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Knudsen number effects on the nonlinear acoustic spectral energy cascade
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We present a numerical investigation of the effects of gas rarefaction on the energy dynamics of resonating
planar nonlinear acoustic waves. The problem setup is a gas-filled, adiabatic tube, excited from one end by a
piston oscillating at the fundamental resonant frequency of the tube and closed at the other end; nonlinear wave
steepening occurs until a limit cycle is reached, resulting in shock formation for sufficiently high densities. The
Knudsen number, defined here as the ratio of the characteristic molecular collision timescale to the resonance
period, is varied in the range Kn = 10~'-107>, from rarefied to dense regime, by changing the base density of
the gas. The working fluid is Argon. A numerical solution of the Boltzmann equation, closed with the Bhatnagar-
Gross-Krook model, is used to simulate cases for Kn > 0.01. The fully compressible one-dimensional Navier-
Stokes equations are used for Kn < 0.01 with adaptive mesh refinement to resolve the resonating weak shocks,
reaching wave Mach numbers up to 1.01. Nonlinear wave steepening and shock formation are associated with
spectral broadening of the acoustic energy in the wavenumber-frequency domain; the latter is defined based
on the exact energy corollary for second-order nonlinear acoustics derived by Gupta and Scalo [Phys. Rev. E
98, 033117 (2018)], representing the Lyapunov function of the system. At the limit cycle, the acoustic energy
spectra exhibit an equilibrium energy cascade with a —2 slope in the inertial range, also observed in freely
decaying nonlinear acoustic waves by the same authors. In the present system, energy is introduced externally
via a piston at low wavenumbers or frequencies and balanced by thermoviscous dissipation at high wavenumbers
or frequencies, responsible for the base temperature increase in the system. The thermoviscous dissipation rate is
shown to scale as Kn? for fixed Reynolds number based on the maximum velocity amplitude, i.e., increasing with
the degree of flow rarefaction; consistently, the smallest length scale of the steepened waves at the limit cycle,
corresponding to the thickness of the shock (when present) also increases with Kn. For a given fixed piston
velocity amplitude, the bandwidth of the inertial range of the spectral energy cascade decreases with increasing
Knudsen numbers, resulting in a reduced resonant response of the system. By exploiting dimensionless scaling
laws borrowed by Kolmogorov’s theory of hydrodynamic turbulence, it is shown that an inertial range for spectral
energy transfer can be expected for acoustic Reynolds numbers Rey,,,. > 100, based on the maximum acoustic

velocity amplitude in the domain.

DOI: 10.1103/PhysRevE.101.023101

I. INTRODUCTION

Nonlinear acoustic processes are observed in various en-
gineering applications such as harmonic resonators [1,2],
thermoacoustic engines [3,4], ultrasonic imaging [5,6], and
high-speed boundary layers [7,8]. An important feature of
nonlinear acoustic processes is wave steepening, typically
associated with thermodynamic nonlinearities [9]: regions
of positive pressure fluctuations are characterized by higher
temperatures and, hence, locally higher sound speeds (and
vice versa); this leads to the enhancement of spatial gradients
in the wave propagation speed yielding wave steepening [10].
In the spectral space, wave steepening entails energy cascade
into higher harmonics, associated with the formation of pro-
gressively smaller length scales and timescales [11]. Figure 1
illustrates such an energy cascade by showing the temporal
evolution of average velocity magnitude and wavenumber
spectral density of a freely propagating nonlinear wave in a
periodic domain. Due to generation of smaller length scales
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and timescales (higher wavenumber and frequency content),
the thermoviscous dissipation increases, causing the total
perturbation energy to decrease in time [Fig. 1(b)] but also
limiting the spectral extent of the inertial cascade range [e.g.,
to k ~ 10* at time ¢ = 13, in Fig. 1(c)].

For a resonant system with continuous external energy
injection driven to its nonlinear limit cycle, such as the one
considered in the present manuscript (Fig. 2), an equilibrium
interscale energy transfer is achieved in the spectral space: the
resonant energy cascades down to higher harmonics reach-
ing progressively smaller length scales, until thermoviscous
dissipation takes over, sustaining the shock thickness. The
bandwidth of the thus-obtained broadened energy spectrum
denotes the degree of wave steepening attained by the sys-
tem and it is inversely related to the shock thickness. Such
resonant energy injection can be achieved via fluid dynamic
instabilities or externally applied forcing. In thermoacoustic
devices for example, the energy injection takes place due to
thermoacoustic instabilities. The presence of nonlinear wave
effects in thermoacoustics have been identified and studied
experimentally [12,13] and numerically [4]. More recently,
Gupta et al. [4] demonstrated the existence of an equilibrium
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FIG. 1. Velocity perturbation in a high amplitude acoustic traveling wave (a), evolution of normalized spatial average of u? (b), and velocity
spectra |i;|* (c) at times %y, t;, f, t3. The spectral broadening occurs due to the nonlinear terms in the governing equations resulting in the

energy cascade from larger to smaller length scales.

spectrum, resulting from a balance between the thermoa-
coustic energy production and thermoviscous dissipation at
length scales corresponding to the shock thickness. Similar
observations have been made experimentally for a gas in a
resonance tube periodically driven by a piston oscillating at
frequencies close to the fundamental frequency [2,14,15].

The aforementioned studies only focus on acoustic nonlin-
earities in dense gases, in most cases air at standard temper-
ature and pressure (STP). However, nonlinear acoustic wave
propagation also plays a crucial role in controlling transition
to turbulence in high-speed boundary layers, which are often
in rarefied flow conditions. In canonical cases, transition to
turbulence is in fact governed by the amplification of ultra-
sonic waves with energy mostly confined in the boundary
layer [16—19], acting as an acoustic wave guide. For such
conditions, the flow can be considered in the rarefied regime
merely due to the very high frequencies involved, and even
more so for high-altitude flight with characteristic pressures
and densities of the order of 1 kPa and 0.01kg/m?>, respec-
tively. This consideration motivates the current work, in which
we explore the effects of gas rarefaction on the behavior of
resonant nonlinear acoustic waves.

Propagation of sound waves in rarefied media has been
analyzed in great detail both experimentally [20-23] and
numerically [24-27]. The Knudsen number, Kn, defined as
the ratio of the molecular mean free path to the relevant

physical length scale, quantifies the degree of rarefaction of
a gas. For a single-frequency acoustic wave, the relevant
length scale is taken as the acoustic wavelength. That is,
even at standard atmospheric conditions, a high frequency
wave, say 260 MHz [28], yields Knudsen numbers close to
0.02 and is, hence, in the rarefied regime. Based on this no-
tion, experiments were conducted [20,21] focusing on noble
gases only excited by a high frequency pulse (~11 MHz)
in a transmitter-receiver system to investigate acoustic wave
propagation in a rarefied medium, with Knudsen numbers in
the range 0.002-2. It was found that the attenuation rate of the
sound wave increased with the Knudsen number, due to so-
called translational dispersion: In rarefied environments, only
the faster moving molecules contribute to the macroscopic
wave transmission mechanism due to larger mean free path
values, thus accelerating the high-frequency waves leading
to wave dispersion and, hence, attenuation [28]. Inspired by
these experimental attempts, we herein focus on a canonical
flow setup; a one-dimensional system excited at its resonant
frequency with Argon as the working fluid.

Other theoretical investigations [24-27] confirm the in-
crease in the attenuation of the sound wave with increas-
ing Knudsen number, also showing how Navier-Stokes-based
solutions deviate from the experimental and kinetic theory
results for high Knudsen numbers. This is not surprising,
as the Navier-Stokes equations are based on a continuum
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hypothesis and are hence not valid for high Knudsen numbers,
where the Boltzmann equation is better suited. In this work, in
fact, we have used the Navier-Stokes equations for cases with
Kn < 0.01 and the Boltzmann equation for Kn > 0.01. The
novelty of the present contribution lies in extending the degree
of fidelity of the Navier-Stokes simulations to an advanced
(weak-)shock-resolving numerical framework, as well as a
systematic spanning of the Knudsen and acoustic Reynolds
number space; the effects of the latter, in particular, have
not been considered in previously. The approach adopted
here in fact relies on the theoretical framework by Gupta
and Scalo [11] on the nonlinear acoustic spectral energy
cascade, which stresses the relative importance of nonlinear
acoustic effects over thermoviscous dissipation, measured by
the acoustic Reynolds number.

The paper is organized as follows. A description of the
problem setup and the parameter space investigated is found
in Sec. II. Details of the continuum gas dynamics equations
and the associated numerical scheme are presented in Sec. II1,
followed in Sec. IV by a description of the Bhatnagar-Gross-
Krook (BGK) model and the numerical scheme employed to
solve it. The results from the simulations are presented in
Sec. V, with subsections focused on comparison between the
Navier-Stokes and BGK solutions, steepening of the planar
acoustic wave and resonance amplitudes, fluctuation intensity
profiles, the equilibrium spatial and temporal spectra, and the
budgets for the base internal energy. We have also introduced
scaling parameters to collapse the acoustic energy spectra
in the wavenumber-frequency domain for different Knudsen
numbers and provide an analytical estimate of the smallest
length scale which is of the same order as shock-thickness.

II. PROBLEM SETUP

The problem setup, shown in Fig. 2, consists of a closed
tube with a piston at one end, oscillating at the tube’s funda-
mental resonant frequency wy.s, calculated as

Wres = ap/L, (1)
and with instantaneous velocity,
up(t) = Up,max sin(wyest ), 2

where U, max is the piston velocity amplitude. The adiabatic
speed of sound, ap, is calculated at the initial base-state

A ta t1

Adiabati
Adiabatic \I’Vr}al(l1 b

Piston ‘
I

FIG. 2. Illustration of the investigated one-dimensional piston-
tube setup during maximum compression of the gas at the adi-
batic wall (#,) and approximately 180° later in the shock resonance
cycle (1,).

temperature of the gas. The walls of the tube and piston are
considered adiabatic and the system is modeled only in one
dimension, x, with total length, L = 1 m. The gas inside the
tube is Argon.

We decompose the instantaneous pressure p, velocity u,
density p, and temperature 7', as

u=uy+u(x,t),
T =To(r)+T'(x,1), 3)

p=po(t)+p(x1),
p=po+p(x1),

where p/, u', p/, and T’ are the corresponding fluctuating
quantities. Here, x and ¢ refer to the spatial and temporal
coordinates respectively. The base state for velocity is zero,
uy = 0. Since the domain is closed, the base density, po, is
constant, and as discussed later, the base pressure, po(7), and
temperature, 7p(7 ), increase following a slow timescale, 7, as

po(x, 1) = po(t) = po(t), To(x,t) =To(r) = To(z), (4)

due to thermoviscous dissipation. All base-state quantities are
spatially uniform.

As mentioned earlier, the Knudsen number is the ratio of
the mean free path of the gas molecules to the characteristic
(macroscopic) length scale of the problem; in the present
context it can be written as the ratio of two timescales [29],

Kn = 1 Wres _ < 1 ) nKBTO (5)
C Lay v \pl)V 2m

where p is the dynamic viscosity, v is the collision frequency,
y = 1.6702 is the ratio of specific heats for Argon, Kz =
1.38 x 1072* m?kg/s*K is the Boltzmann constant and m =
66.3 x 10727 kg is the molecular mass of Argon. Based on
the piston velocity amplitude, we define the piston Reynolds
number, Re,,p, as,

pOUp,maxL
12

Later we define another (more dynamically relevant)
Reynolds number based on the maximum velocity amplitude
achieved in the domain, Unax [Eq. (26)].

We have spanned five orders of magnitude for Kn and three
orders of magnitude for Re,, in our simulations (see Table I).
As the Knudsen number approaches unity, the mean free path
theoretically approaches the length of the domain, hence the
base state inside the tube approaches near-vacuum conditions.
To avoid such conditions, all the Kn values considered are
below unity. The initial value for the base-state temperature
of the gas is 300 K for all the cases and the base-state values
for density and pressure are evaluated accordingly for each
Knudsen number using Eq. (5). The initial base-state values
used to achieve various Knudsen numbers are reported in
Table II.

Re,, = (6)

III. FULLY COMPRESSIBLE ONE-DIMENSIONAL NAVIER
STOKES EQUATIONS

In this section, we present the fully compressible one-
dimensional Navier Stokes equations in Sec. IIl A followed
by a description of the numerical scheme used to solve them
in Sec. III B.
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TABLE 1. Piston velocity amplitudes, U), max, for the simulation parameter space considered.

<— Dense Rarefied —
Uy max Kn = 107° Kn=10"* Kn =107} Kn = 1072 Kn = 10!
Re,, =0.2 4 x 107 m/s 4 x 1073 m/s 0.04 m/s 0.4 m/s 4m/s
Re,, = 0.02 4 x 1075 m/s 4x107* m/s 4x 103 m/s 0.04 m/s 0.4 m/s
Re,, = 0.002 4 x107%m/s 4 x 105 m/s 4 x10™* m/s 4 x 103 m/s 0.04 m/s

A. Mathematical model

The fully compressible one-dimensional Navier Stokes
equations comprise the conservation equations for mass, mo-
mentum, and energy for the system. They read

dp  d(pu)

i —0, 7

8t+ 0x @)
D oy Lty = 2 D (4 .
ot P T P T T T \3Hax )

0B+ LtuoE + pi = | 2u(w24) ] - 2 )
— —[u =—|-ulpu—1»,|- ,

or PR T g PR TP = 13 P ax ox
where p, g., and E are the instantaneous density, heat flux in
x direction, and total energy per unit mass, respectively. The

total energy per unit mass, E, is defined as

E=CT + 47, (10

where C, is the specific heat capacity at constant volume.
Since only a monatomic gas (Argon) is considered in this
work, bulk viscosity effects are neglected. The conservation
equations are closed by the ideal gas equation of state,

p = pRT, Y

where T is the instantaneous temperature and R =
208.132 J/kg K is the specific gas constant. The dynamic vis-
cosity is calculated using the power law, u = (T /T )", where
w, T, and r are the reference dynamic viscosity, reference
temperature, and the exponent for the power law, respectively.

The values for 1z, T, and r are [30]

w=2117 x 10°Pas, T =273.15K, r=0.81. (12)

Please note that such reference values do not correspond to
the ones used to define the initial base state in Table II.

B. Numerical scheme

We have performed shock-resolved direct numerical simu-
lations (DNS), up to Mach number 1.01 of the compressible
1D Navier-Stokes Eqgs. (7)—(9) and (11) with adaptive mesh
refinement (AMR) [11] for cases up to Kn = 1073, We have

used the second-order Runge-Kutta scheme with a constant
CFL of 0.5 for integrating the Navier-Stokes Egs. (7)—(9)
and (11) in time utilizing the staggered spectral difference
(SD) spatial discretization approach introduced by Kopriva
and Kolias [31]. In the SD approach, the domain is discretized
into mesh elements and within each element, the Lagrange
polynomial reconstruction of variables allows numerical dif-
ferentiation with spectral accuracy.

To accurately resolve all length scales in the flow we have
combined the SD approach with the AMR approach as first
introduced by Mavriplis [32]. The AMR approach allows
us to focus computational resources to adequately resolve
unsteady shock waves. To this end, we expand the values of a
generic variable ¢ local to the cell in the Legendre polynomial
space as

N
¢ = diix), (13)

i=1

where v;(x) is the Legendre polynomial of (i — 1)th degree.
The polynomial coefficients, ¢;, are utilized for estimating
the local resolution error, ¢, defined as [32]

2"’2 ) 2 1/2
& = ¢N +/ fs (n)dl’l , fg(n) — Cefan’
ZN + 1 N+1 211 + 1

(14)

where f. is the exponential fit through the coefficients of the
last four modes in the Legendre polynomial space. As the
estimated resolution error, ¢, exceeds a predefined tolerance,
the cell divides into two subcells, which are connected
utilizing a binary tree. The subcells merge together if the
resolution error decreases below a predefined limit. The
numerical fluxes at cell interfaces were evaluated using the
Harten-Lax-van Leer-contact (HLLC) Riemann solver [33]. A
schematic of the spatial discretization scheme, the Lagrange
polynomial reconstruction and the numerical flux interfaces,
as used by Gupta and Scalo [11], is provided in Fig. 3.

TABLE II. Tabulation of initial base state values of density, pressure, and temperature for the span of Knudsen numbers considered, where

et = 1.1456 x 10-2kg/m3, prr = 715.332 Pa, and T,y = 300 K.

<— Dense Rarefied —
Initial base state values Kn =107 Kn=10"* Kn =103 Kn = 1072 Kn = 10"
Po Dref loilpref loizpref 1073pref 1074pref
Lo Pref IO_I Pref lo_zpref 10_3pref 10_4pref
Ty Tiet Tiet Tret Tiet Tiet
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FIG. 3. Schematic of (a) the polynomial reconstruction of a
quantity ¢(x) over a one-dimensional domain consisting of three
elements, and (b) the staggered spectral difference spatial discretiza-
tion approach used with solution (e) and flux points (|) within a
single element. N, is the number of elements and p is the number
of solution points within an element.

IV. THE BOLTZMANN EQUATION

To study the effects of rarefaction on planar nonlinear
acoustic waves for cases with Kn = 10~! and 1072, equations
based on kinetic theory have been used. In the following,
we introduce the Bhatnagar-Gross-Krook (BGK) equation, a
model Boltzmann equation which is characterized by the use
of a linearized model for the molecular collisions in Sec. IV A,
and the numerical scheme used to solve it in Sec. IV B.

A. Mathematical model

The Boltzmann transport equation governs the evolution
of the density distribution function, f(%, ¢, t), where ¢ refers
to the molecular velocity space. In general, the density distri-
bution function is a seven-dimensional quantity and depends
on three dimensions in physical space, X = (x,y, z), three
components of the molecular velocity space, ¢ = (cx, ¢y, ¢;),
and time. The Boltzmann transport equation in such a case is
given by

af

§+Z"'Vf=Q, 15)

where Q is the collision operator. The Boltzmann collision
operator has the fundamental property of conserving mass,
momentum and energy, that is

Qf, /HBE@dE =0, 6 =1,¢ ¢ (16)
ceR?
For more details, the reader is referred to classic textbooks in
molecular gas dynamics [30].

For simplicity, we consider the BGK model [34] for the
Boltzmann transport equation restricted to one spatial dimen-
sion, given by

0 0
Tve vy -p, (a7

where f, is the equilibrium distribution, given by the local
Maxwellian distribution,

P ¢ —al?
M(@) = ——ex (— ) (18)
(27RT)? P\" kT

—>Cz>0 Fiy1y2 Cp < )e—
i—1 2 i 141 i+ 2
i) NP N S— P

FIG. 4. Schematic of the staggered flux conservative spatial dis-
cretization used for the BGK solver depicting the flux faces (i+1/2)
and cell centers (i).

where i = (u, v, w) is the macroscopic flow velocity. Other
macroscopic parameters of the flow are calculated from mo-
ments of the density distribution function:

p= f©yde, pii =/ ¢f(ede,
ceR3 ceR3

T=— ¢ — ii|* £(2)de. 19
3R Joge Ic —ul” f(c)dé (19)

The pressure is then calculated by using the ideal gas equation
of state. The collision frequency is calculated at each time step
at every location in the physical space as

v="L, (20)
w

where the dynamic viscosity, i, for the gas is calculated using
the power law described in Sec. IIT A.

The BGK model for the collision operator also conserves
mass, momentum, and energy and preserves the Euler limit in
the Chapman-Enskog expansion [29]. While the Prandtl num-
ber for Argon is 2/3, the BGK model equation naturally yields
a Prandtl number of 1 in the Chapman-Enskog expansion.
For the sake of consistency, the Navier-Stokes simulations
have been run with unitary Prandtl number, despite being
unphysical. Various numerical trials (not shown) reveal that
varying the Prandtl number in the range from 2/3 to 1 in the
Navier-Stokes simulations does not impact the conclusions of
this manuscript nor yields significant quantitative changes in
the results.

B. Numerical scheme

There are three broad categories of numerical schemes
to solve the Boltzmann equation: discrete velocity method
(DVM) [35-38], Fourier spectral methods [39-42], and di-
rect simulation Monte Carlo (DSMC) [30,43-45]. We have
utilized DVM [38] to solve the BGK equation, which involves
discretization of the molecular velocity space. Consequently,
the governing equations and associated integrals, such as
Egs. (17) and (19), are solved for in a discrete sense.

We have used the second-order Runge-Kutta scheme to in-
tegrate the BGK model equation in time, utilizing a staggered
flux conservative approach for the spatial discretization. The
flux points are collocated at the cell faces and the solution
points at the cell centers as shown in Fig. 4. The second-order
upwind QUICK [46] scheme has been used for the evaluation
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FIG. 5. Illustration of three grid sizes for the discretization of the
molecular velocity space in ¢, and c,.

of fluxes at the flux faces and can be formulated as
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Axial symmetry of the setup is used to reduce the molec-
ular velocity components to two—axial and radial. For ef-
ficiency and speed of calculations, we have used Gauss-
Hermite and Gauss-Laguerre polynomials to obtain the dis-
cretization points in the molecular velocity space in the axial
and radial directions, respectively. Different grid sizes for
integration in the molecular velocity space are shown in Fig. 5,
where ¢, and ¢, refer to the molecular velocities in axial
and radial directions, respectively. The domain for molecular
velocity space used in this work is composed of 32 x 32 grid
points.

The equilibrium distribution function was discretized as

f = aleﬂ'P,
B =[—a2, 03, ay, as],
P ={[(ce —u) + (cy = v)’ + (c: —w)’, ...
(ex — u), (¢y —v), (¢, —w)}, (22)

where the coefficients «; are found by solving Eq. (16) using
Newton’s iteration method. The discrete form of the system of
equations solved is shown in Eq. (23):

Y hEi=p D afki=pu
j

chfij = pV;
J

J

> cfyEj = pw;

J

3
D (el + ) fE = p(l + 0P+ wh) + ZpT. (23)

J

Here, &; refers to the weights of the quadrature used for
integration. This scheme was presented by Frezzotti [47]
and has been evaluated computationally by Mieussens [48],
Mieussens and Struchtrup [49], and Chigullapalli and Alex-
eenko [50].

Boundary conditions

As the problem considered here is one-dimensional in
space, the only wall boundary conditions to be imposed
are at the duct terminations, which we chose as adiabatic.
This is implemented as specular boundary conditions [29] in
the BGK solver, assuming total reflection with no diffusion
effects from the wall and is modeled such that the values of f
incident on the wall boundary are reflected back,

fIE; + Byan - Wil = fIT — (Dyan - )], (24)

where the subscripts i and j represent the incident and re-
flected quantities and vy, and 7 represent the velocity of the
wall and wall normal, respectively.

V. RESULTS AND DISCUSSION

As the piston-tube setup (Fig. 2) is excited at the first
resonant frequency of the system, the acoustic amplitude of
the planar wave inside the tube increases until an equilibrium
is reached between the large-scale energy injection into the
system and the energy dissipation due to molecular collisions
(viscosity). Figure 6 shows the time series of (a) pressure,
P, and (b) velocity, u, fluctuations at x = L and x = L/2,
respectively, for the case of Re,, = 0.2 and Kn = 1073 (see
Table I) as obtained from the Navier-Stokes solver with
adaptive mesh refinement (NS-AMR). The insets (i) and (i)
show the different stages of wave steepening before a limit
cycle, or equilibrium limit, is reached. The insets (i) highlight
the harmonic regime in which the amplitude of the acoustic
wave is small relative to the base pressure and the linearized
governing equations are sufficient. The insets (ii) show the
nonlinear regime during which energy begins to cascade from
the fundamental resonant harmonic to higher harmonics in the
frequency domain. In the physical space, this results in wave
steepening. Continued injection of energy due to resonance
results in saturation of the acoustic amplitude, characterized
by a balance between the energy injected into the system and
the thermoviscous dissipation—establishing an equilibrium
energy cascade. Insets (iii) show this quasisteady regime,
hereafter referred to as the limit cycle. The latter cannot be
considered an equilibrium state for the overall system given
the steady background heating caused by the thermoviscous
dissipation (discussed later). Such slow-varying base-state
quantities are obtained via sharp spectral temporal filtering of
the numerical simulation data.

A. Comparison of Navier-Stokes and BGK solutions

In this section we present a comparison between the results
from the Navier-Stokes and BGK equation solvers in a Knud-
sen number range typically considered of overlap between
the two models. To this end, we show the temporal spectra
of pressure and velocity at the limit cycle for the cases with
Kn = 10~" and 102. Since the signals are periodic at limit
cycle, p’ and u can be expressed as the following Fourier series
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FIG. 6. Time series for (a) pressure fluctuations p’ at x = L and (b) velocity u at x = L/2 for Re,,, = 0.2 and Kn = 1073 as obtained from
the NS-AMR solver. The figure insets—(i), (i) and (iii)—show the different stages in steepening of the planar acoustic wave until a limit

cycle is achieved.

expansions:
k=00 k=00
wry=Y_ @k, puy= Y phe, (25
k= —oc0 k=-o00
k#0 k#0

where u(k) and p(k) are coefficients of the kth harmonic mode
of the Fourier series expansion with frequency wy. The Fourier
coefficients are extracted via a windowed Fourier transform
over 20 acoustic periods based on time series at x = L for p’
and at x = L/2 for u (Fig. 6).

Figure 7 shows the comparison of the temporal spectra of
P and u as obtained from the NS-AMR solver with those from

the BGK solver for Kn = 107! and Kn = 1072 and varying
Reynolds numbers Re,,. The pressure spectra are contiguous,
while only odd numbered harmonics appear in the velocity
spectra since the velocity signal is symmetric in time.

The difference in the solutions obtained from the two
solvers decreases as the Reynolds number and Knudsen num-
ber decrease. Overall, the resonance response predicted by the
NS-AMR solver (which should only be applied in the dense
regime) is systematically lower than the one predicted from
the BGK solver for Kn = 10~ and Kn = 1072

Results from the NS-AMR solver seemingly under-predict
acoustic energy levels for Kn > 1072 with respect to the BGK
counterpart, and are hence neglected for this range. On the
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FIG. 7. Power spectral densities of pressure at x = L (a, b) and velocity at x = L/2 (c, d) at the limit cycle for Kn = 10~' and Kn = 102
from NS-AMR (black) and BGK (gray) solvers. Only the odd harmonics have been plotted for %. Spurious high-frequency or wavenumber

content due to round-off errors has been omitted.

other hand, the use of the BGK solver will be restricted
to cases with Kn > 1072 (see Table III). Such choice also
reduces the computational cost of spanning the full parameter
space given in Table I with the BGK solver, which suffers
from the stiff collision term for Kn < 1072

B. Wave steepening and resonant response

Figure 8 shows the instantaneous waveform shape as
the Knudsen number of the system is varied, keeping Re,,
constant. Figure 8(a) shows the spatial profile of normalized

pressure perturbation (p'/|p|max) at the limit cycle for Re,, =
0.2 when the piston is at its mean position moving away from
the cavity [wrest = (2n+ 1)37/2 in Eq. (2)]. For Knudsen
numbers Kn > 1072 the pressure perturbation is qualitatively
similar to a half cosine, with negligible to no nonlinear
distortion. As the Knudsen number decreases (flow becomes
denser), the limit cycle pressure perturbation profile steepens
further and a resonating shock wave is observable in the
tube. A similar observation can be made in Fig. 8(b), which
shows the spatial profile of normalized velocity (u/|u|max) at

TABLE III. Tabulation of the list of cases solved for by each solver: Navier-Stokes equations with adaptive mesh refinement (NS-AMR),

Boltzmann equation with BGK closure (BGK).

<— Dense Rarefied —

Kn =107 Kn=10"* Kn = 1073 Kn = 1072 Kn = 107!
Re,,p =02 NS-AMR NS-AMR NS-AMR BGK BGK
Re,, = 0.02 NS-AMR NS-AMR NS-AMR BGK BGK
Re,, = 0.002 NS-AMR NS-AMR NS-AMR BGK BGK
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FIG. 8. Instantaneous profiles of (a) pressure fluctuation, p’, and
(b) velocity, u, normalized by their maximum values at the limit cycle
for Re,, = 0.2. The pressure field is plotted at the instance when
the piston is at its mean position moving towards left, whereas the
velocity is taken at the time instance when the piston is at its right
extremum.

the limit cycle for Re,, = 0.2 when the piston is at its right
extremum [t = (2n + 1) in Eq. (2)]. The velocity profile
for Kn = 107! is qualitatively similar (but not exactly equal)
to a half sine, whereas for decreasing Knudsen numbers, the
limit cycle velocity profile steepens and a shock wave is
observed. Energy injection from the piston at the fundamental
harmonic frequency sustains the shock wave at the limit cycle,
which, for the specific piston-Reynolds number considered in
this example, Re,, = 0.2, is only present for Kn < 1074

To more appropriately quantify the limit cycle amplitude
dependency on the Knudsen number of the gas (cf. Fig. 9),
the following Reynolds number should be considered:

RCU _ Lo Umax L

‘max ’

7

(26)

103 7
1 .. Rey,
5 ] .
1074 Rey,, =16.218
10* 4 ... Rey,,, =2.889
5 100 " Rey,, =0.333
[aist 1071 E
1072 3
1 e Re, = 02
103 4 -=- Re,, = 002
i —— R(\,“N: 0.002 R(lT’FfZGd
10~ T T TP
10-6 107° 104 1073 1072 107! 100
Kn
(a)
10° 5
10* 4
_10° 5
= E
& ]
£
z 107 5
= E
S E
o ]
10! 3
100 —
1 Rarefied —
107! -
106 107° 1074 1073 102 1071 100
Kn
(b)

FIG. 9. Variation of Rey,,, against Kn and Re,,: (a) depicts the
behavior of Rey,, versus Knudsen number for all the cases con-
sidered and (b) illustrates Rey,,, scaled by Re,, versus the Knudsen
number. The degree of wave amplification due to resonance observed
is the highest for the cases with the lowest Re,,.

based on the maximum velocity amplitude in the domain,
Unmax, occurring at approximately x = L/2 for all cases. Rey;,
characterizes the relative importance of inertial to viscous
forces more accurately than Re, : the system can, in fact,
achieve an increase of three orders of magnitude in Rey,
with a four-orders-of-magnitude decrease in the Knudsen
number, for the same Re,, [Fig. 9(a)]. Consequently, the
magnitude of maximum velocity amplitude in the tube for a
fixed piston velocity amplitude also increases with decreasing
Knudsen number, signifying a stronger resonant response of
the system [cf. Fig. 9(b)]. The resonant energy injected into
the system is balanced by thermoviscous dissipation, which
increases with Knudsen number, resulting in an increase of
the smallest length scale carrying acoustic energy, analogous
to hydrodynamic turbulence [11]; in other words, as the wave
steepening process establishes an energy cascade towards
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higher wavenumbers, increasing the Knudsen number halts
the cascade at larger length scales, thus preventing further am-
plification of the acoustic wave due to resonance and reducing
the inertial range of inter-scale energy transfer (discussed
later). In Fig. 9(a) three sets of cases, grouped by the same
value of Rey, (16.218, 2.889, and 0.333) for different values
of Re,, and Kn are highlighted and will be used, hereafter,
when needed, to rigorously isolate Knudsen number effects
from Reynolds number effects, the latter being Rey,_ and not
Re,,p.

C. Fluctuation intensity profiles

Besides affecting the resonant response, which is quanti-
fied by the ratio of the maximum velocity fluctuation ampli-
tude in the domain to the piston velocity amplitude [Fig. 9(b)],
the Knudsen number also affects the spatial pattern of fluctu-
ation intensities at the limit cycle. Figure 10 shows the spatial
profiles of intensity of pressure and velocity fluctuations,
defined respectively as

1 N-1
Pins ) = | 5 2P/ 1),
\ n=0
(27)
1 N—-1
Upms (X) = ﬁ Z u(x, tn)zs
\ n=0

for Re,, = 0.02, and where N is the number of samples in
time over an acoustic period at the limit cycle. Using the
Fourier coefficients and Parseval’s identity, the sum of squares
of point-wise pressure and velocity fluctuation values in the
above equation can be evaluated as

N-1 N-1
> P @) =21 I,
n=0 k=0
(28)
N—-1 N—-1
> uln)® =2y [tk
n=0 k=0

With increasing Knudsen number, the spatial profile of
pressure fluctuation amplitude displays a progressively more
defined pressure node at the center for increasing Kn, which
is associated to a decrease in acoustic power emanating from
the piston and being transmitted through the tube. For very
low Knudsen numbers, the intensity profile remains relatively
flat due to the redistribution of pressure fluctuation inten-
sity by the resonating shock wave. With increasing Knudsen
number, the deviation of the velocity fluctuation intensity
profile from the fluctuation intensity at the piston decreases
indicating less fluctuation amplification and hence a weaker
resonant response.

In the following, we study the distribution of temporal
Fourier coefficients with varying Knudsen number, to quantify
the degree of nonlinear wave steepening and the consequent
higher harmonic generation.

D. Spectral analysis and scaling of spectral quantities

Figure 11 shows the variation of distribution of temporal
Fourier coefficients of pressure and velocity fluctuations, p?

1---- Kn=10" \
1 --- Kn=1072
........... Kn = 1073
1076 4 e Kn — 10-4
E — Kn=10"
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

urms/aU

10-10 i T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

x/L
(b)

FIG. 10. Spatial variation of (a) pressure fluctuation intensity,
Pims» and (b) velocity fluctuation intensity, ums, at the limit cycle
versus x for Re,, = 0.02. For increasing Knudsen number, the p/
profile becomes sharper at the center indicating decreased movement
of the pressure node at the center.

(taken at x = L) and %2 (taken at x = L/2), respectively, at
the limit cycle for varying Knudsen numbers for Re,, = 0.2.
We note that the range of frequencies spanned by both sets of
spectra increases with decreasing Knudsen number displaying
a —2 slope over more than a decade on a log-log scale at the
limit cycle. A similar behavior is observed in hydrodynamic
turbulence, where such range of scales is associated with
inviscid spectral energy cascade in equilibrium conditions.
Hereafter, this range of scales will be referred to as the
inertial range. However, in nonlinear acoustics, such power
law range of spectra exhibits thermoviscous dissipation as
well, unlike hydrodynamic turbulence, as shown by Gupta
and Scalo [11]. The highest energy-containing frequency in
the spectra is associated with the smallest length scale in the
flow, which corresponds to the thickness of the shock (when
present). As discussed previously, with increasing Knudsen
number the dissipation increases resulting in a decrease in the
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FIG. 11. Comparison of the temporal spectra at the limit cycle
for Re,, = 0.2 (a) for pressure at x = L and (b) velocity at x =
L/2, for which only the odd harmonics are shown. Spurious high-
frequency or wavenumber content due to round-off errors has been
omitted.

highest acoustic frequency generated, shortening the inertial
range; this is linked to an effective reduction of the Rey, . .
Consequently, as shown in Fig. 8 the waveform at limit cycle
exhibits energy only in larger length scales (it is less steep-
ened) for higher Knudsen numbers, if Re,, is kept constant.

As shown by Gupta and Scalo [11], the smallest length
scale generated due to nonlinear wave steepening can be
estimated by closing the spectral energy budgets of wave per-
turbation. The perturbation energy for second-order nonlinear
acoustic waves yielding the Lyapunov function of the system
is given by [11,51]

S ) (29)

245 2(poad)’

2 2
E(p,u)=—

where the energy correction term f(p’) is given by

)=
Pr="0"Day -1

;N\ 1y / -1 2
XQ+1%)-4—p2+W 7 o)
Lody Loy 2(,0061%)

Utilizing the second-order perturbation energy [Eq. (29)]

we define a characteristic dimensionless perturbation
amplitude, Ay, as
Ams = v (E), (31)
where (.) is the spatial averaging operator,
1 L
D= Ddx. 32
=7 [ s 32)

Since the generation and dissipation of energy are balanced
at the limit cycle, the cycle-averaged value of the perturbation
energy [Eq. (29)] reaches a maximum in time. Balancing the
characteristic rate of energy transfer from large scales to small
scales, with the rate of viscous energy dissipation, yields the
following order-of-magnitude equivalence [11]:

A%ms Arms
T ~ 36 ’72 > (33)

where n ~ 8 /Ams is the acoustic Kolmogorov length scale,
i.e., the shortest length scale, analogous to the Kolmogorov
length scale in turbulence, carrying acoustic energy; ¢ is the
thermoviscous diffusivity defined as

4 -1
s=—L (2422, (34)
poapL \ 3 Pr

where Pr is the Prandtl number. Analogously to the shortest
length scale, the smallest timescale, 7,,, can be evaluated as

W= (35)

Utilizing Eq. (29), the spectral energy Ey can be defined

as [11]

~ 712 ~a2 YN

= _ Iu(kzl |p(k)| | Pk f(]/)) 36
245 2(poa) P/,

Figure 12 (top row) shows the distribution of spectral
energy E; with the frequencies scaled by the fundamental
frequency of the system. In each subfigure we compare cases
with same Rey, , which actually quantifies the limit cycle
energy in the system. Figure 12 (bottom row) shows the scaled
spectral energy E;A 2 versus frequency scaled with the small-
est timescale T, for the three sets of cases grouped by Rey,,. .
We note that scaling the frequency with smallest timescale
7, reveals an almost exclusively sub-Kolmogorov acoustic
energy range for Rey, < 10. This provides a quantitative
estimate of when to expect the formation of an inertial range
i.e., Rey,, > 100, as achieved in the cases with lower Kn
in Fig. 11, characterized by the universal —2 slope of the
inertial range. The latter is never actually observable in the

cases shown in Fig. 12.
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FIG. 12. Comparison of the temporal spectra of I/Z\k at the limit cycle for Rey,, = 16.218 (left); 2.889 (mid); 0.333 (right) at x = L/2.
Spurious high-frequency or wavenumber content due to round-off errors has been omitted.

The spectra are collapsed along the frequency axis via
the normalization wyt,, but not in amplitude by Ay,. This
indicates that the (dimensionless) bandwidth of the spectral
energy cascade increases with Rey__ .

To perform a wavenumber analysis of the spatial profiles
of p/ and u, a complex Fourier series expansion can not be
used. Due to the computational setup considered, cosine and
sine series expansions are used for the pressure and velocity,
respectively. The corresponding spatial Fourier coefficients, P
and U, of p’ and u, respectively, can then be evaluated as

N—1
Plk) = gp'(xn)cos [1% (n + %)k]

k=0,...N—1, (37)

. N—1 1

Uk) = gp’(xn)sin [ﬁ (n + E)(k + 1)],
k=0,....,N—1, (38)

where N is equal to the number of points in the spatial grid.
Figures 13(a) and 13(b) show the variation of distribution
of cycle-averaged spatial Fourier coefficients of pressure and
velocity fluctuations, P2 and U 2 respectively, at the limit
cycle for varying Knudsen numbers for Re,, = 0.2. Similar
to the trend observed for temporal spectra (Fig. 11), the range
of wavenumbers spanned by both sets of spectra increases
with decreasing Knudsen number indicating an increase in

the steepness of the waveform as shown in Fig. 8. The range
of wavenumbers spanned by both sets of spectra increases
with decreasing Knudsen number displaying a —2 slope
over more than a decade on a log-log scale at the limit
cycle.

Utilizing Eq. (29), the spectral energy in wavenumber
space, Egp «, can be written as [11]

B2 20
POr +m[ﬁ(—k)<f(’f)> }
p k

5~ 0P
265 2(poa3)

sp.k

(39)

Figure 14(a) shows the distribution of cycle-averaged I/Z\SP, k
with the wavenumber scaled by the length of the tube, for
the three sets of cases with same Rey,, at the limit cycle.
Figure 14(b) shows the distribution of cycle-averaged scaled
spectral energy, Esp,kAr_mzs, versus scaled wavenumber, k#, for
the three sets of cases with same Rey,, at the limit cycle. As
observed in the temporal spectra (Fig. 12), the highest scaled
wavenumber, k7, is much larger than unity, confirming that the
acoustic activity is in the sub-Kolmogorov range in space and
that Rey,, = 16 is not high enough to yield a proper inertial
range (with —2 slope).

To quantify the rate of spectral energy cascade, we define
the spectral energy flux, I, from wavenumbers |k'| < k to
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FIG. 13. Comparison of the cycle-averaged spatial spectra of (a) p'(x) and (b) u(x), and cycle-averaged (c) spectral flux, ﬁk, scaled by Ay,
at the limit cycle for Re,,, = 0.2. Spurious high-frequency or wavenumber content due to round-off errors has been omitted. The Rey,,,, values
for Kn = 107", 1072, 10, 10~*, and 107 are 0.396, 3.153, 16.252, 54.518, and 174.571, respectively, at the limit cycle for Re,, = 0.2.
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FIG. 14. Comparison of the cycle-averaged spatial spectra of (a, b) E\Sp,k and cycle-averaged (c) spectral flux, ﬁk, at the limit cycle for
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where the function g is defined as [11]

y v\ I
o) = 1 (1+—2> P S
y—1 Podj Pody

Figure 13(c) shows the distribution of cycle-averaged spec-
tral energy flux, T, scaled by A3 versus the wavenumber
scaled by the length of the tube, at limit cycle for cases
with Re,,, = 0.2. Figure 14(c) shows the distribution of cycle-

averaged spectral energy flux, TI;, scaled by A3, versus
scaled wavenumber, kn, for the three sets of cases with same
Rey,,. at the limit cycle. The high negative gradient of the
distribution implies that all of the acoustic energy in the
system is exhibited within the dissipation range of the spectra,
and the absence of an inertial range for these sets of cases. The
trend observed for the maximum value of l'IkArmS at lower
wavenumbers further confirms that a proper inertial range
(with —2 slope) will be observed only for Rey,,, > 100 [see
Fig. 13(c)].

The acoustic energy dissipated by thermoviscous dissi-
pation is converted into base internal energy and leads to
an increase in the base-state pressure and temperature as
mentioned before in Sec. II. In the subsection below, we
quantify the Knudsen number effects on this process.

E. Base heating rates and thermal energy budgets

The base pressure, pg, and temperature, Tp, of the system
increase slowly in time due to the conversion of acoustic
energy to heat by thermoviscous dissipation. To quantify the
Knudsen number dependence of such heating, we evaluate
the rate of change in internal energy with the slow timescale,
7, introduced in Sec. II. The governing equation for spatio-
temporal evolution of internal energy for a compressible fluid
in one dimension can be derived from Egs. (8) and (9) as

d(pe) d(pue) puC,d*T 4 (ou\> du
==L 4 ul=) —-p—, @2
o1 ox proo T 3M\ax) TP WP

where e is the internal energy and C, is the specific heat
capacity at constant pressure. Using C, = R/(y — 1) and the
ideal gas equation of state, Eq. (42) can be modified to

Dp B _ 0 (G ITY 4 (i’
o T o D (Pr ax)HV 1)3“(ax>
0
+(- y)% + (- DuL. (43)
X 0x

Equation (43) governs the rate of change of pressure in
time due to thermal conduction, viscous dissipation, and
acoustic nonlinearities. As mentioned before [see Eq. (3)], p,
T and u can be decomposed into rapidly fluctuating acoustic
quantities and slowly evolving base quantities. To obtain an

Wm 277/(wmsprofag)Kn2104))

0.0 0.2 0.4 0.6 0.8 1.0
x/L

FIG. 15. Spatial variation of scaled mean acoustic power W, for
the cases with Rey,,,, = 16.218. The decreasing trend of the acoustic
power with x indicates that the acoustic power is directed towards the
right of Fig. 2 with influx of acoustic energy at the left end from the
piston.

equation for the slowly increasing base pressure, po(t), we
apply a sharp spectral filter in time to Eq. (43). For a generic
variable ¢, the sharp spectral filter is defined as

@ = F(@;0cut),  Ocut < Ores, (44)

where F is the sharp spectral filter operator with cutoff
frequency w, and ¢ can be decomposed into its mean
and perturbed values as ¢ = @ + ¢’. Moreover, by definition
JT'.((/),’ Weyt) = ¢ = 0.

Substituting the decomposition [Eq. (3)] for p, u, and T,
and applying the sharp spectral filter to Eq. (43), we get

apo a(p'u') 4 '\ op’

SRR kSRR D e — 1w,

or TV e )3“<ax> =
45)

The thermal conduction term in Eq. (43) drops out upon
filtering since all base-state quantities are considered spatially
uniform (see Sec. II). Defining the mean acoustic power, Wac,
dissipation rate, ®, and mean mechanical work, I, as

4 [(0u ap’
b = — I - / 4
Wae = (p0), 3“<ax)’ =uwao (46)

Eq. (45) can be compactly written as

Pty = (= DO+ - DI @)
Equation (47) yields the rate of change of base pressure,
Po, with the slow time, 7, in terms of cycle-averaged acous-
tic power, viscous dissipation rate, and the cycle-averaged
mechanical work. Figure 15 shows the spatial variation of
the mean acoustic power, Wac, or acoustic energy flux. The
negative gradient of acoustic energy flux, see Fig. 16(a), is
due to the energy injection by the piston at the left end of
the tube. The acoustic energy flux is higher away from the
piston for denser regimes indicating that the acoustic energy is
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FIG. 16. Spatial variation of (a) scaled mean acoustic power derivative AW, /0x, (b) dissipation &, and (c) acoustic mechanical work I

versus x for the set of cases with Rey,, = 16.218.

transferred farther in denser gases, i.e., the acoustic near-field
extends further in denser media. Figures 16(b) and 16(c) show
the scaled dissipation and acoustic mechanical work terms in
Eq. (47). Since the velocity gradients are maximum at the hard
end walls, the viscous dissipation term, &, is maximum at
the ends of the tube and increases with the Knudsen number
as Kn?. Moreover, the magnitude of the acoustic mechanical
work is maximum near the center of the tube since the pres-
sure gradient and velocity amplitudes peak near the center.

Assuming that the base pressure py is only a function of
time, taking the spatial average of Eq. (47) yields

d :

%:Wer(y—l)der(y—l)FL, (48)
where
1 [t 0
Win L 0 yaxWac dx=—yWp.
1 [t 1 [t

& =- | ®dx, TL=- [ Tdx 49

. L/O v o L/O Y @)

Here, Wi, refers to the acoustic power injected into the
system by the piston and is proportional to the mechanical
work done by the piston, Wp. The acoustic energy injected
into the system propagates towards the fixed end of the tube
with the gradient of this flux increasing with the degree of
nonlinearity in the system. The base heating effect is produced
by the terms, Wi, and & in Eq. (48), which are positive
and increase with Knudsen number (see Fig. 16), suggesting
that the rate of increase in the base pressure of the system is
proportional to the Knudsen number of the system.

VI. CONCLUSION

We studied the effects of gas rarefaction on finite amplitude
planar acoustic waves generated in a resonator by varying the
Knudsen number over four orders of magnitude. The setup
studied consisted of a piston-tube assembly with a piston
oscillating at fundamental resonant frequency of the tube,
closed at the other end. The tube was modeled as a one-
dimensional domain neglecting the effects of shear on wave

propagation. The setup was driven to a limit cycle, character-
ized by a balance between the resonant energy production and
thermoviscous dissipation. The resonant amplification and
limit cycle were simulated using the numerical discretization
of the Navier-Stokes equations for low Knudsen number
cases and the Boltzman equation with BGK closure for high
Knudsen number cases.

The dissipation increases with the degree of rarefaction of
the gas in the tube. Due to increased dissipation, the resonant
response and the waveform steepening at the limit cycle is
attenuated. Keeping the Reynolds number associated to the
piston constant, we observed that with increasing the Knudsen
number, the degree of resonance decreases, i.e., the ratio of
acoustic velocity amplitude to the piston velocity amplitude
decreases. Moreover, the pressure intensity profiles show that
the pressure node, or the zero-crossing of the acoustic pres-
sure tends to become quasi-stationary for very high Knudsen
numbers thus suggesting that in highly rarefied gas regimes,
the system behaves as a quasilinear damped oscillator even at
limit cycle.

Due to an increase in dissipation with increasing Knudsen
number, the smallest length scale (diffusion length scale)
which exhibits acoustic energy also increases. Consequently,
the acoustic wave at the limit cycle becomes less steepened
with increasing Knudsen number. Since the nonlinear acoustic
wave steepening entails acoustic energy cascade into higher
harmonics and hence spectral broadening, the range of the
acoustic energy spectrum decreases with increasing Knudsen
number. We studied both the temporal and spatial spectra
of the acoustic energy with varying Knudsen numbers. Fur-
thermore, we showed that the largest harmonic or wavenum-
ber can be estimated using the smallest length scale due to
nonlinear acoustic steepening, which can be approximated
by balancing the nonlinear wave propagation and dissipation
terms. Scaling the spectra with the smallest length scale or
timescale reveals almost exclusively sub-Kolmogorov acous-
tic activity for Reynolds numbers based on the maximum
velocity amplitude, Rey, , less than 100 and provides a quan-
titative metric of when to expect the formation of an inertial
subrange.
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At limit cycle, the energy due to resonance sustains the
nonlinear waves which dissipate the energy at length scales
depending on the Knudsen numbers. We showed that the
dissipation of energy at the limit cycle increases the mean
internal energy of the system slowly. We quantified this mean
heating of the system utilizing time filtered internal energy
budget equation. The results from the budget equation also
reveal the scaling of dissipation with Knudsen number as Kn?
for a fixed Rey, .
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