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Transition to turbulence in driven active matter
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A Lorenz-like model was set up recently to study the hydrodynamic instabilities in a driven active matter
system. This Lorenz model differs from the standard one in that all three equations contain nonlinear terms.
The additional nonlinear term comes from the active matter contribution to the stress tensor. In this work,
we investigate the nonlinear properties of this Lorenz model both analytically and numerically. The significant
feature of the model is the passage to chaos through a complete set of period-doubling bifurcations above the
Hopf point for Schmidt numbers above a critical value. Interestingly enough, at these Schmidt numbers a strange
attractor and stable fixed points coexist beyond the homoclinic point. At the Hopf point, the strange attractor
disappears leaving a high-period periodic orbit. This periodic state becomes the expected limit cycle through
a set of bifurcations and then undergoes a sequence of period-doubling bifurcations leading to the formation
of a strange attractor. This is the first situation where a Lorenz-like model has shown a set of consecutive
period-doubling bifurcations in a physically relevant transition to turbulence.
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I. INTRODUCTION

The route to turbulence in a fluid as some control parameter
is varied (e.g., increasing the mean flow velocity, or increasing
the density gradient if the instabilities are in a stratified fluid)
was first conjectured by Landau [1]. In Landau’s scenario,
a steady motion becomes a periodic motion and then the
periodic motion is destabilized to yield a quasiperiodic motion
with two incommensurable frequencies and, subsequently,
the number of incommensurate frequencies increases with
increasing control parameter and eventually the motion be-
comes aperiodic. This sequence of events was shown to
be improbable by Ruelle, Takens, and Newhouse [2,3] who
argued that any more than three quasiperiodic frequencies
would lead to an aperiodic state. In a parallel development, to
study the aperiodic flows in a fluid stratified by heating from
below, Lorenz [4] decided to use a Galerkin truncation pro-
cedure to reduce the coupled (velocity and local temperature)
partial differential equations to a set of ordinary differential
equations. Because of the nature of the fluid (having viscosity
and thermal diffusivity), the system had to be dissipative. The
minimum number of modes in such a truncation would have
to be three to bypass the Poincare-Bendixon theorem (see,
e.g., Ref. [5]). Choosing the three most relevant modes Lorenz
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obtained a set of three coupled ordinary differential equations
now known as the Lorenz model. The control parameter (r)
of the model was the temperature gradient while there were
two other system parameters. One of them (b) describes the
geometry of the setup (b = 8

3 for Lorenz) and the other is the
Prandtl number of the fluid. The Lorenz model took the form

Ẋ = σ (−X + Y ), (1.1a)

Ẏ = −Y + rX − XZ, (1.1b)

Ż = XY − bZ. (1.1c)

The modes X and Y stand for the convective roll patterns set
up by the velocity and temperature fields and Z is the amount
of convective heat transfer across the fluid. For very small
gradients (r < 1) the conduction state (X = Y = Z = 0) is
stable. It becomes unstable and steady convection sets in for
r > 1. The steady state is destabilized by a Hopf bifurcation
at r = rc = σ σ+b+3

σ−b−1 but a periodic state is not observed for
r > rc since the bifurcation is backward. Lorenz found that
the aperiodic behavior sets in almost immediately above rc

and, further, the trajectories, although confined in a region,
are very sensitive to the initial conditions. The set of points to
which all trajectories are attracted is called a strange attractor.
The signature of fluid turbulence in the truncated model of
Eqs. (1.1a)–(1.1c) was the extreme sensitivity of trajectories
to initial conditions—a state of affairs described as chaos.
Thus the Lorenz model described a new scenario in which
the onset of turbulence followed the sequence: trivial steady
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state → convective steady state → unstable periodic state via
a Hopf bifurcation → turbulence.

More than a decade later a new paradigm was discovered
in the study of low-dimensional return maps [6–8]. This
was an infinite sequence of bifurcations leading to periodic
orbits with higher and higher time periods. If the first Hopf
bifurcation produces a periodic state of time period T , then the
successive states are characterized by 2T, 22T, . . . , 2nT, . . .

with new periods appearing with only a slight change in the
control parameter. Soon, the system becomes a periodic at a
critical value of the control parameter and also shows sensitive
dependence on initial conditions. An expected pathway to
turbulence could then be steady state → periodic state of
period T → 2T → 22T → · · · → aperiodic state. This
sequence, or, more correctly, some part of it, has been seen
in some damped driven Duffing oscillators [9] but never
in any physically motivated Lorenz-like model of a system
governed by nonlinear partial differential equations. In real
experiments, one of the earliest observations of a few period
doublings is that of Libchaber et al. [10].

A slightly different kind of hydrodynamical problem is
posed by active matter (bacteria swimming in a fluid) [11–13].
Here, because of its own energy source, active matter can exert
an additional stress in the Navier-Stokes equation. The usual
stress tensor for the velocity dynamics of an incompressible
fluid is Ti j = −pδi j + η(vi, j + v j,i ), where vi, j = ∂ jvi, p is the
pressure, and η is the shear viscosity. The additional contri-
bution to Ti j can take different forms [14–17], depending on
what is being studied and a particular form [18] of this extra
term is reminiscent of model H in the different universality
classes of dynamic critical phenomena [19].

The earliest variety of active matter where hydrodynamic
instabilities were studied [20] are the active nematics. In
confined active nematics, a transition from a quiescent state to
a spontaneously flowing state was predicted by Voituriez et al.
in Ref. [21]. Since the late 2000s, a large number of interesting
results on turbulence in “living fluids” (e.g., Wensink et al.
[22]) has also been obtained. A recent overview can be had
from Doostmohammadi et al. [23]. If we compare with the
studies of turbulence in ordinary fluids (see, e.g., Ref. [24]),
the instabilities and turbulence that one discusses in the active
matter systems are akin to the transition to turbulence in pipe
flows. Such flows have never been susceptible to a Lorenz
model approach. The reduction to a Lorenz model works if the
geometry allows a somewhat sensible reduction of the partial
differential equations which describe the system to a set of
ordinary differential equations. This is done by a judicious
selection of the relevant modes. In fluid dynamics, this can
be done for convective turbulence in a fluid confined in a box
with a temperature gradient maintained in the vertical direc-
tion. One can use a dimensionless number (Rayleigh num-
ber) proportional to the temperature gradient as the control
parameter and the flow character changes from steady flow to
turbulence as the Rayleigh number is increased. With a view
to exploiting this simplification in the study of active matter
turbulence, we introduced a driven system in Ref. [25] where a
concentration gradient was maintained in a given direction in
a confined active fluid. The first convective instability decides
the choice of modes and allows the reduction to a Lorenz
model which was introduced in Ref. [25].

FIG. 1. Summary of our results on an illustrated r vs σ plot.

The crucial difference of this Lorenz model from the
existing one, shown in Eqs. (1.1a)–(1.1c) is the appearance of
an extra nonlinear term in Eq. (1.1a). In Ref. [25] we studied
the steady-state properties of this model and showed they were
significantly different from that of the standard Lorenz model.

In this work, we concentrate on the nature of the Hopf
bifurcation. We find that this version of the Lorenz model has
the following series of bifurcations for large Schmidt num-
bers: trivial steady state → convective steady state with two
stable fixed points → a Hopf bifurcation to two symmetrically
situated periodic orbits of period T about the previously stable
fixed points → a sequence of period-halving bifurcations
leading to one periodic orbit encircling both the unstable
fixed points → a sequence of period-doubling bifurcations
leading to chaos. As far as we know, this is the first situation
where a Lorenz-like model has shown a set of consecutive
period-doubling bifurcations in a physically relevant scenario.
A complete summary of our principal results is shown in
Fig. 1.

The layout of the paper is as follows: In Sec. II we study
the convective instability of the trivial state in the governing
partial differential equations and then set up the relevant
Lorenz model and study the nontrivial steady state. In Sec. III,
the Hopf bifurcation is examined and the system reduces to
the canonical form near the bifurcation point. The linear part
is shown to lead to a growing mode as the control parameter is
increased. The nonlinear part shows a forward bifurcation for
σ � 1 but a backward bifurcation for small σ . In the process,
we extend the Krylov-Bogoliubov technique [26,27] beyond
its usual habitat of two-dimensional dynamical systems, the
details of which are given in Appendix. In Sec. IV we present
detailed numerical results for the model which show the exis-
tence of a complete sequence of period-doubling bifurcations
leading to chaos as shown in Fig. 1. We examine closely the
region r0 < r < rc, r0 being the point where the homoclinic
bifurcation occurs and rc a point slightly above the Hopf
bifurcation point rH and find some rather striking features. We
conclude with a summary in Sec. V.
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II. THE LORENZ MODEL FOR ACTIVE MATTER

We consider wet active matter in its simplest form by
ignoring the orientational degrees of freedom. This model
was proposed by Tiribocchi et al. [18] and is the active fluid
version of model H in the Halperin-Hohenberg classification
scheme.

The variables of interest are as follows:
(i) the scalar concentration field φ(r, t ) of the active par-

ticles (also called swimmers) which is proportional to their
density, and

(ii) the vector velocity field u(r, t ) which represents the
velocity of the fluid medium in which the active matter moves
about.

The fluid velocity follows an incompressible Navier-Stokes
equation which takes the form

∂t ui + u j∂ jui = −∂i p + ν∇2ui + ∂ j�i j, (2.1a)

∂iui = 0, (2.1b)

where p(r, t ) is the pressure field, ν is the kinematic viscosity,
and �i j is the stress tensor generated by the active particles.
To the lowest nontrivial order allowed by symmetry consider-
ations, it has the form

�i j = −ζ

[
∂iφ∂ jφ − δi j

3
(∇φ)2

]
, (2.2)

where ζ is a constant which can be termed the activity
coefficient. This additional term in the Navier-Stokes equation
is the nonlinear Burnett term. The concentration field φ(r, t )
satisfies the usual advection-diffusion equation:

∂tφ(r, t ) + u j∂ jφ(r, t ) = D∇2φ(r, t ). (2.3)

The above equation differs from the form of Tiribocchi et al.
[18] in that we have omitted the Ginzburg-Landau-like terms
which they needed to study phase separation. In addition, we
have neglected a nonlinear term in the concentration current
that leads to a term in Eq. (2.3) that is of higher order in the
gradients than the convective nonlinearity in that equation.
Effectively in each equation we have retained the leading
nonlinearity in a gradient expansion. This will allow us to
obtain a generalized Lorenz model at the end of this section.

The setup we envisage consists of two square parallel
plates of side L⊥, separated by a distance L and placed parallel
to the X -Y plane. We work in the limit of L⊥ � L (infinite
aspect ratio).

The active matter gradient is maintained at a constant value

φ0

L across the plates. In this nonequilibrium steady state
(NESS), we have

φ0(r) = φ00 + z

φ0

L
(2.4a)

and

u0(r) = 0. (2.4b)

In this steady state there is a constant particle current j =
−D∇φ = −D 
φ0

L ẑ across the system. For the motionless state
of the fluid, we require the pressure gradient to vanish.

The first question that we ask is whether this NESS is stable
against small perturbations. If δui(r, t ) and δφ(r, t ) are the

perturbations around u0(r) and φ0(r), then to linear order in
δui and δφ, we have

∂tδui − ν∇2δui = −∂iδp − ζ

φ0

L

(
2

3
∂z∂iδφ + ∇2δφ

)
.

(2.5)
Imposing the incompressibility constraint ∂iδui = 0 from
Eq. (2.1b) leads to

∇2δp = −5

3
ζ


φ0

L
∂z∇2δφ. (2.6)

Taking the Laplacian of Eq. (2.5) and using Eq. (2.6) leads to

∇2(∂tδui − ν∇2δui ) = ζ

φ0

L
(∂z∂i∇2δφ − ∇4δφδi3 ). (2.7)

The concentration equation yields

(∂t − D∇2)δφ = −
φ0

L
δw, (2.8)

where δw is the z component of δu. Consequently, in Eq. (2.7)
we use only the z component which can be written as

(∂tδw − ν∇2δw) = −ζ

φ0

L
∇2

⊥δφ, (2.9)

where ∇2
⊥ = ∇2 − ∂2

∂z2 . Eliminating δφ between Eqs. (2.8) and
(2.9) we get

(∂t − D∇2)(∂t − ν∇2)δw = ζ

(

φ0

L

)2

∇2
⊥δw. (2.10)

The vertical velocity and its second derivative are taken to
vanish at the two plates (stress-free boundary conditions) and
because of the infinite extent in the X -Y plane, we consider
a periodic solution in the horizontal plane. The solution will
have the form

δw(r, t ) =
∑

n

aneik⊥·r⊥ sin
(nπz

L

)
eλn(k⊥ )t (2.11)

and inserting in Eq. (2.10), we have for each n,[
λn + D

(
n2π2

L2
+ k2

⊥

)][
λn + ν

(
n2π2

L2
+ k2

⊥

)]

= −ζ

(

φ0

L

)2

k2
⊥. (2.12)

Instability would occur if for a given n and k⊥ it is possible for
λn(k⊥) to become zero or positive. It is immediately clear that
for λn to be zero or positive, we need ζ < 0. Hence for large
negative values of the activity coefficient, we can have the
state given by Eqs. (2.4a) and (2.4b) become unstable. Writing
−ζ as |ζ |, we find the condition of λn becoming zero as

|ζ |
(


φ0

L

)2

= Dν

(
n2π2

L2 + k2
⊥

k2
⊥

)2

. (2.13)

Clearly, the lowest value of n for which the instability can
occur is n = 1 and the critical value of |ζ | is

|ζ |
(


φ0

L

)2 L2

Dν
= (π2 + k2

⊥L2)2

L2k2
⊥

. (2.14)

We define N ≡ |ζ | (
φ0 )2

Dν
as the analog of the Rayleigh number

in fluids. This activity Rayleigh number N has a minimum
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value when k⊥L = π and hence the critical value Nc for the
”convective instability” is

Nc = 4π2. (2.15)

We have, thus, arrived at a situation which is completely
analogous to hydrodynamic convection. The pure conduction
state when a fluid is subjected to a constant temperature
gradient loses stability above a critical Rayleigh number (the
critical value is 27π4

4 for the boundary conditions that we
have used) and a steady convective state becomes stable.
The Rayleigh number is the dimensionless variable Ra =
αg
Dν

( 
T
L )L4 with the D standing for heat diffusivity (since the

advected variable is heat), α is the expansion coefficient, and
g is the acceleration due to gravity. The analog of 
φ0 is 
T
and the analog of |ζ | is αg.

It should be noted that for physical reasons, only positive

T (heated from below) can cause convective instability
while in the present scenario, any sign of the gradient will
lead to an instability if N exceeds the critical value.

In fluids, as the Rayleigh number is increased beyond a
critical value, the steady convection becomes oscillatory as
the roll structure begins to undulate. With further increase of
Rayleigh number, the oscillatory state makes a transition to a
more complicated time dependence and eventually to a soft
turbulence (chaos) followed by a hard turbulence character-
ized by definite scaling behavior. To see this transition in a
tractable model, Lorenz carried out a Galerkin truncation of
the hydrodynamic equations choosing the three most relevant
modes. The resulting Lorenz model—a set of three ordinary
nonlinear differential equations has become one of the most
studied examples in dynamical system theory for complex
behavior. Motivated by Lorenz’s work, we construct a similar
dynamical system model for this instability.

The simplest set of variables that we can take is those
corresponding to a set of cylindrical rolls with the axis of the
cylinder in the y direction. This makes all the fields u(r, t ) and
φ(r, t ) independent of the y coordinate. The choice

uz = A(t ) cos πx sin πz, (2.16a)

ux = −A(t ) sin πx cos πz, (2.16b)

δφ = φ − φ0(r) = B(t ) cos πx sin πz + C(t ) sin 2πz,

(2.16c)

is the minimal nontrivial model. As shown in Ref. [25], this
choice leads to the Lorenz model for driven active matter in
the form

Ẋ = σ (−X + rY + rY Z ), (2.17a)

Ẏ = −XZ + X − Y, (2.17b)

Ż = −2Z + XY. (2.17c)

In the above, σ = ν
D is the Schmidt number and r = N

Nc
is

the control parameter. It should be noted that the Schmidt
number in this model will be much greater than the Prandtl
number in the usual Lorenz model since the particle diffusion
coefficient D is generally much smaller than the heat diffusion
coefficient. The difference with the standard Lorenz model
lies in the nonlinear term in Eq. (2.17a). This term is the active
matter contribution.

Using an ansatz, we arrive at the following Lyapunov
function for the Lorenz model written down above

V (X,Y, Z ) = X 2 + 2σ rY 2 + σ r(Z − 3)2 (2.18)

with

V̇ = 2

[
−σX 2 − 2σ rY 2 − 2σ r

(
Z − 3

2

)2

+ 9

2
σ r

]
.

Clearly, V̇ < 0 outside the ellipsoid σX 2 + 2σ rY 2 +
2σ r(Z − 3

2 )2 = 9
2σ r and hence all trajectories of the active

matter Lorenz model remain bounded for all time. In the next
section we will study the fixed points of this Lorenz model
and their stability.

III. FIXED POINTS AND BIFURCATIONS

The fixed points of Eqs. (2.17a)–(2.17c) are
(i) The trivial fixed point

X = Y = Z = 0. (3.1)

(ii) Two nontrivial fixed points at

X0 = ±
√

2[(r − 1) ±
√

(r − 1)2 + (r − 1)]
1
2 , (3.2a)

Y0 = X0

1 + X 2
0

2

, (3.2b)

Z0 = X0Y0

2
. (3.2c)

The fixed point (3.1) corresponds to the state where there is
no flow and a static concentration gradient exists between
the plates. Linearizing about this fixed point, we have the
perturbations δX, δY, δZ follow the dynamics

˙δX = σ (−δX + rδY ), (3.3a)

˙δY = δX − δY, (3.3b)

˙δZ = −2δZ. (3.3c)

One of the eigenvalues (growth rate of perturbation) is clearly
−2 and the other two follow from∣∣∣∣λ + σ −σ r

−1 λ + 1

∣∣∣∣ = 0, (3.4)

which yields

2λ = −(1 + σ ) ±
√

(1 + σ )2 + 4σ (r − 1). (3.5)

Clearly, this fixed point is stable for r < 1 and unstable for
r > 1. The zero-velocity state consequently becomes unstable
for r > 1 and one has the steady convection roll state given by
the fixed point (3.2). The values of X0 and Y0 correspond to
the amplitudes of the roll-like solution while Z0 is the Nusselt
number for the problem. It describes the constant rate at which
the active matter is transported from one plate to another.

Unlike the Rayleigh-Bernard case, the convective transport
here is proportional to (r − 1)

1
2 for r > 1 which is different

from the r − 1 dependence of the usual Lorenz model. Simi-
larly, for r � 1, the transport saturates in this case as opposed
to the continuous increase in the standard situation.

We now look at the question of stability of fixed point (3.2).
Writing X = X0 + δX , Y = Y0 + δY , and Z = Z0 + δZ and
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FIG. 2. Homoclinic orbit at σ = 10 and r = 5.45. The orbit takes
off from the origin along the unstable eigendirection in the X -Y plane
and returns to it along a stable one (Z axis).

linearizing in δX , δY , and δZ , we arrive at the following cubic
for the eigenvalue λ:

λ3 + λ2(3 + σ ) + λ
(
2 + 3σ + X 2

0 − σ r
(
1 − Z2

0

) − σ rY 2
0

)
+ 2σ + σX 2

0 + 2σ r
(
Z2

0 − 1
) + 4σ rZ2

0 − σ rY 2
0 = 0. (3.6)

For r = 1 + ε (ε � 1 but positive) it is clear that all the
three roots are real and negative. As one increases r beyond
the critical value of 1, the stable fixed points change from
nodes to spirals and eventually become unstable via a Hopf
bifurcation at r = rH . At the Hopf point, one root is negative
and the other two roots become pure imaginary, i.e., ±iωH .

Before discussing what happens at r = rH , we need to
ask if a homoclinic bifurcation occurs for 1 < r < rH , as in
the standard Lorenz model [28–30]. To find the homoclinic
bifurcation we recall that the origin is an unstable fixed
point (for r > 1) with a one-dimensional unstable manifold
and a two-dimensional stable manifold [the eigenvalues are
λ1,2 from (3.5) and λ3 = −2]. At the homoclinic point r0,
an orbit leaves the origin along the unstable eigendirection,
loops around the nearest stable fixed point, and returns to the
origin along the stable manifold. The homoclinic point r0 as
a function of σ has been determined numerically (a typical
orbit at r = r0 = 5.45 and σ = 10 is shown in Fig. 2) and
plotted in Fig. 3. The interesting thing to note is that r0 < rH

for all values of σ . In fact for large σ , both rH and r0 grow
almost linearly with σ , with r0 having a smaller slope as can
be seen in Fig. 3. This means that a homoclinic bifurcation
always occurs below the Hopf point and there could exist an
unstable limit cycle in the region r0 < r < rH that is created
from the homoclinic bifurcation at r0 and vanishes at the Hopf
bifurcation at rH (thus making it a subcritical one). However,
this is not necessarily true for all σ , as we shall show soon.

Returning to the Hopf bifurcation point at r = rH , we have

ω2
H = 2 + X 2

0 + 3σ − σ rH
(
1 − Z2

0

) − σ rHY 2
0 , (3.7a)

(3 + σ )ω2
H = σ

(
2 + X 2

0

) + 2σ rH
(
3Z2

0 − 1
) − σ rHY 2

0 . (3.7b)

FIG. 3. The blue (thin solid) line represents the numerical solu-
tion for rH , the black (thick solid) line represents the approximated
rH , and the dotted line represents r0, all as functions of σ .

We need to find rH and ωH as functions of σ , using the X0, Y0,
and Z0 given in Eqs. (3.2a)–(3.2c). This is difficult and so we
use a large-σ approximation since we expect σ to be large for
this problem. It is easy to check that for σ � 1, rH ≈ σ

4 and
hence rH is large which in turn allows us to use asymptotic
forms for X0,Y0, Z0 which we write as follows (using ε = r −
1 as the natural variable):

X 2
0 = 4ε + 1 + O

(
1

ε

)
,

Y 2
0 = 1

ε

[
1 − 5

4ε
+ O

(
1

ε2

)]
,

Z2
0 = 1 − 1

ε
+ 1

ε2
+ O

(
1

ε3

)
. (3.8)

Using the above forms of X0, Y0, and Z0 in Eqs. (3.7a) and
(3.7b), we obtain for σ � 1

rH = 1 + σ 2 + 6σ + σ
√

σ 2 + 16σ + 24

8(σ − 3)
(3.9)

and

ω2
H = 8σ (rH − 1). (3.10)

The accuracy of the approximate rH of Eq. (3.9) can be
assessed from Fig. 3, where we show the values of rH obtained
from Eq. (3.9) and from a numerical solution of Eqs. (3.7a)
and (3.7b) as a function of the Schmidt number σ . It should
be noted that for all σ , r0 < rH .

The emergence of a limit cycle with frequency ωH at
r = rH implies that at r = rH , the asymptotic solution for X ,
Y , Z must have the form (X,Y, Z ) = (A, B,C)e±iωH t , where
A, B, and C are constants. The fact that we have an instability
at r = rH means that if we consider r = rH + 
r with 0 <


r � rH , then the amplitudes A, B, C will evolve in time
as eλt with λ > 0. We establish this behavior in Appendix.
To end this section, we check whether the growth saturates
with increasing time (forward Hopf bifurcation). Mclaughlin
and Martin [31] had used a solvability-based approach for the
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FIG. 4. Left: Trajectories starting along the unstable manifold land on the nearest nontrivial fixed point for σ = 10, r = 5. Right:
Trajectories starting along the unstable manifold wind around the nearest nontrivial fixed point and land on the other one for σ = 10, r = 6.
From this it is clear that at σ = 10, 5 < r0 < 6.

original Lorenz model which did show that the bifurcation
was backward for σ = 10 but missed the fact that it could be
forward for very high σ . This change with σ was captured
by the renormalization group treatment of Das et al. [32].
In this work, we show that a Krylov-Bogolyubov approach
(generally reserved for two-dimensional dynamical systems)
is the most direct route to the amplitude equation, the details
of which are provided in Appendix. Here we simply quote the
final result (A18) for the slow dynamics of the amplitude A(t )
of the limit cycle about the fixed point (X0,Y0, Z0) as

[4σ − 2iωHσ ]
dA

dt
= 8σ (
r)A − 4A3σ + O

(
1

σ

)
. (3.11)

The bifurcation is forward (supercritical) for σ � 1 and
Eq. (3.11) shows that for 0 < 
r � rH , the radius of the limit
cycle will grow as

√

r independent of σ . The correction

term in Eq. (3.11) has a positive sign which indicates that
below a certain critical σ , the Hopf bifurcation will be back-
ward (subcritical). The case σ = 10 reported in Ref. [25] is
consistent with a backward Hopf bifurcation. There a limit
cycle was observed for r < rH provided the initial conditions
were sufficiently close to the center of the limit cycle. We note

FIG. 5. The critical point for the homoclinic bifurcation, r0,
plotted as a function of σ .

that transitions between different dynamical states have been
studied recently in a variety of active matter systems, like
fluid flocks with inertia [33], droplet growth in scalar active
matter [34], and hydrodynamics of active defects [35]. We
now present the detailed numerical results in Sec. IV.

IV. NUMERICAL RESULTS AND DISCUSSION

Similarly to the Lorenz model, a homoclinic bifurcation
occurs at r = r0 in our system. The bifurcation can be iden-
tified by the transition shown in Fig. 4. At the critical value
r = r0 there is a homoclinic orbit as shown in Fig. 2 where the
trajectory comes back to the origin. Using this and elementary
iterative techniques, we numerically calculate r0 as a function
of σ . The plot is shown in Fig. 5. As can be seen, for large
σ , r0 grows almost linearly. Plotting this curve in Fig. 3, we
see that r0 < rH for all σ . Hence we always have a homoclinic
bifurcation below the Hopf bifurcation.

For low values of σ , our system is expected to behave
like the standard Lorenz model. For r < 1 the origin is
globally stable and the only fixed point. At r = 1 a pitchfork

FIG. 6. Stable spirals converging to fixed point at σ = 10 and
r < rH .
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FIG. 7. Unstable limit cycle (black dashed line) for σ = 10 and
r = 6. The other trajectory (blue solid line) spirals inwards to the
stable fixed point.

bifurcation occurs and for 1 < r < rH the two nontrivial fixed
points given by Eq. (3.2) are locally stable and trajectories
starting sufficiently close to them spiral down to them as in
Fig. 6. However, the homoclinic bifurcation at r0 leads to
the formation of an unstable limit cycle as shown for σ = 10
in Fig. 7 that exists for r0 < r < rH . Integrating numerically
in this region [using a Runge-Kutta (4,5) scheme with an
absolute and relative error tolerance of 10−6] we get chaotic
trajectories coexisting with the spirals and the unstable limit
cycle as shown in Fig. 8. Since the limit cycle is unstable,
even initial conditions very near it either settle on the fixed
points or on the chaotic attractor. The limit cycle grows
smaller on increasing r from r0 and vanish at r = rH . For
r > rH , there are no periodic orbits or stable fixed points in
the phase space. All trajectories end up on the Lorenz-like
strange attractor shown in Fig. 9. The same behavior is shown
at σ = 12, 15, 20, and so on.

For higher σ the behavior of the system is starkly different.
From the theoretical work in Sec. III we expect the Hopf
bifurcation to be forward. For r < rH , the nontrivial fixed

FIG. 8. For low σ and r0 < r < rH , initial conditions that are
very close to the unstable limit cycle either spiral to the stable fixed
point as in the red (inner, dark gray) line or settle on the strange
attractor as in the green, blue, and yellow (outer, light gray) lines.
The unstable limit cycle exists at the boundary of the red (dark gray)
and green (light gray) trajectories.

FIG. 9. Lorenz-like strange attractor at r = 10 and σ = 10. The
red (gray) dot in the right half is one of the (now) unstable fixed
points.

points given by Eq. (3.2) are stable. Although a homoclinic
bifurcation still occurs in the r0 < r < rH region, there is
no periodic orbit, unlike the low-σ case. Trajectories either
spiral to the stable fixed point or end up on the Lorenz-like
strange attractor as shown in Fig. 10. At r = rH a stable
high-period limit cycle is born whose transition to chaos is
quite unique and is shown in detail for σ = 30 in Fig. 11.
The limit cycle, shown in Fig. 11(a), has a time period of
8.94 which corresponds to 64 2π

ωH
, where ωH is supposed to

be the Hopf frequency of Eq. (3.10). As r is increased beyond
rH , the limit cycle undergoes a succession of period halving
bifurcations, as can be seen in Figs. 11(b), 11(c), and 11(d),
until we have a 2π

ωH
period limit cycle at some r as shown in

Fig. 11(e). As r is further increased, this limit cycle starts to
double its period as shown in Figs. 11(f), 11(g), 11(h), 11(i),
and 11(j) and ultimately becomes the Lorenz-like attractor
in Figs. 11(k) and 11(l). Throughout this process, the limit
cycle is globally stable and there exists no chaos in the region
r > rH except after the Lorenz-like attractor is born. Beyond
this point, the strange attractor becomes the only dominant

FIG. 10. At σ = 30 (high sigma), r = 10 (r0 < r < rH ) there
coexist a chaotic strange attractor and nontrivial stable fixed points.
Initial conditions close to the fixed points spiral into them as in the
yellow (inner, light gray) line, whereas others end up on the strange
attractor as in the blue (outer, dark gray) line.
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FIG. 11. (a) Stable high-period (64 2π

ωH
) limit cycle at r = 12.1 > rH , (b) period 8 2π

ωH
limit cycle at r = 12.4, (c) period 4 2π

ωH
limit cycle at

r = 12.5, (d) period 2 2π

ωH
limit cycle at r = 15, (e) period 2π

ωH
limit cycle at r = 16, (f) period 2 2π

ωH
limit cycle at r = 19, and [(g)–(j)] limit

cycle continues to period double at r = 38, 41, 43, and 45, respectively, and becomes the strange attractor at r = 50 and r = 60 in (k) and (l),
respectively.

feature of the system. This behavior can be seen for σ =
22, 23, 25, . . . , 30, 40, 50, . . . and even σ = 80

Interestingly, as σ is increased the zone of the reverse
bifurcations narrows and the transition of the 2π

ωH
-period limit

cycle into the strange attractor gets more delayed (occurs at
even higher values of r) and in the σ → ∞ limit, the system
shows no chaos since Eq. (2.17a) gives

lim
σ→∞

ẋ

σ
= 0 = −X + rY + rY Z ⇒ X = rY (1 + Z )

and we are essentially left with a two-dimensional flow which
can never be chaotic.

The critical sigma to separate the low and high cases is
calculated numerically to be approximately 21. For σ > 21
the high-σ route is followed, whereas for σ < 21 the low-σ
behavior is observed. All these results are summed up in the
illustrated plot in Fig. 1.

The final issue to be settled is what implications our results
for the Lorenz model discussed here bear to the situation we
started with—namely driven active matter. What we started
with in Sec. II was an active matter hydrodynamics with a
concentration gradient imposed in a particular direction. What
we demonstrated in that section was that the hydrodynamics
leads to a pattern forming instabilities for a critical value of the
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active matter coupling coefficient (also known in literature as
the nonlinear Burnett coefficient) where the active matter is
arranged in the form of convection rolls. To tackle the issue of
what happens if the control parameter (the analog of Rayleigh
number in normal fluids) is further increased we took recourse
to a Lorenz model description which should be realistic for
high values of the Schmidt number σ . The first prediction is
a transition from a steady convection pattern to an oscillatory
pattern where the flow direction switches periodically. This
occurs through a Hopf bifurcation and our finding is that
this time-periodic state would be observable (forward Hopf
bifurcation) for σ > σc ≈ 20. What if the concentration gra-
dient is increased still further? As in all Lorenz models, we
cannot say anything about the further complications in the
spatial pattern but can make a prediction about the temporal
pattern. This is what is shown in Fig. 1—the periodic state
undergoes repeated bifurcations to higher and higher period
states and ultimately becomes chaotic. We thus predict that
the real physical system will make a transition to “soft”
turbulence (temporarily turbulent) at a critical value of the
control parameter which depends strongly on the value of the
Schmidt number.

V. CONCLUSION

We have considered a setup where a definite gradient of
active matter is maintained in a given direction across the
fluid medium in which it is suspended. As the gradient is
increased the fluid medium develops “convective” instabilities
and exhibits an infinite sequence of bifurcations. We have
used a low-order Galerkin truncation to capture the dynamics
of the system exactly in a manner analogous to that employed
by Lorenz [4] for studying atmospheric flows. This new
version of the Lorenz model, so obtained, has nonlinear terms
in all the three equations.

Since the Lorenz model is an approximation to the original
model of Eqs. (2.1a)–(2.3), it is important to ask what features
of the model are generic. To do that it is important to see
what is totally neglected in arriving at the Lorenz model
from the partial differential equations. It is easy to check that
the modes we have chosen [Eqs. (2.16a)–(2.16c)] completely
ignore the presence of the velocity nonlinearity (v · ∇)v.
Hence, we expect that our approximation will be useful if
the contribution from this nonlinearity is small compared to
the other nonlinearities. Starting with Eqs. (2.1a)–(2.3) and
writing a dimensionless version using appropriate scalings of
the field, we find that the contribution of (v · ∇)v is smaller
than (v · ∇)φ by O(σ−1). Hence it is reasonable to expect that
for σ � 1 we will see the Hopf bifurcation and, consequently,
a time-periodic state manifested by a wriggling of the axis
of the rolls. This kind of an oscillatory convection happens
in high-Prandtl-number fluids heated from below [36,37]. We
should point out that for the particular version [Eqs. (2.1a)–
(2.3)] of the driven model H which we have used, no direct
numerical simulation or real experiments have been carried
out so far.

We believe that the driven system that we are considering
could be a very reasonable system for experimental study as
the naturally high Schmidt numbers of bacterial suspensions
should make the theoretical predictions of this work realistic.

We also point out the fact that the more general model H of
Tiribocchi et al. [18] has terms we have omitted. Since we
are staying away from phase separation, we are justified in
dropping a term proportional to the cube of the concentration
in the chemical potential. The spatial patterns that we are
discussing have a length scale of order unity and hence
the contribution of the local concentration gradients to the
chemical potential have been dropped. The model H version
that we have used can be viewed as a minimal model for
studying the “convective” instability of the driven system.

We find that the Lorenz model obtained from the minimal
model H for driven active matter can actually show one of
the most desirable routes to turbulence—from a trivial steady
state to a nontrivial one, followed by a Hopf bifurcation
to a periodic state and then a sequence of period doubling
bifurcations until the flow loses all periodicity and shows the
existence of a stable strange attractor. Very surprisingly, there
is a small twist—the period doubling bifurcations leading to
chaos as the control parameter is increased have a mirror im-
age of bifurcations as the control parameter is decreased and
this leads to the coexistence of a strange attractor and stable
fixed points on the other side of the Hopf bifurcation point.
For Schmidt numbers below a critical value, the bifurcations
are identical to what one sees in the traditional Lorenz model.

APPENDIX: SLOW DYNAMICS OF LIMIT
CYCLE AMPLITUDE

We begin by rewriting our Lorenz equations as a single
differential equation. Using the notation D ≡ d

dt , we define
variables u, v,w as

u = X − X0, v = Y − Y0, w = Z − Z0 (A1)

and write Eqs. (2.17a)–(2.17c) as

(D + σ )u = σ r(1 + Z0)v + σ rY0w + σ rwv, (A2a)

(D + 1)v = (1 − Z0)u − X0w − uw, (A2b)

(D + 2)w = Y0u + X0v + uv. (A2c)

Combining into one equation, we have

Lu = [
(D + σ )(D + 1)(D + 2) + X 2

0 (D + σ )

− σ r
(
1 − Z2

0

)
(D + 2) + 4σ rZ2

0 − σ rY 2
0 (D + 1)

]
u

= −σ rX0(1 + Z0)uv − σ r(1 + Z0)(D + 2)uw

− 2Z0σ ruw + σ rY0(D + 1)uv

+ σ r
[
(D + 1)(D + 2) + X 2

0

]
wv. (A3)

We also note[
(D + 1)(D + 2) + X 2

0

]
v

= (1 − Z0)(D + 2)u − 2Z0u − X0uv − (D + 2)uw

(A4a)

and[
(D + 1)(D + 2) + X 2

0

]
w

= Y0(D + 1)u + X0(1 − Z0)u − X0uw + (D + 1)uv.

(A4b)
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We start exploring the region r = rH + 
r by ignoring the
nonlinear terms in Eq. (A3) and splitting the linear part as a
part at r = rH and a part of O(
r). We get[

(D + σ )(D + 1)(D + 2) + X 2
0c(D + σ )

− σ rH
(
1 − Z2

0c

)
(D + 2) + 4σ rH Z2

0c − σ rHY 2
0c(D + 1)

]
u

+
[
∂X 2

0c

∂r
(D + σ ) − σ

(
1 − Z2

0c

)
(D + 2) + σ rH

∂Z2
0c

∂r
(D + 2)

+ 4σZ2
0c + 4σ rH

∂Z2
0c

∂r
− σ

∂

∂r

(
rHY 2

0c

)]

ru = 0. (A5)

Knowing that at 
r = 0, the solution is AeiωH t , where A is a
constant, we write the solution for 
r � rH as u = A(t )eiωH t ,
where A(t ) is a slowly varying function of time which implies
dA
dt is O(
r). The first term on the left-hand side of Eq. (A5)
factors as (D2 + ω2

H )(D + 3 + σ ) [see Eqs. (3.6), (3.7a), and
(3.7b)] and in the second term the D operator can be replaced
by +iωH . Thus we find

(
D2 + ω2

H

)
(D + 3 + σ )u + 
r

[
(iωH + σ )

∂X 2
0c

∂r

+ σ rH
∂Z2

0c

∂r
(iωH + 2) − σ

(
1 − Z2

0c

)
(iωH + 2) + 4σZ2

0c

+ 4σ rH
∂Z2

0c

∂r
− σ

∂rY 2
0c

∂r

]
u = 0. (A6)

In the first term, dropping the second- and higher-order deriva-
tives of A(t ), we have

(D + 3 + σ )
(
D2 + ω2

H

)
[A(t )eiωH t ]

= (D + 3 + σ )(DA)eiωH t

= 2
[−ω2

H + iωH (3 + σ )
]dA

dt
eiωH t . (A7)

Now using the relations given in Eq. (3.8), we approximate
the second term of Eq. (A6) as


r

[
4(iωH + σ ) + 4σ − iσωH

1

rH

]
≈ 8
rσ

to the leading order in σ using rH ≈ σ
4 . Thus, Eq. (A6)

becomes

2
[ − ω2

H + iωH (3 + σ )
]dA

dt
+ 8σ
rA = 0, (A8)

which clearly shows that A increases exponentially with time
for 
r > 0 and hence there is an instability at r = rH .

To complete the story, we need to know the first nonlinear
contribution to Eq. (A8) and determine if the growth saturates.
To do this we need to go back to Eqs. (A3)–(A4b) and from
the nonlinear term on the right-hand side we extract the part
with a time dependence eiωt . For this, we work with u = Aeiωt

ignoring the time dependence of A in taking the derivatives
on the right-hand side of Eqs. (A3)–(A4b). This is allowed
because the nonlinear term itself will be O(A3) which will
make A2 of O(
r) if the growth saturates. We first find the
lowest order v and w (v0 and w0) in terms of u from the linear
terms in Eqs. (A4a) and (A4b). In the σ � 1 approximation,

which keeps the algebra simple,

v0 = 2A
σ + 3iω

σ 2 + 9ω2
eiωt + O

(
1

rH

)
, (A9a)

w0 = 2σ
1
2 A

4 − iω

σ 2 + 9ω2
eiωt + O

(
1

rH

)
. (A9b)

The next step requires us to find the O(A2) terms which we
denote by u1, v1, w1 from Eqs. (A4a), (A4b), and (A2a). Since
the nonlinearity is quadratic, the expected structure is

u1 = A2[B1e2iωt + B∗
1e−2iωt + C1], (A10a)

v1 = A2[B2e2iωt + B∗
2e−2iωt + C2], (A10b)

w1 = A2[B3e2iωt + B∗
3e−2iωt + C3]. (A10c)

The constants B2, B3 and C2,C3 can be found from the nonlin-
ear part of Eqs. (A4a) and (A4b) and B1,C1 from Eq. (A2a).
To keep the algebra simple, we show the results in the σ � 1
limit only. The derivation will be outlined for v1 and the
results for w1 and u1 written down. For this purpose, we note
the following large σ approximations:

rH ≈ σ

4
, ω2

H ≈ 2σ , X 2
0 ≈ σ , Y0 ≈ 1√

r
, Z0 ≈ 1 − 2

σ
.

(A11)

Starting with Eq. (A4a), we write

[(D + 1)(D + 2) + σ ]v1

= −σ
1
2 u0v0 − (D + 2)u0w0

= −σ
1
2 [AB1e2iωt + 2 Re(AB∗

1 )]

− (D + 2)[AC1e2iωt + 2 Re(AC∗
1 )]

= −σ
1
2 A2

(
2

σ + 3iω

σ 2 + 9ω2
e2iωt + 4σ

σ 2 + 9ω2

)

− σ
1
2 A2(D + 2)

(
2

4 − iω

σ 2 + 9ω2
e2iωt + 16A2

σ 2 + 9ω2

)
. (A12)

We can now read off the coefficients B2 and C2 of Eq. (A10b)
from Eq. (A12) as (σ � 1)

B2 ≈ 10

7
A2σ− 3

2 , C2 ≈ −36A2σ− 3
2 . (A13)

Similarly, starting with Eq. (A4b), we arrive at

B3 ≈ 282A2

49σ 2
, C3 ≈ −12

A2

σ 2
. (A14)

To find u1 we turn to Eq. (A2a) and write the second-order
terms as

(D + σ )u1 = σ 2

2
v1 + σ

3
2

2
w1 + σ 2

4
w0v0

= σ 2

2
[B2e2iωt + B∗

2e−2iωt + C2]

+ σ
3
2

2
[B3e2iωt + B∗

3e−2iωt + C3]

+ σ 2A2σ
1
2

(σ + 3iω)(4 − iω)

(σ 2 + 9ω2)2
. (A15)
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From Eqs. (A13) and (A14), it is clear that among the three
terms on the right-hand side of Eq. (A15), the first one
is O(σ

1
2 ) and the remaining ones are O(σ− 1

2 ). Hence for
σ � 1

u1 ≈ 10

7

A2

σ
1
2

1

σ + 2iω
e2iωt − 2A2

σ
1
2

(A16)

and, consequently,

B1 ≈ 10

7

A2

σ
1
2

σ − 2iω

σ 2 + 4ω2
, C1 ≈ −2A2

σ
1
2

. (A17)

We return to Eq. (A3) to extract the eiωt term from the right-
hand side and note that the right-hand side of Eq. (A3) which

yields such a term is

− σ
5
2

2
(u0v1 + u1v0) + σ

3
2

2
(D + 1)(u0v1 + u1v0)

− σ 2

2
(D + 2)(u1w0 + u0w1) − σ 2

2
(u1w0 + u0w1)

+ σ 2

4
[(D + 1)(D + 2) + σ ](w0v1 + w1v0).

The dominating term in the above expression for σ �
1 is the first term in which the coefficient of eiωt is
− 1

2σ
5
2 A3[(− 4

σ
3
2

) + (− 2

σ
1
2

) 2
σ

] = 4A3σ .

Using this approximation for the right-hand side of
Eq. (A3), with the left-hand side obtained from Eq. (A8), the
final amplitude equation becomes

[4σ − 2iωHσ ]
dA

dt
= 8σ (
r)A − 4A3σ + O

(
1

σ

)
. (A18)
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