target designs. Numerically, the first boundary can be deter-
mined to be αm ∼ 6, where the � of the last unstable mode
starts to decrease from nearly 1 to 0. The second boundary
is set to be αm ∼ 36, where the � of the last unstable modes
drops to ∼0.1.

In the strongly coupled stage, perturbations on the two sur-
faces evolve as an inseparable entirety. As displayed in Fig. 4,
at the beginning of the contraction, σ1 > 0 and σ2 ∼ 0. At the
meantime, �1 is close to 1. This suggests that the evolution
of perturbations is dominated by the first unstable mode, and
perturbations on both surfaces grow at a similar speed. It is
also noticed that the coupling effect at the beginning of an
accelerated contraction is dominated by the ACT. As can be
seen from Figs. 4(a) and 4(c), the σ1 and �1 calculated with
only ACT contributions (down-triangles in the figures) are
coincident with those calculated with all coupling terms (solid
lines). This is a special feature of accelerated contraction. At
the beginning of an accelerated contraction, as specified in
Eq. (19), Ṙn vanishes, which leads to a VCT contribution close
to zero.

As the contraction continues, the second mode becomes
unstable with the increase of Ṙn and R̈n, as displayed in
Fig. 4(b). The cylindrical shell now has two unstable modes.
In both unstable modes, VCT eventually overtakes ACT as
the leading contribution of the coupling effects, however, in a
different way. In the first unstable mode, VCT and ACT bear
different signs and cancel each other. Figure 4(a) shows that σ1

calculated with all coupling terms (solid lines) lies in between
those σ1’s calculated with VCT and ACT, and eventually
gets close to the σ1 with VCT (square dots). Meanwhile, �1

calculated with all coupling terms (solid lines) decreases with
the increase of �1 calculated with only VCT, as displayed
in Fig. 4(c). At Cr = 1.3 (α = 1.21), the two contributions
entirely cancel each other, and the two surfaces are decoupled
temporarily. After that the coupling between the two surfaces
recovers with further increase of VCT contributions.

Unlike the first unstable mode, VCT and ACT of the
second unstable mode are cooperative, i.e., they do not cancel
to each other, in calculating σ2 and �2. The VCT dominates
the coupling effect shortly after the accelerated contraction
start, as can be seen from Fig. 4(b), where σ2 of full coupling
effects (solid lines) is very close to that calculated with VCT.
Also, since VCT and ACT are cooperative, the two surfaces
remain strongly coupled, as Fig. 4(d) shows.

It deserves to mention that even in the strongly coupled
stage, the evolution of perturbations on the two surfaces of
the fluid shell is not always controlled by the most unstable
mode. Other less unstable modes may also be important due to
temporarily decoupling caused by cancellation between ACT
and VCT. For example, around Cr = 1.3, where �1 = 0,
the most unstable mode is still the one associated with σ1.
However, it only has component on one of the surfaces. The
other surface then evolves according to the second unstable
mode, i.e., the one associated with σ2.

1

1
1

(only ACT)
(only VCT)

out
(only ACT)
(only VCT)

2

2
2

in

1
(only ACT)
(only VCT)
1
1

2
(only ACT)
(only VCT)
2
2

Cr

I II III I

(b)(a)

(c) (d)
II III

FIG. 5. Instantaneous growth rates σ1 (a), σ2 (b) and the instan-
taneous coupling factors �1 (c), �2 (d) for m = 4 in a coasting
contraction. The green vertical dashed dot line represent αm = 6, and
the pink vertical dashed dot line represent αm = 36.

In the transition stage, the coupling effect is dominated by
VCT. The factor α−m now gradually suppresses the coupling
effect. This can be seen from Figs. 4(a) and 4(b) that, in
Region II, the σ1 and σ2 gradually approach Bell’s solution
in Eqs. (21) and (22), which are displayed using dashed lines
as the uncoupled limits of the growth rates. Also, coupling
factors of both unstable modes start to drop to nearly zero in
that region, as displayed in Figs. 4(c) and 4(d).

For cylindrical shells, another important feature of the
transition stage is that the growth rate of the second mode
overtakes that of the first mode, i.e., the second mode re-
places the first one as the most unstable mode. Around the
crossover, the growth of the perturbation on the surfaces
of the shell is then determined by the competition of these
two modes.

In the decoupled stage, the coupling effects are negligible.
Figures 4(a) and 4(b) show that σ1 is coincident with the
growth rate σout of the outer surface, while σ2 goes to the limit
of σin. This means that the first unstable mode concentrates on
the outer surface, while the second unstable mode is on the
inner surface. The two surfaces are now completely isolated
from each other and the Bell’s results in Eqs. (21) and (22)
are recovered.

Coupling effects in a coasting contraction is relatively
straightforward, as we show in Fig. 5. For both unstable
modes, VCT dominates the coupling effect from the very
beginning. The brief decoupling of the first mode in the
strongly coupled stage disappears, as displayed in Fig. 5(c).
The instability at this stage is then only controlled by the un-
stable mode associated with σ1. The difference in �1 between
coasting and accelerated contractions can be traced back to
the different behavior of Ṙn. In the coasting contraction, |Ṙn|
is always greater than zero, which leads to a finite contribution
of VCT. In the accelerated contraction, |Ṙn| increases from
zero, and VCT contribution is nearly zero at the beginning.
This may afford a general picture of the coupling effect.
Usually, VCT is the leading contribution to the coupling
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1

1
1
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(only VCT)

in

Cr
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(b)

1
(only ACT)
(only VCT)
1
1

IIIIII

FIG. 6. Instantaneous growth rate σ1 (a) and the instantaneous
coupling factor �1 (b) for mode m = 4 in an accelerated explosion.
The green vertical dashed dot line represent αm = 6, and the pink
vertical dashed dot line represent αm = 36.

effect, unless contracting speed of the surface is quite close
to zero.

We would like to stress that, although these results are
obtained with m = 4, the general picture holds for all mode
numbers. It can be expected that the strongly coupled stage
as well as the transition stage gets shorter, and the decoupled
stage becomes longer when m increases. For example, for
m = 10, as the experiment of Hsing et al. [33] focused on,
the strongly coupled stage is relatively short. The shell enters
the transition stage, around Cr = 1.26 (α = 1.20), where the
radius of the outer surface is about 80% of its original value.
As a reference, the transition stage starts at Cr ≈ 1.76 for
m = 4. For small mode numbers like m = 2, most of the
contraction takes place in the strongly coupled stage up to
Cr ≈ 2.10 (α ≈ 2.49).

For explosions, interactions between the two surfaces are
slightly different. During the explosion, the thickness of the
shell decreases monotonically, and there is only one unstable
mode controlling the development of the instability, similar
to the planar case [12]. Figure 6 displays the variation of the
instantaneous growth rate σ1, and the coupling coefficient �1

of the only unstable mode during the explosion. The trajectory
of the outer surface is

Rout(t ) =
[

1 +
(

t

10

)2
]

Rout(0),

representing an accelerated explosion. The initial radii of
both surfaces are Rout(0) = 0.455 and Rin(0) = 0.129, and the
mode number m is 4. It shows that the Bell’s result for the
inner surface, denoted as σin, works well at early stages (the
II and III stages in the figure) as expected. From the variation
of � with respect to Cr, Fig. 6 also displays that the empirical
criteria αm = 6 and 36 give good estimation to the boundaries
dividing decoupled, transition, and strongly coupled stages.

γ

Cr

γ    out (k = 4)
γ    in (k = 4)

γ    out (k = 7)
γ    in (k = 7)

γ    out (k = 2)
γ    in (k = 2)

FIG. 7. Ratios γin and γout for m = 2, 4, and 7, which represent
the influence of thin-shell corrections. Short vertical segments shows
the positions that αm = 6, at which γ drops to about 0.1.

B. Thin-shell corrections

Thin-shell correction terms are proportional to the RT
terms, i.e., those terms associated with the acceleration of the
surface in Eqs. (13) and (14). So, it is convenient to use the
ratio γ of TSC over RT terms as a quantitative description of
thin-shell effect. For the inner and outer surfaces, γin and γout

is then defined as

γin ≡ −2m 1
α2m−1

R̈in
Rin

ηin

−(m − 1) R̈in
Rin

ηin

= 2m

m − 1

1

α2m − 1
, (23)

and

γout ≡ 2m 1
α2m−1

R̈out
Rout

ηout

(m + 1) R̈out
Rout

ηout

= 2m

m + 1

1

α2m − 1
, (24)

respectively. Since γin and γout are only functions of m and
α, which have nothing to do with the speed or acceleration of
the surfaces, they can be used in both accelerated and coasting
contractions and get the same conclusion. It is evident that the
TSC are much larger than the original RT terms for a thin fluid
shell because the factor 1/(α2m − 1) increases unbounded
when α approaches 1 for a thin shell.

Figure 7 displays γin and γout as functions Cr for selected
mode numbers m = 2, 4, and 7, where solid lines represent
γin, and dashed lines are for γout. Initially Rout(0) = 1 and
Rin(0) = 0.9, the same as those used in the discussion of
coupling effects. Vertical line segments are positions where
αm = 6 for each mode number m. It shows that both γin and
γout drop to about 0.1 at the places where αm = 6. That is to
say, the time interval that TSC has a nonnegligible contribu-
tion is more or less coincident with the strongly coupled stage.

It is interesting to take a look of the thin shell limit of the
instability, i.e., the limit of α → 1. With the notation ζ =
ηin + ηout and δ = ηout − ηin, the simplified equations with
leading terms can be rewritten in a concise form as

∂2ζ

∂t2
= −2

ε

¨̄R

R̄
δ, (25)
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and

∂2δ

∂t2
+ 4

˙̄R

R̄

∂δ

∂t
+ 2

(
˙̄R

R̄

)2

δ = −ε
(m2 − 1) ¨̄R

2R̄
ζ , (26)

with R̄ = √
RinRout and ε = α − 1. They are similar to

Mikaelian’s results (Eqs. (20a) and (20b) of Ref. [31]), which
were derived in a different way.

An analytical solution to Eqs. (25) and (26) would be diffi-
cult since ¨̄R and ˙̄R are generally time-dependent. However,
in two typical cases, one can get simple results. One is in
the coasting contraction, where ¨̄R = 0. The most unstable
perturbation on the surfaces grows proportional to exp[−(2 +√

2)( ˙̄R/R̄)t]. The other is at the beginning of an accelerated
contraction, where ˙̄R = 0 and the most unstable perturbation
grows ∼ exp[(m2 − 1)1/4(− ¨̄R/R̄)1/2t].

IV. SUMMARY

In summary, we show that linear perturbations on the
surfaces of a fluid shell can be divided into Bell model terms,
coupling terms, and thin-shell correction terms, if the pertur-
bations are regrouped according to αm. It is also revealed that
αm is a convenient index variable for coupling effects, with

which we show the evolution of instability is composed of
three stages as strongly coupled stage, transition stage, and un-
coupled stage. Roughly when αm < 6, the fluid shell is in the
strongly coupled stage, where coupling effects and thin-shell
corrections play important roles. Strong feed-through effects
are expected to be observed at this stage. The uncoupled stage
is reached when approximately αm > 36, where Bell’s picture
of perturbations on two independent surfaces holds. Between
these two is the transition stage, where one expects to see
typical phenomena of mode competitions on the two surfaces.
These results afford an intuitive picture which is easy to use in
guiding the design of experiments. They also help to quickly
grasp major features of instability experiments.
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