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Generation of fine fragments during dynamic propagation of pressurized cracks
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High-resolution numerical simulations of cracks driven by an internal pressure in a heterogeneous and brittle
granular medium produce fragment-size distributions with the same characteristics as experiments on blasted
cylinders of mortar and rock in both the fine- and the intermediate-size-fragment regions. To mimic full-scale
blasts used, e.g., within the mining industry, the cracks propagate in a medium that is under compression, neutral,
or under tension. In a compressive environment, shear fracture produces a large volume of fines, whereas in a
neutral or tensile environment, unstable crack branching is responsible for a much smaller volume of fines.
The boundary between the fine- and the intermediate-size fragments scales as the average grain size of the
material. The ultimate goal is to develop a blasting process that minimizes the fines, which, in mining, are both
an environmental hazard and useless for further processing.
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I. INTRODUCTION

A fundamental process within the mining industry is the
blasting of rock to extract minerals. This process creates a
lot of dust that cannot be processed further and that is also
an environmental hazard. It would, therefore, be of great
significance to minimize the dust which is often called “fines.”
The blasting process is carried out by drilling cylindrical holes
and blasting them from within. The blast creates a conical
compressive shock wave that travels outward in the radial
direction of the cylinder. As the hole expands outward, it will
induce tension in the tangential direction. The stress waves
emanating from the borehole will sooner or later reach a
boundary or an interface between two dissimilar materials.
Here, the specific acoustic impedance of the host rock plus the
angle of wave incidence define the stress waves interaction at
the boundary, such as mode transformation, transmission, re-
flection, and refraction [1]. Reflected waves often meet cracks
initiated by the primary wave. In this way, propagating cracks
may experience both compressive and tensile environments
that influence the fines production.

Well-known theories within mining engineering for blast-
induced fines typically postulate compressive and/or shear
failure as the main mechanism for fine-fragments production,
such as the crushed zone model (CZM) [2], the two com-
ponent model [3], and the additions to CZM by Onederra
et al. [4]. However, when blasting cylinders of a given size
with a decreasing amount of explosives, a critical charge size
is eventually reached. At this point, the cylinder barely falls
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apart into a few large blocks plus a small volume of very fine
fragments [5,6]. In such a case, a crushed zone around the
borehole and crushing due to fragment collisions normally do
not occur, and the theories fail. An inspection of the outcome
of such experiments reveals that the fines originate along the
propagation paths of the cracks that create the large blocks.
This indicates that the key to understanding the blast-induced
fines production can be found in the detailed modeling of
cracks driven by the internal pressure induced by the blast
and propagating in a medium that is under externally applied
stresses that can be either compressive or tensile.

Within the physics community, fragmentation research has
typically been concentrated around the possible universal-
ity of scale-invariant power-law fragment size distributions
(FSDs). There seems to be limited universality, but there
are dependencies on dimensions, and compressive or impact
fragmentation seems to behave differently than tensile frag-
mentation [7–11].

In this article, we report the results of blasting experiments
and numerical simulations of propagating cracks driven by in-
ternal pressure and propagating under specific external stress
states that mimic realistic conditions for full-scale blasting.
The model materials are granular both in the simulations and
in the experiments with an average granularity on the order
of 0.1 mm. The main difference between the experiments
and the simulations is that, in the simulations, the grains
are indestructible, whereas in the experiments, the grains can
fragment, and there is also an intergranular matrix that can
form fragments much smaller than the typical grain size.
Nevertheless, we are able to demonstrate that the FSDs for
experiments and simulations are very similar and that they can
be understood in terms of universal processes.

Here, we find that the granularity length scale determines
a boundary between fine- and intermediate-size fragments. In
the intermediate-size region, the FSD has the universal form
of the crack branching-merging process, whereas in the fines
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region, the FSD has the form induced by shear crushing if
the external stresses are compressive and a branching-merging
process if the external stresses are tensile or neutral. In the
latter case, the boundary between the two regions appears
as an offset in the FSD. As a consequence, we find that the
total volume of fines in blasting is affected by the granularity
of the material that is blasted, the stress environment of the
propagating cracks, and the total charge used in the blast.

II. FRAGMENTATION THEORY

The magnitude of the external compressive stresses sur-
rounding a pressurized crack has direct influence on its speed
of propagation. For example, a high compressive stress that
acts perpendicular to the crack flanks reduces the propagating
velocity of the crack tip. Depending on the magnitude of the
compressive stress and the crack’s driving force, the velocity
may eventually drop below the critical branching velocity of
the material Vc [12]. This process may lead to crack closure
and at even higher compressive stresses cause crushing by
compressive shear. In compressive shear, the debris will be
crushed into decreasingly smaller fragments by grinding and
compaction. This process may perhaps be conceptualized
as a hierarchical process in which ever smaller fragments
are broken to fill pore space that opens up in continuous
shear deformation [13,14], or it may have similarities with
impact fragmentation [10,11]. In both cases, the FSD can be
approximated by a power-law fragment size distribution of the
form ncrush(s)ds ∝ s−βds where the exponent β depends on
the material and the specific way it is fragmented and may take
values roughly in the range of 1.8–3.5 [7,11]. Dimensionless
size s is here measured in the number of grains in fragments
of a granular material.

In the absence of externally applied compressive stresses
suppressing the propagating crack, the velocity of the crack
propagation increases to a value close to Vc where the crack
begins to branch [12]. Crack branches readily merge to form
fines as can be seen in Fig. 3. This branching-merging process
is inherently universal and leads to a characteristic FSD
[7,15]. This can be written as nbm(s)ds ∝ s−α exp(−s/si )ds
with α = (2D − 1)/D, where D is the dimension (i.e., D =
2, 3 for membranes and bulk objects, respectively) [7,15,16].
The branches propagate for a short distance and are arrested
in the stress free wake region created by the main propagating
crack [12] inducing a size cutoff defined by si. The size cutoff
is here approximated by an exponential function [15].

On the scale of the grain size in a granular material, we
expect that the processes for fines formation described above
are highly influenced by the granularity of the material. On
larger scales, we expect the material to behave, such as a
continuous material. It is, thus, reasonable to postulate that,
in a granular material, there needs to be separate terms in
the FSD for fragments at and below the grain sizes s f and
for larger intermediate-size fragments si. For the blasting
scenarios investigated here, we expect that the fines are cre-
ated by either crushing or crack branching merging, whereas
the intermediate-size fragments appear as a result of crack
branching merging only. In principle, there could obviously
be crushing also at the intermediate-size scale, but within the
context investigated here, this does not happen.

The largest fragments, often called boulders, are the ones
delineated by the main cracks. The main cracks can typi-
cally be assumed to propagate independent of each other and
thereby to form a Poisson process [17], which induces an
exponential term at the largest sizes of the FSD nb(s)ds ∝
exp(−s/sb)ds, where sb sets the characteristic size of the
boulders.

This would give the following options for the FSDs with
right-hand side terms describing fines, intermediate-size frag-
ments, and boulders, respectively:

n(s)ds = C1s−βds + C2s−α exp

(
− s

si

)
ds

+C3 exp

(
− s

sb

)
ds, (1)

which we would expect to appear for blasting under externally
applied compressive stress, whereas, in a tensile environment,
we would expect

n(s)ds = C1s−α exp

(
− s

s f

)
ds + C2s−α exp

(
− s

si

)

+C3 exp

(
− s

sb

)
ds, (2)

where C1, C2, and C3 are constants that determine the relative
weights of the different fragment-size regions.

A good way to estimate the validity of Eqs. (1) and (2) is to
relate them to the mass passing fraction [MPF(x)], that is, the
common function used to characterize fragmentation results
within the mining community [18]. The MPF(x) is defined
as the fraction of mass for a collection of fragments that
passes through a successive set of sieves with decreasing mesh
sizes x. That is, for a mesh size of x = 0, MPF(x) = 0.0,
and MPF(x > xmax) = 1.0 or 100%, where xmax is the largest
fragment.

With the transformation s ≈ (x/xgrain )3, ds = 3x2/x3
graindx

for D = 3, the MPF(x) can be written

MPF(x) = mgrain

M0

3

x3
grain

∫ x

xgrain

x′3n(s(x′))x′2dx′, (3)

where M0 is the total mass, xgrain is the grain size of the
material, and mgrain the mass of a grain. This equation can
be written as a sum of two incomplete � functions. It is,
however, more useful to examine Eq. (3) in the case where
nb(s) is neglected and the exponential parts of the first two
terms in Eqs. (1) and (2) are replaced by limited ranges of
integration. That is, the first term is assumed to be valid within
the interval [xgrain, xtrans], and the second term is assumed to
be valid within the interval [xtrans, xmax], where xtrans ∝ s1/3

f
is the transition size between fines- and intermediate-size
fragments [cf. Fig. 1(b)], and xmax ∝ s1/3

b is the maximum size
of boulders. If we neglect the term on the order of xgrain/xmax,
we get for the MPF(x),

MPF(x) = f f p

[(
x

xgrain

)−3〈α,β〉+6

− 1.0

]
+ fip

(
x

xmax

)−3α+6

,

(4)
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FIG. 1. (a) Two sets of experimental MPFs: The red squares and blue triangles, and the two corresponding theoretical MPF(x) fits: The
solid and the dashed black lines. The data correspond to two blasted cylinders confined with MT (E1) [21,22] and prestressed (E4) [6] boundary
conditions, respectively. (b) The corresponding n(s) for the same data together with fits to Eqs. (1) and (2). Here, the first data point on the
s axis refers to the smallest detectable fragment.

where 〈α, β〉 means either α or β depending on which n(s)
equation, i.e., Eqs. (1) and (2), is used. The factors f f p and fip

are constants,

f f p = mgrain

M0

3C1

−3〈α, β〉 + 6
, (5)

fip = mgrain

M0

3C2x−3α+6
max(

x−3α+6
grain

)
(−3α + 6)

. (6)

For D = 3, the value of −3α + 6 is equal to 1, and, thus,
the second part on the right-hand side of Eq. (4) becomes the
empirical Gates-Gaudin-Schuhmann distribution (GGS) [19]
which is a power-law function with an exponent m = 1, and
the first part represents the characteristic shape of the MPFs
for the fine fragments. This is consistent with the typical
functional forms observed for the MPFs: a nonuniversal shape
for the fines, followed by a wider or a narrower interval
described by the GGS function, and finally a nonuniversal
shape for the boulders. Representative examples are displayed
in Fig. 1(a). A method of the reverse transformation from
MPF(x) to n(s) is given in the Appendix.

III. EXPERIMENTS

A. Experimental setup

We perform a set of blasting experiments, and together
with data from earlier experiments, we have fragmentation
data for 28 controlled blasting experiments of cylinders of
sandstone [20], granite, mortar, and magnetic mortar (MM)
[6]. The cylinders are blasted from within a central bore-
hole along the axis of the cylinder. There are three different
outer boundary conditions: (1) At the outer boundary of the
cylinders, there is a layer of aggregate under 1 MPa pressure,
a so-called prestressed aggregate [6], (2) a momentum trap
(MT) [21,22] which, at the outer boundary, absorbs much
of the incident compressive wave induced by the blast, and
(3) an “unconfined” or a free outer boundary at which the ini-
tial compressive wave is reflected as a tensile wave. The logic
behind studying these different outer boundary conditions is
to model different blasting scenarios with the cracks forming
in tensile, neutral, and compressive environments.

Details of the experiments are listed in Table I. The table
is sorted by the sieving technique. Initially, the postmortem

TABLE I. Experimental configurations.

Charge density/specific charge Minimum mesh size
No. Material No. of blasted cylinders (g/m)/(kg/m3) Confinement (mm)

Mechanical sieving

E1 Mortar 3 6, 12, 20 MT 0.04
E2 Granite 3 6, 12, 20 MT 0.04
E3 MM [6] 5 3, 5, 10, 20, 40 Unconfined 0.063
E4 MM [6] 4 5, 10, 20, 40 Prestressed aggregate 0.063

+ sedimentation

E5 Sandstone [20] 6 0.46, 0.444, 0.431, 0.231, 0.218, 0.22 Unconfined 0.002

+laser diffraction

E6 Mortar 3 6, 12, 20 MT 0.0004
E7 Granite 4 6, 12, 20 MT 0.0004
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FIG. 2. Two fitted lines of the fine-fragments region and intermediate-size-fragment region shown as the solid and dashed lines,
respectively. In (a), the data points (the square symbols) correspond to experiment E7 with 20 g/m of PETN, and, in (b), the data points
(the filled circles) correspond to experiment E5 with 0.444 kg/m3, see Table I. The regression function and parameters of these fits are listed
in Table II.

cylinders are mechanically sieved with minimum mesh sizes
of either 0.063 or 0.04 mm to a maximum fragment size
until a full MPF curve is formed. The fine fragments of the
experiments E1 and E2 were apart from mechanical sieving
also measured using a laser diffraction method (LDM) with a
resolution down to 0.4 μm. The results from the LDM were
then merged with the mechanical sieving data, thus, forming
a wider range FSD. These are listed as E6 and E7. The fine
fragments of the experimental tests listed in E5 were also
additionally measured using a sedimentation method [20].

B. Experimental results

A prestressed and a momentum trap MPF(x) are displayed
in Fig. 1(a) together with fits to Eq. (3). The theoretical
MPF(x) functions are obtained by numerical integration and
with a constant material grain size xgrain. For real materials,
xgrain is obviously not a constant (cf. Fig. 3). The xgrain values
used are listed in the last column in Table I as the “Minimum
mesh size.” The deviation between the experimental and the
theoretical MPFs for the smallest fragments is a result of the
theory assuming a minimum fragment size of a single grain,
whereas the experimental data lump all masses smaller than
the resolution into a single point.

The same data in the n(s) form is displayed in Fig. 1(b).
The differences between pre-stressed and MT boundary con-
ditions become evident when presented in this form: (i) In
the fine-fragments region of the prestressed cylinder, the FSD
has a much steeper slope with a power-exponent β ≈ 2.2 as
indicated in the figure. For the cylinder confined by MT, the
exponent is the expected α ≈ 5/3. (ii) At a fragment size of
s ∼ 102 for the prestressed case, there is a crossover to the
branching-merging power-law α ≈ 5/3, whereas for the MT
case, there appears the same power exponent for both fines-
and intermediate-fragment sizes, but there is an offset to lower
fragment number by about an order of magnitude at s ∼ 103.
(iii) There are crossovers to exponential FSDs in both cases
at the boulder size. There is a more pronounced boulder part
for the MT case, and the boulders are slightly bigger. In the
intermediate-fragment-size region, i.e., xtrans < x < xboulders,

the power exponents are identical α ≈ 5/3, but there are more
intermediate-size fragments for the prestressed case.

With these results, it becomes evident that the more inter-
esting case from a blasting technology point of view is the MT
boundary condition as it produces significantly less fines than
the prestressed case.

In order to test the statistical significance of the offset
in the FSD of the cylinders confined by MT, we perform a
statistical analysis to determine whether the slopes (gradients)
of the two fitted power laws for the fine fragments and the
intermediate-size fragments are significantly different, and
whether the offset between these lines is significant [23].

For the analysis, we first use two sets of data: (1) the wider
range FSD obtained by the LDM for granite (E7) blasted
with 20 g/m of pentaerythritol tetranitrate (PETN) with 23
data points forming the fine-fragments region, and (2) the
data from sedimentation of fine fragments of sandstone (E5)
blasted with 0.444 kg/m3 with eight data points forming the
fine-fragments region. The reason for the choice of these
two datasets is to lessen the inherent systematic error of
each sieving technique on the resultant FSDs. Here, for the
analysis, the data points between the two lines, if any, and
the ones forming the boulder part are not considered, see
Figs. 2(a) and 2(b). The results of the linear regression are
given in Table II.

The results of the statistical analysis for the significance
of the two fitted power-law lines are given in Table III. The
two large correlation coefficients (|R| ≈ 1) and their highly
significant p values, i.e., p(R), indicate the existence of the
two legitimate lines to compare. The p value of the residual
variance for experiment (E7) illustrates a significant differ-
ence between the two variances. Napier-Munn [23] suggests
considering smaller value of p(F ) for gradient and intercept
tests. The comparison of the gradients with p(F ) = 0.202
emphasizes that the two lines are parallel, i.e., the difference in
the slope values is statistically insignificant. The small p value
of the intercept suggests that a real separation exists between
the two parallel lines.

We analyzed all available data sets except those with the
prestressed boundary condition in the same fashion as above.
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TABLE II. Regression analysis, E7: 20 g/m and E5: 0.444 kg/m3.

Fitting region Fine-fragments region Intermediate-size-fragments region
�����������������Parameter

Equation

ln(C1) + α ln(s) ln(C3) + α ln(s)

E7

ln(C1) 3.59 ± 0.25
ln(C3) 2.04 ± 0.69
α −1.695 ± 0.021 −1.669 ± 0.022
R2 0.9969 0.9977
Adjusted R2 0.9967 0.9975

E5

ln(C1) 6.80 ± 0.19
ln(C3) 5.49 ± 1.24
α −1.687 ± 0.020 −1.742 ± 0.045
R2 0.9991 0.9966
Adjusted R2 0.9990 0.9959

In all 24 data sets, a significant offset between the fine- and
the intermediate-size fragments’ fitted lines exist, and, in 22
of them, the fine- and intermediate-size fragment’s fitted lines
are parallel. The two data sets that have different gradients
are E5: 0.46 kg/m3 and E5: 0.431 kg/m3. The exponent
of the fine-fragment-size distribution for both these sets is
α ≈ 5/3, but the intermediate-size one deviates slightly in
these two cases. Consequently, with all data considered, the
experimental MPFs can be described by Eq. (2) unless the
prestressed boundary condition is applied.

The postmortem fractures and crack flanks of the blasted
cylinders E1 and E2, see Table I, have been analyzed by a
scanning electron microscope (SEM). Figure 3 shows two
images of crack branching and merging in granite (E2:
20 g/m) and mortar (E1: 12 g/m) both with similar fields of

TABLE III. Statistical significance study of the fines- and
intermediate-size-fragments’ fitted lines, E7: 20 g/m and E5:
0.444 kg/m3.

Fine-fragments Intermediate-size-
Test region fragments region

E7

No. of data points 23 17
R −0.998 −0.998
p(R) 8.42 × 10−28 1.09 × 10−20

Residual variance F = 6.818 p(F ) = 0.0002
Gradient F = 1.691 p(F ) = 0.202
Intercept F = 4.556 p(F ) = 0.039

E5

No. of data points 8 7
R −0.999 −0.998
p(R) 2.03 × 10−10 2.28 × 10−7

Residual variance F = 3.277 p(F ) = 0.090
Gradient F = 1.439 p(F ) = 0.255
Intercept F = 21.45 p(F ) = 0.0005

view of 0.179 mm × 0.785 mm. Figure 3(a) shows two radial
cracks (radial in the sense of propagating in an outwards radial
direction of the cylinder from the central borehole where the
blast took place) that have propagated from the lower left
corner (where the borehole is) and merged in the upper mid-
dle part of the image. This merging mechanism fragmented
the corner material, i.e., just below the merging point, most
likely due to the brittleness of the quartz grain located there.
The characteristic structure of the branching-merging process
leading to scale invariance is clearly visible in this figure: A
large number of very small fragments is generated close to the
main cracks, whereas larger but fewer fragments are generated
further from the main cracks until the crack branches vanish
at a characteristic cutoff size.

Figure 3(b) shows a region of a main radial crack propa-
gated from the lower left (borehole) to the upper right corner
of the image. The crack path, in this case, has fairly few
microcracks compared to Fig. 3(a). However, the middle
part of the crack includes branching cracks that follow grain
boundaries that separate out some fragments. This illustrates
how granularity influence fines formation.

IV. COMPUTATIONS

A. Numerical model

We use a customized version of the HiDEM code [24]
which has been developed for numerical simulation of brittle
fracture. In HiDEM, the materials are discretized by in-elastic
spheres that are connected by massless elastic Euler-Bernoulli
beams. In the version used here, the discrete element model
(DEM) particles are randomly packed using a dynamic de-
position algorithm. The beams have square cross-sections
w2 ∼ D2

particle, length l ∼ 2Dparticle, and Young’s modulus
E = 19.7 GPa. Due to the random packing, the number of
beams connecting adjacent particles varies between 8 and 20.
To mimic the experimental materials, initially, 10% of the
beams are randomly chosen to have their stiffness reduced to
10% of the value of an intact beam.
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FIG. 3. SEM pictures of the branching and merging mechanism
and fragment formation in (a) granite blasted with 20 g/m of PETN
(E2) with quartz (Qtz), biotite (Bt), and K-feldspar (Kfs) grains
indicated on the image, and (b) mortar blasted with 12 g/m of PETN
(E1) with Qtz, cement (cem), and pores (p) indicated.

We have used a fracture criterion composed of two parts:
(a) maximum strain criterion (L − L0)/L0, where L0 is the
original length of a beam, and L the length of a stretched or
compressed beam, and (b) a pure bending part ABS(θ1 − θ2),
where θ1 and θ2 are rotations of the end points of a beam. A
beam breaks if deformation exceeds a threshold value for (L −
L0)/L0 + const × ABS(θ1 − θ2). The threshold value used is
ε = 0.0003, i.e., typical tensile failure strain of mortar or
concrete. We have tested also several other criteria including
one in which we replace the rotation term with a shear term,
however, the fragmentation results with this criterion match
the experimental results best.

We do not have the computational resources to simulate the
fragmentation of the full cylinders used in the experiments at
high resolutions. With a grain size on the order of 0.1 mm and
cylinders of size ∅140 mm × 280 mm they would contain on
the order of 109 particles. Instead, to capture the dynamic
fragmentation process along propagating cracks, we use the
correct 0.1 mm resolution but compute fragmentation of

FIG. 4. (a) Schematic of the cube with a predefined crack, H (t )
is the Heaviside function. (b)–(d) show the evolution of the frag-
mentation of the cube (3 × 3 × 3 mm3) when p0 = 0 at t = 2, 4,
and 8 μs, respectively. In (b), the initial crack plane (1.5 × 1 mm2)
is shown in light blue. The cube’s particles are shown with white
points to improve the visibility of the fragments. Red: single particle
fragments; blue: fragments containing two particles; green: frag-
ments containing three to ten particles; pink: fragments containing
11 to 100 particles. (d) Represents the final stage of crack growth at
t = 8 μs.

small scale cubes. We use cubes of size 3 × 3 × 3 mm3 with
particles of diameter 0.1 and 6 × 6 × 6 mm3 with particles
of diameter 0.05, 0.08, 0.1, and 0.2 mm. We initiate cracks
with a predefined midplane edge crack. The initial crack is
horizontal and goes half way through the cube. To mimic the
blasting process, a dynamic pressure is applied on the initial
crack flanks with a value Papp = 5 MPa for a duration of 8 μs.
To model the boundary conditions in the experiments, there
is an additional external stress Pconf = p0 × Papp with p0 as a
constant that is applied on the top and bottom faces of the cube
acting perpendicular to the crack flanks, see Fig. 4(a). As a
representative example Figs. 4(b)–4(d) illustrate the time evo-
lution of the dynamic crack propagation and the fragmentation
in the small cube for an unstressed condition Pconf = 0 MPa.
The sample breaks into a large number of small fragments,
each composed of single or a few particles along the fracture
plane due to the unstable tensile crack propagation induced
by Papp, whereas the rest of the sample remains intact. The
degree of fine-fragments generation depends on the ratio
p0 = Pconf/Papp that may be both negative and positive for
compression and tension, respectively.

We performed fragmentation computations of the smaller
cube with external stresses in the range of Pconf = −0.2Papp

(compression) to +0.15Papp (tension), i.e., p0 = −0.2 to
+0.15 in steps of 0.05 plus p0 = +0.07, altogether nine
values. This models the dynamics of a nucleated crack prop-
agating in a heterogeneous medium with different local crack
tip region stresses, which occurs during the dynamic crack
propagation of blast-induced cracks [25]. To average over
several packing patterns, five different densely packed cubes
were generated and fragmented for each external confinement
pressure, i.e., external stresses, and their FSDs were added to
each other to form a single FSD for each level of Pconf . We
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FIG. 5. (a) FSDs for dynamic crack propagation in the small cubes (3 × 3 × 3 mm3) for the nine different external stress levels and their
n(s) fits shown by the lines with the same color as the symbols. (b) FSDs for the unstressed and the two extreme external stress conditions with
p0 = +0.15 and p0 = −0.2. Two lines with slopes of −2.36 and −5/3 are shown for comparison. (c) FSD for the large cube (6 × 6 × 6 mm3)
with particle size 0.1 mm at p0 = +0.15 compared with that of the small cube at the same external stress condition. (d) FSDs for the large
cube with four different particle sizes 0.2, 0.1, 0.08, and 0.05 mm at p0 = +0.15. The corresponding theoretical n(s) fits are shown by the
lines. The lines with slopes of −5/3 are shown for comparison.

also computed FSDs for four larger cubes (6 × 6 × 6 mm3)
with varying resolution (particle size) and at p0 = +0.15 to
investigate the influence of the characteristic size of the model
cube, the DEM-particle size, and the influence of boundary
fragmentation [11].

B. Numerical results

Figure 5(a) shows the simulation results for the FSDs
obtained with the nine external stress levels described above.
In the figure, the theoretical n(s)’s are fitted to the data using
Eqs. (1) and (2) with the second term on the right-hand side
neglected. The fine-fragments regions of the FSDs behave
in the same way as in the experiments: The fine-fragments

power-law exponent is close to −5/3 for positive p0 and
decreases to approximately −2.36 for the smallest p0. The
exponential cutoff for the fines appear at s f ∼ 4–15. The
larger fragments can either be described by an exponential or
there are just a few separate very large boulders.

In the simulations with the three highest external tensile
stresses, the fracture plane completely splits the cube, creating
two or three large boulders at t ≈ 7 μs. However, for the other
stress levels, a large number of fine fragments is generated,
but the cubes retained their integrity as the single largest
fragment.

Figure 5(b) shows only FSDs for p0 = −0.2, 0.0, 0.15 to
highlight the change in the power exponent for the fines.
Table IV lists the regression analysis results for the computed

TABLE IV. Regression data for the fine region of FSD for the cube with the nine levels of external stresses. The values after the ± sign are
the standard error of the mean. Regression equation: ln(C1) + α × ln(s) − s/s f .

����Const.
p0 =

−0.2 −0.15 −0.1 −0.05 0 +0.05 +0.07 +0.1 +0.15

ln(C1 ) 6.32 ± 0.15 6.76 ± 0.28 7.10 ± 0.18 7.50 ± 0.15 7.68 ± 0.12 7.68 ± 0.20 7.78 ± 0.14 8.00 ± 0.087 8.14 ± 0.082

α −2.357 ± 0.082 −2.328 ± 0.444 −1.969 ± 0.227 −1.657 ± 0.245 −1.694 ± 0.263 −1.881 ± 0.250 −1.782 ± 0.220 −1.702 ± 0.185 −1.524 ± 0.175

s f 2.62 × 1030 ± 0.0 14.87 ± 21.60 11.10 ± 4.83 4.84 ± 1.26 5.07 ± 1.78 8.95 ± 3.46 7.12 ± 2.44 4.80 ± 1.13 4.24 ± 0.83

Adjusted R2 0.9893 0.9687 0.9862 0.9899 0.9918 0.9837 0.9907 0.9961 0.9963
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TABLE V. Statistical significance study of the fine- and
intermediate-size fragments’ fitted lines for simulation of the large
cube (6 × 6 × 6 mm3) with Dparticle = 0.1 mm.

Fine-fragments Intermediate-fragment-
Test region size region

No. data points 3 10
R −0.997 −0.980
p(R) 4.90 × 10−2 7.16 × 10−7

Residual variance F = 15.047 p(F ) = 0.197
Gradient F = 0.009 p(F ) = 0.928
Intercept F = 21.961 p(F ) = 8.500 × 10−4

data where the fine-fragments region of these FSDs are fitted
with regression line ln(C1) + α × ln(s) − s/s f . The average
value for the exponents for p0 � −0.05 in a total of six levels
of external stresses is −1.707 ± 0.0490. A critical compres-
sive external stress is reached at p0 ≈ −0.1 at which crushing
becomes dominant over tensile fracture.

Since, the power-law range for the fines in Fig. 5(a) is
extremely short, and the exponential cutoff begins to influence
the exponent value, we also tested fitting the exponent using
weights 1/

√
ln(s) in the fitting algorithm. Then, the average

value of −α for p0 � −0.05 becomes, e.g., −1.688 ± 0.053,
which is even closer to −5/3.

The reason the power-law range for the fines is so small
in the simulations compared to the experiments is that the
smallest possible fragment in the simulations is a single grain.
In the experiments, fragments get several orders of magnitude
smaller. Note, however, that s f corresponds to fragments of
linear size roughly in the range of (4–20) × xgrain for both
experiments and simulations, indicating that it is, indeed,
the grain size that determines the crossover between fines-
and intermediate-size-fragments regions. Note that Dparticle ∼
xgrain.

Another discrepancy between experiments and simulations
with the small cubes is the lack of the intermediate-size
range in the simulated FSDs. The reason for this seems to be
that almost all fragments larger than the fines are boundary
fragments which tend to have an exponential FSD [11].

In order to demonstrate both of the above, we computed
FSDs for larger cubes and for different Dparticle’s. The FSDs
for a larger cube (6 × 6 × 6 mm3) with the same particle
size of xgrain = Dparticle = 0.1 mm at external stress level p0 =
+0.15 is compared to its counterpart for the smaller cube in
Fig. 5(c). Table V lists the result of a significance study for
the two fitted lines of fines- and intermediate-size fragments
for the larger cube. The conclusion is the same as for the
experiments: The power exponent of the FSD for the fines-
and the intermediate-size fragments are the same, and there is
an offset between them.

Figure 5(d) shows FSDs for the larger cube (6 × 6 ×
6 mm3) with the four different particle sizes of 0.2, 0.1,
0.08, and 0.05 mm. The fine-fragment regions of the four
simulations extend to roughly the same s f ∼ 10. Note that
this means a 64 times smaller fragment volume for the
smallest particles compared to the largest. This demonstrates
that the fragment volume at the crossover between fines- and
intermediate-size scales as the grain size D3

particle.

V. SUMMARY AND CONCLUSION

Here, we report 28 experimental FSDs where four are
confined with prestressed aggregate, and the rest are either
unconfined or confined using a momentum trap. The fine
fragments for six of them are sieved apart from the standard
mechanical sieving with the sedimentation method down to
0.002 mm. For an additional seven of them, the fine fragments
are estimated with laser diffraction with a resolution down to
0.4 μm. These experimental FSDs, except the four that are
confined with prestressed aggregates, have two fragment-size
regions in which branching and merging of cracks generate
a FSD of the universal scale-invariant form. These are the
fine- and the intermediate-size fragment regions. Both can
be described with a power-law exponent close to −5/3 with
a statistically significant offset between them. If the blasted
material is under compression induced by the prestressed
confinement, the fine fragments are described by a steeper
power law.

Numerical simulations of the same effect can be achieved
using a detailed model of a pressurized crack propagating
within a cube with randomly packed spherical elements and
a midplane crack. Again, the FSD has two regions with an
approximate exponent of −5/3 unless the crack is under
strong enough external compressive stresses in which case the
fines region has a steeper power law.

In both cases, the conclusions are supported by a statistical
significance analysis. By varying the resolution in the numer-
ical model, i.e., reducing the particle size, it is shown that the
crossover between the two regions scales as the average grain
size.

Within mining, it is common that operations require both
blasting and ensuing crushing-grinding. The latter may well
be the major contributor to the fines generation [4]. If the
blast fragmentation is made coarser to reduce fines production
by lowering the charge concentration, the need for increased
crushing-grinding may quite possibly result in more total fine
material from the operation. This makes the optimization of
the process very challenging.
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APPENDIX: EXPERIMENTAL MPFs

The transformation from experimental x-MPF(x) data to
s-n(s) data uses the derivative of Eq. (3). Let xmin denote the
smallest mesh then with s = (x/xmin)3,

n(s) = C
MPF′(x)

s ds/dx
= C

x3
minMPF′(x)

3x2s(x)
, (A1)

with the prefactor C = M0x3
min

3mgrain
. The value of the prefactor in

Eq. (A1) shifts the curve along the y axis in ln(s)- ln[n(s)]
space but does not change its shape. In our calculations,
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the prefactor C = 1 was used. The difference quotient for
two successive mesh sizes x(i + 1) and x(i) is used to
calculate

MPF′[x( j)] ∼= MPF[x(i + 1)] − MPF[x(i)]

x(i + 1) − x(i)
, (A2)

at x( j) = √
[x(i + 1)x(i)], the geometric mean (mid) points

of all bins except the first j = 2, . . . , n − 1. Two points
are added to this shifted data set; x( j = 1) = xmin/2 and
x( j = 0) = 0 for which MPF(0) = 0. The equation s( j) =
[x( j)/xmin]3 defines the corresponding s values, and Eqs. (A1)
and (A2) define the corresponding n[s( j)] values.
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