PHYSICAL REVIEW E 101, 023001 (2020)

Influence of the microstructure of two-dimensional random heterogeneous media
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Multiple scattering of waves arises in all fields of physics in either periodic or random media. For random
media the organization of the microstructure (uniform or nonuniform statistical distribution of scatterers)
has effects on the propagation of coherent waves. Using a recent exact resolution method and different
homogenization theories, the effects of the microstructure on the effective wave number are investigated over
a large frequency range (ka between 0.1 and 13.4) and high concentrations. For uniform random media,
increasing the configurational constraint makes the media more transparent for low frequencies and less for
high frequencies. As a side but important result, we show that two of the homogenization models considered
here appear to be very efficient at high frequency up to a concentration of 60% in the case of uniform media. For
nonuniform media, for which clustered and periodic aggregates appear, the main effect is to reduce the magnitude
of resonances and to make network effects appear. In this case, homogenization theories are not relevant to make

a detailed analysis.
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I. INTRODUCTION

For more than a century, authors in theoretical physics
and applied mathematics have proposed numerous models
for studying multiple scattering and propagation of waves in
random inhomogeneous media. Multiple scattering in random
media is of practical interest in many fields of physics ranging
from the theory of randomly disordered crystals [1], the
resonant scattering of light [2], the ultrasonic monitoring of
colloidal mixtures [3], the effective dynamic mass density
of composites [4] the propagation of waves in trabecular
bones [5], metamaterials [6], the scattering from clusters
of bubbles [7], and the propagation through high-density
hyperuniform materials [8], to name a few. Reviews of the
best-known models and their mathematical backgrounds can
be found in Refs. [9-14]. Broadly speaking, there are three
different types of models: (1) those based on Green functions
and diagrammatic techniques like Feynman diagrams [11,13],
which has led to independent scattering approximation (ISA)
and coherent potential approximation (CPA) [12]; (2) those
coming from the multiple scattering equations initiated by
Foldy [15] and Lax [16], with the most famous formula based
on the Lax quasicrystalline approximation probably that of
Waterman and Truell (WT) [17]; and (3) the models where
the ensemble-averaged equations are calculated from the local
constitutive equations of the continuous and dispersed phases
using a configurational average [18-20].

Among all these models, one can distinguish those that
give an analytical expression of the effective wave num-
ber describing the propagation in the multiple scattering
medium, such as ISA and WT, from the self-consistent models
where the effective wave number is obtained by searching
for the root of characteristic equations, as with the CPA and
the generalized self-consistent model (GSCM) developed by
Yang and Mal [21]. There are some relationships between
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models. For example, ISA and WT are comparable when
the backscattering of particles is negligible compared to the
forward scattering, and the GSCM was derived using an iter-
ative self-consistent scheme applied to the WT formula. This
scheme can also be applied to any analytical expressions of the
effective wave number, such as the Linton and Martin (LM)
formula [22], to get a new self-consistent model [23]. Finally,
to be complete, if we also take into account models based
on other approaches, like those of Refs. [24-29], we end up
with a very large number of solutions for calculating effective
wave numbers, and the question is: What is the best one?
Not surprisingly, the answer to this question depends on the
context in which it raised. A comparative study was recently
carried out between eight models for shear waves [28]. It is a
challenging and difficult task because at least three parameters
have to be taken into account: the concentration of particles,
the frequency, and the type of particles; some of them can be
very resonant as bubbles [7], and others are “weak scatterers”
as aggregates contained in a cement matrix (concrete) [30].
Disagreements between models obviously increase with the
concentration of particles, but not exclusively [28]. To con-
clude this brief overview, we refer here to the analysis of Kim
about discrepancies observed between numerical results [28]:
“Therefore, a blind comparison between experimental and
theoretical results ignoring the composite’s micro-structure
can lead to a meaningless conclusion.” In the following,
reacting to this analysis, the role played by the microstructure
of random media in the propagation of coherent waves is
investigated.

II. FRAMEWORK OF THE STUDY

Facing the difficulty of analyzing a wide variety of random
media apart from the research context, as outlined above,

©2020 American Physical Society


https://orcid.org/0000-0002-5412-9390
https://orcid.org/0000-0001-7391-1284
https://orcid.org/0000-0001-9716-8034
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.023001&domain=pdf&date_stamp=2020-02-12
https://doi.org/10.1103/PhysRevE.101.023001

ADRIEN ROHFRITSCH et al.

PHYSICAL REVIEW E 101, 023001 (2020)

it is necessary to establish a precise framework so as to
limit the study field and focus on the role played by mi-
crostructures. By microstructure, we mean the configurational
organization of the scatterers in a homogeneous matrix. We
distinguish two categories of random media: the uniform
random media whose statistical properties are uniform and
nonuniform random media whose statistical properties are
not. Of course, other parameters can play an important role on
the propagation of coherent waves: the type of particles, the
concentration, the polydispersity associated to the different
size of particles, and the anisotropy. The polydispersity is
known to enlarge the width of resonances and to reduce their
influence. This well-known effect will not be considered here
as well as the anisotropy related to the shape of particles.

Though the basic physical concepts in multiple wave scat-
tering can be applied to whatever types of wave, acoustics
is known to be a convenient framework to study multiple
scattering mainly because of the versatility of the experimen-
tal measurements, which provide access to the instantaneous
pressure (with the phase) and not only the intensity of the
waves. For instance, Derode et al. [31] studied experimen-
tally the influence of correlations between scatterers using a
random collection of parallel steel rods immersed in water.
In order to have comparisons with experiments for some
configurations, we have chosen to investigate the same kind
of random media. Furthermore, this kind of heterogeneous
medium is very interesting to study because steel rods are
strongly resonant as are spherical scatterers, the so-called
Mie particles in optics [2]. For this study, we will use in-
house software, called MuScat, which is able to address this
problem with several tens of thousand scatterers, for any kind
of geometry [32]. That allows us to model any microstruc-
ture in detail without approximation except the inherent
numerical errors.

This work is organized as follows. Section III contains
the processes to build the different random media consid-
ered in this paper. Section IV gives a brief overview of
the numerical software MuScat and explains the choice of
the two homogenization methods which have been selected
among many others. Section V deals with uniform random
media. First, numerical results obtained at low concentration
by the homogenization models and the numerical software
are compared to experimental data from Derode ef al. [31].
Then the impact of the microstructure at higher concentration
is studied at large and small wavelengths, respectively. Finally,
the effects of the microstructure of nonuniform random media
are investigated in Sec. VL.

II1. DESIGN OF THE MICROSTRUCTURES
A. Construction of the uniform random media

The uniform random media are built following the exper-
imental procedure set up by Derode et al. [31]. A slab of
surface S contains ng identical scatterers, so the concentration
is ¢ = ngma®/S. Their positions are computed using a ran-
dom draw considering an exclusion distance b between two
scatterers in order to avoid their overlapping. Experimentally,
the exclusion distance is fixed by the fact that steel rods are
hold by two plates, from top and bottom, in which holes have
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FIG. 1. Two random microstructures with concentration ¢ =
6%, with b — 2a (top) and b = 4.82a (bottom). The exclusion
distance b is the minimum distance between the centers of a pair
of scatterers. Dotted green circles have a radius of b/2.

been drilled. The exclusion distance is then regarded as the
minimum distance between a pair of holes (with origin at the
center of the holes).

Before going further, let us look at what can be said
concerning the exclusion distance b and its impact on the
microstructure of the multiple scattering media. Figure 1
shows two distributions with concentration ¢ = 6% con-
structed for two values of b. For the first distribution (up),
b — 2a, which allows two particles to be infinitely close,
without being in contact. This value is the smallest one for the
exclusion distance without interpenetration. For the second
distribution (bottom), we use the value b = 4.82a imposed in
the experiments by Derode et al. [31]. As noted by Conley
et al. [33], it is obvious that increasing b decreases the
positional “freedom” of the cylinders. So we can say that the
exclusion distance b has an influence on the microstructure.
Noting ¢, = nom (b/2)*/S, one has

¢
- = ()
¢ 4a
Keeping in mind that the most concentrated medium cannot
have a concentration higher than ¢ = 7/ 24/3 = 0.907 (for
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TABLE 1. Values of b/2a = 1/0.35/¢ and by, corresponding to
different concentrations ¢.

b (%) b /2a b/2a = 035/
6 3.89 241
14 2.54 1.58
30 1.74 1.08

monodisperse medium in two dimensions), ¢, < @max implies

b oy [ o [0.907 °
max — 2\/5(15 ¢ .

The main information contained in Eq. (2) is the proportional-
ity of bmax With 1/4/¢. In this work, we investigate the propa-
gation through media with varying concentrations. In addition
to imposing b < bpmax, the microstructure is constrained in
the same manner whatever the value of the concentration, by
imposing

0.35
—_— 3
" 3)

The relation of Eq. (3) is the same than the one chosen by
Derode et al. [31]. The values of b used in the numerical sim-
ulations are given in Table I for few values of concentration ¢.
Unless otherwise stated, we chose to set the value of b in the
same way for all the results presented in this paper.

Paraphrasing Conley et al. [33], we can say that the short-
range correlation in the disorder is controlled by imposing a
minimum distance b between the centers of two cylinders.
The idea is that b is not only a parameter related to the
geometry (microstructure) but also a parameter that allows us
to characterize the effect of the correlation on the propagation
of waves. In short, the idea developed in the following is
that microstructures are characterized by two parameters, the
concentration ¢ and the degree of correlation b. Propagation
through this type of media is discussed in Sec. IV B.

b=2a

B. Construction of the nonuniform random media

In this section, two types of microstructure that are not
statistically uniform are considered. Both can be built using
the random walk process presented in the work of Mallet
et al. [34]. Starting from a given position in the space,
knowing the borders of the medium and the concentration
desired, we perform random walks with a given step length
and orientation selected at random between Ny possibilities.
At each step (of constant length), an orientation 6 is selected
between —m and . Either the new position is free, in this
case a scatterer is placed, or the position is occupied, in which
case another position is selected at random and the walk starts
again.

The first microstructure is constructed following this pro-
cess, with Ny = 1000 possible orientations selected at ran-
dom. When the step of the walk is small enough, this proce-
dure leads to a clustering effect, as shown in Fig. 2(a), which
is constructed with a step of 2.2a. Clustering is a consequence
of the fact this procedure always induces a return to the point

FIG. 2. Examples of nonuniform random microstructures con-
structed by random walk process. Panel (a) is constructed with
Ny = 1000; panel (b) is constructed with Ny = 4 and crystal-like
geometrical properties with cell length d.

of departure. As illustrated by this example, such a medium is
characterized by very strong variations of local concentration
(clustering).

The second type of microstructure is also built with this
procedure, but with Ny = 4, so that the orientation can be
assimilated to the cardinal points. This choice leads to build-
ing a crystal with defects but with periodic cells into the
microstructure. According to the points of view, the medium
can be considered as a crystal with random defects, but also as
a collection of small clusters, each of them containing a few
periodically spaced cylinders. An example of such medium
is shown in Fig. 2(b) where the medium is composed of
randomly distributed scatterers on the nodes of a periodic
lattice of characteristic length d. Propagation through these
types of media is discussed in Sec. VL.

IV. CALCULATION METHODS OF THE EFFECTIVE
PARAMETERS

A. Semianalytical method: MuScat

A large overview of numerical methods applied to multiple
scattering has been presented recently by Amirkulova and
Norris [35], and more details can be obtained by referring
to Refs. [36,37] and to the books written by Martin [14]
and Gumerov and Duraiswami [38], the latter presenting an
up-to-date discussion about the fast multipole method (FMM).
In a recent work, the exact formulation of multiple scattering
problem is presented. This formulation allows the computa-
tion of the modal scattering amplitudes of Ny infinite cylinders
immersed in a fluid host medium. For numerous scatterers and
high frequencies, this resolution is challenging but has been
done recently with the in-house software MuScat [32].

The general idea is to decompose the acoustic field as
the sum of the incident field and all the waves scattered
by the cylinders. The harmonic field p can be decomposed
into the basis of the cylindrical harmonics (for simplic-
ity the time dependency e~™ is omitted below). Consid-
ering a distribution of N, cylinders arbitrarily distributed
and of arbitrary acoustical properties, the total field is

023001-3



ADRIEN ROHFRITSCH et al.

PHYSICAL REVIEW E 101, 023001 (2020)

expressed as

N,
P(r) = pine(r) + > p(xy). )
j=1
with pi,.(r) the incident wave and pgj )(rj) the wave scattered
by the jth cylinder expressed with respect to coordinates
r = (r,0) and rj = (7}, 0;). They are given in term of modal
sums by

+00
Pine(®) = > dyJu(kr)e™,

n=—00
o 5)
)= Y APHD ke,
n=-—0o

where k is the wave number, coefficients d,, are the amplitudes
of each mode of vibration (d, = i" for a plane wave), J, is the
Bessel function of order n, and H'! is the Hankel function of
the first kind of order n. The linear block system satisfied by
the coefficients A’ can be formulated in a matricial way as

[Z-TM]A=TE, (6)

with 7 the block matrix containing all the T’ matrix col-
lecting the scattering coefficients of every scatterer j and the
following notations:

A=AD A® ANy
E, = NOrq,

7
Tpg = T8y, @
Mg = M (1 — 8pg)s

and the matrices coefficients

MyD = H, ket ™%, ®)
ngsj) = -Ivfn (kVOj )dh}in)eoj .

The resolution of the system (6) gives the exact amplitudes of
scattering waves by each scatterer. In MuScat the possibility
of neglecting the long-distance interactions between cylinders
has been precisely discussed. In this work, as far as the media
considered are relatively small, all the interactions have been
taken into account. The acoustic pressure is calculated at
the end of a slab of width % in the direction of propagation
containing or not a random set of parallel cylinders:

po = Aelth
pl =Aeikeffh

in homogeneous medium,

(€))

in heterogeneous medium,

where the effective wave number is noted kegr = @/ Cef + it
with c.g the effective phase velocity and «.s the effective
attenuation. These effective parameters are all calculated due
to an average process on several tens of distributions and are

given by

N
Po

Oleff = —% In <
Copp = — (10)
off = .

B. Homogenization models

Among the many homogenization models, we chose two
models that contain explicitly a parameter similar to the
exclusion distance b. The first model is the one presented by
Derode et al. and named “Keller” for reasons explained in
Ref. [31]. Its main interest lies in the fact that the correlation is
explicitly taken into account by introducing the Percus-Yevick
approximation (PYa). It follows that this model results in a
clear analysis in terms of correlation, analysis based on Green
functions, and diagrammatic representations of the multiple
scattering, which forms the main interest of this approach.
With this model, the effective wave number kg is given by

+00 2
k12<e11 = kIZSA - <4i”0 Z 7})

n=—0oo

x /oo %”Hg”(kr)Jo(kr)[l —g(Mlrdr, (1)
0

where T}, is the scattering coefficient of order n associated with
each cylinder. In Eq. (11) the first term kg corresponds to the
ISA given by

+o00
kisa = k> —4ing Y T, (12)

n=—oo
and the second term to the PYa. Note here that the PYa
includes only the component corresponding to the mode of
vibration n = 0, the others being neglected. The function
g(r) is calculated such that nog(r) gives the concentration
at a distance r from the center of a scatterer. Here g(r) is
computed from numerical simulations of random distributions

as in Ref. [31].

The second model was initially derived by Fikioris and
Waterman (FW) [39]. In this model, the parameter b is fixed
to the value b = 2a corresponding to the hole correction (HC)
for which g(r) =0 when r < 2a and g(r) = 1 otherwise.
Compared to ISA, the FW model introduces a second-order
term in concentration as

kiw = kisa + dang, (13)

with, noting p = |m — n|,

4i 8 X
dh=—7 3N [RP6 = pPi(kb)HSD (kb)
+ K0T (kb)H ) (kb) | T, T,,. (14)

Here we would like to digress briefly about the reason
why the parameter b was introduced. The FW model leads
us to calculate divergent integrals for the modes n > 2. This
is the mathematical reason why singularities are surrounded
by a cylinder of radius b to avoid the divergence of the
integrals. From a mathematical point of view, b can take any
value, but it is not satisfying from a physical point of view
to introduce a parameter without physical interpretation. One
can assume that this is the reason for which different values
of b are imposed in the literature to circumvent this “lack of
meaning.” The HC leads to set b = 2a, which is essentially
a nonoverlapping condition between scatterers. Using b — 0
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leads to the LM model [22]
kLM = lim ka. (15)
b—0

The expression (15) clearly shows that LM model does not
take correlation into account, since b — 0, but is still a
second-order model in concentration. The ISA wave number,
which is the first term of every other model, will be shown as
well. It is adapted to point scattering, which corresponds to the
case when the wavelength of the incident wave is much larger
than the characteristic length scale of the scatterers [40]. In
this context, among the models that go beyond “ISA,” some of
them are not only based on the Dyson equation, as in our case,
but go further by considering the Bethe-Salpeter equation that
gives access to the correlation, thereby including all induced
dipole-dipole interactions [41]. We are then in the field of
transport theories, which are out of the scope of our study.

As mentioned before, assuming a modified form of the HC
with hole radius b and oscillations depending on the concen-
tration leads to the PYa [42]. However, nothing prevents us
from giving to b the value we want provided that b has a
physical meaning. This is the reason the value of b chosen
is the same as the one introduced in the experimental setup
as well as in MuScat simulations. The important point to
emphasize here is that FW and Muscat, contrary to Keller,
do not introduce the PYa to model the correlation.

To conclude, let us state that comparison between LM and
ISA on the one hand and FW and Keller on the other hand can
therefore be useful to distinguish concentration effects from
correlation effects. Removing the correlation from the Keller
model leads to ISA, whereas removing correlation in the FW
model leads to the LM model.

V. PROPAGATION IN UNIFORM RANDOM MEDIA

A. Comparison of models with experiments: Link between
exclusion distance b and degree of correlation

We consider the propagation of coherent waves through
a cluster of parallel steel rods immersed in water. Scatterer
radii are a = 0.4mm, and the acoustical properties c; =
5700m/s, cr = 3000m/s, and p. = 7850kg/m>. Speed of
sound in water is taken as ¢y = 1500 m/s and density as pg =
1000kg/m?. With MuScat, the coherent wave is obtained by
averaging until convergence (between 30 and 50 draws).

Two experimental data sets are presented here, taken from
Derode et al. [31], one with a concentration ¢ = 6% and the
second one with ¢ = 14%. The frequency range experimen-
tally explored is 2—4 MHz, which corresponds to parameter ka
included in 3.35-6.7. Such a high-frequency range imposes to
take into account the nine first modes in MuScat to correctly
measure the effective parameters, even if the resonances come
from modes 1 and 2. The quantity presented here is the elastic
mean-free path /,, directly linked to the effective attenuation
o by the relation

1

l, = .
20t

(16)

For both concentrations, MuScat and experimental results
are also compared to ISA, FW, and Keller. In Figs. 3(a)
and 4(a), the value of b used in numerical results is set to 2a,

12 (a) 15A

—— FW,b/2a —> 1

—*— Keller, b/2a — 1
¢ MuScat, b/2a — 1

g
= Exp. data, b/2a = 2.41

— ISA

—— FW, b/2a = 2.41
—+— Keller, b/2a = 2.41
/g ¢ MuScat, b/2a = 2.41
= - -+HH- Exp. data, b/2a = 2.41

FIG. 3. Scattering mean-free path of a slab with density ¢ =
6%, and b/2a — 1 (a) or b/2a = 2.41 (b): comparison between
experimental results, MuScat simulations, and homogenization cal-
culations. Frequency range corresponds to ka € [3.35 — 6.7].

and that is set to values given in Table I in Figs. 3(b) and 4(b).
Changing b in the FW model affects the mean-free path [given
by Eq. (16)] in the same way as in MuScat simulations.
In addition, the Keller and FW models give very similar
results which are both in good agreement with experiments.
These last results support the idea that the parameter b is not
only an exclusion distance but can also be considered as a
degree of correlation characterizing the microstructure and
the propagation of coherent waves. This is the principal result
of this section apart from the fact that there is a very good
agreement between MuScat and homogenization models. The
next section is devoted to investigating propagation in much
more concentrated uniform media up to 60% in concentration
for a larger frequency range.

B. Correlation effects at high frequency

The aim of this part is to study the influence of the corre-
lation on the wave propagation in high concentrated media.
Another objective is also to determine the extent to which
the homogenization and statistical models are appropriate in
order to estimate correctly the effective wave numbers at high
frequency. To be complete, we will also show predictions from
LM and ISA models.
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(a) — ISA

—— FW,b/2a —> 1

—— Keller, b/2a — 1
MuScat, b/2a — 1
Exp. data, b/2a = 1.58
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4 “ ’
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— ISA

—— FW, b/2a = 1.58

—+— Keller, b/2a = 1.58
*

_%_

(b)

ut

MuScat, b/2a = 1.58
Exp. data, b/2a = 1.58

FIG. 4. Scattering mean-free path of a slab with concentration
¢ = 14%, and b/2a — 1 (a) or b/2a = 1.58 (b): comparison be-
tween experimental results, MuScat simulations, and homogeniza-
tion calculations. Frequency range corresponds to ka € [3.35 — 6.7].

As mentioned in Sec. III B, the exclusion distance b given
by relation (3) allows us to build distributions for b > 2a with
concentration up to ¢ = 35%. In the following the most con-
centrated medium which is investigated has a concentration
¢ = 60%. To ensure b > 2a in this extreme case, the relation

063 (17)
¢

is set to link b and ¢ in agreement with the values given in
Table II.

We start by focusing on what is happening around the res-
onance frequency f = 2.77 MHz (observed in Figs. 3 and 4)
for an intermediate concentration which is set at ¢ = 30%.
Figure 5 shows the predictions of [, and c.¢ of all models

b=2a

TABLE II. Values of b = 2a+/0.65/¢ and by, corresponding to
different concentrations ¢.

b (%) Bumax /2 b/2a = /0.65/¢
6 3.89 3.29
14 2.54 2.15
30 1.75 1.47

250 —— ISA (®)
- LM
2.25
—— W
=200 —— Keller .
g .. MuScat
~— 1.75
~5
1.50 B
L25] %o qeee®®™ W e
1.00
25 26 27 2.8 2.9 30
f (MHz)

1480

2.5 2.6 2.7 2.8 2.9 3.0

FIG. 5. Effective attenuation (a) and effective phase velocity
(b) for a concentration of ¢ = 30%, calculated with MuScat (dia-
monds markers) and different statistic models: Linton and Martin
(LM), Fikioris and Waterman (FW), ISA, and Keller. Frequency
range corresponds to ka € [4.18-5.02].

around this resonance frequency. The first phenomenon that
is noticeable is that FW and Keller as well as MuScat models
predict that the multiple scattering has a strong impact on the
position of the resonance frequency, which is shifted towards
high frequencies, even if the concentration is not so large.
Of course, this effect increases with the concentration, which
is why it is less visible in Figs. 3 and 4. This phenomenon
appears only in models that take the correlation into account,
suggesting that the resonance shift is closely linked to the
microstructure and cannot be explained by a simple effect of
multiple scattering neglecting the correlation.

Let us now look at the behavior of the resonance frequency
with regard to the concentration. To this end, the degree
of correlation b is assumed to depend on the concentration
according to the relation Eq. (17) in order to keep a medium
under the same configurational constraint. Figure 6 shows the
attenuation [Fig. 6(a)], inversely proportional to the elastic
mean-free path, and the phase velocity [Fig. 6(b)] as functions
of concentration. Comparing ISA and LM to Keller, FW, and
MuScat, we see that the correlation clearly drives the attenua-
tion down (the scattering mean-free path up). This behavior is
the opposite of what happens outside the resonance, as shown
in Fig. 6(c) at the frequency f = 4.0 MHz. Concerning the
resonance frequency, it is remarkable that ISA gives good
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b/2a
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o(%0) o(%)
— ISA —— FW . MuScat
********** LM —— Keller

FIG. 6. Effective attenuation and phase velocity as a function of
the concentration, for frequency f = 2.77 MHz, ka = 4.64 [(a) and
(b)], which corresponds to a resonance frequency, and f = 4 MHz,
ka = 6.7 [(c) and (d)]. The dots on the subplots show the relative
position on the spectrum of Figs. 3 and 4. The vertical dotted
line corresponds to the concentration chosen to calculate effective
parameters of Fig. 5.

results for such high concentrations. It is probably due to the
fact that, around this specific frequency, the coherent wave is
strengthened by the resonance. It may be argued that scatterers
store the energy at resonant frequencies (in the steady state),
which, in effect, reduces the intensity of interactions between
cylinders (because there is less energy traveling in the ambient
fluid) and could explain why the decrease of the attenuation
related to the multiple scattering becomes less sensitive to
the concentration. Out of resonance frequencies, Keller and
FW models as well as MuScat give results that get away
significantly from ISA and LM predictions especially as the
concentration increases. This result is consistent with what is
known about the role of the concentration. We can also note
the presence of oscillations on the effective phase velocity
with MuScat that appear visibly smoother with FW and Keller
models but which are not observed with ISA and LM models.
Once again, this can seen as the sign of the influence of the
microstructure.

C. Correlation effects at concentration ¢ = 60%

In order to enhance our analysis, we have investigated
the propagation of coherent waves in a highly concentrated
medium, ¢ = 60%, over a large frequency range, between
f=0.6 MHz and f =8 MHz, which corresponds to ka
ranging from 1.0 to 13.4 [see Figs. 7(a) and 7(b)]. Conclu-
sions remain the same. The degree of correlation b plays an
important role on propagation in the small wavelength regime
(f > 2 MHz), especially since the concentration increases.
Taking into account b leads to a very good agreement between
MuScat and the FW and Keller models, which reinforces the
fact that the correlation is correctly introduced in the two
different statistical approaches by choosing b appropriately.
Imposing an exclusion distance b for these frequency regimes

1.75
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1.50 1 ———. LM
i . )
A —— FW, b=2.08a
L1254 ’

g \\ —— Keller, b = 2.08a
= L0071 MuScat, b = 2.08a
= 075

0500 et W - T,
0.25
1 2 3 4 5 6 7 8
f (MHz)
1500
1450
'n 1400
" 1350y
1300
1250
1 2 3 4 5 6 7 8
f (MHz)

FIG. 7. Scattering mean-free path (a) and effective phase ve-
locity (b) calculated with MuScat (diamonds markers), Keller, FW,
ISA, and LM models for concentration ¢ = 60%. Frequency range
corresponds to ka € [1.0-13.4].

plays a role of “densification” of the medium, increasing the
effective attenuation o, (and thus decreasing the scattering
mean-free path /,). But another regime is visible in Fig. 7, for
f < 1 MHz, which is the opposite: for these low frequencies,
increasing b increases /., if referring to the LM model. The
next section is dedicated to the study of this regime.

Before switching to low frequencies, we just want to put
a spotlight on a very interesting and amazing result of this
section, namely, the very good agreement between the two
homogenization models and numerical calculations, provided
the correlation is taken into account. Indeed, if we compile
the results of all studies about the range of validity of ho-
mogenization models in multiple scattering, with regard to the
concentration, it is commonly accepted that ¢ ~ 30% is the
maximum acceptable value for these theories. More specif-
ically, this maximum value is usually reached for red blood
cells [43], concrete [44], or nanoparticles and colloidal dis-
persions [3], that is to say, for “weak” scatterers. Here cylin-
ders are not weak, they are strongly resonant, the frequency
is high, and the concentration is twice greater than 30%,
which is what makes the result so surprising and interesting
in itself.
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FIG. 8. Effective attenuation and phase velocity as a function of
the frequency for a concentration of ¢ = 20% and various values of
b. Frequency range corresponds to ka € [0.1-1.0].

D. Correlation effects at low frequency

This section is dedicated to understanding the predictions
of the different models for ka < 1 (f < 0.6 MHz). In this
regime, only few modes of vibration are sufficient to describe
the propagation in the medium. As a conclusion of the last
section, it has been pointed out that exclusion distance effects
at low frequencies seem to be the opposite of the densification
observed at high frequencies. It is not explained, but in order
to go a little further into this investigation and to observe
if this behavior depends on the strength of the correlation,
the first step is to analyze the impact of a growing config-
urational constraint, keeping the concentration constant and
increasing b. Doing so, we change the way in which the
medium is constrained. Here, when b increases, the medium
becomes more and more organized. Figures 8(a) and 8(b)
give effective parameters for four different values of b [from
b/2a — 1to b/2a = /0.65/¢ as given by Eq. (17)]. Taking
the case b — 2a as a reference, a transition is detected for
f between 0.4 and 0.5 MHz (ka between 0.66 and 0.83).
Before this window, the larger b is, the lower the effective
attenuation is, whereas after this window, the larger the b is,
the bigger the effective attenuation is. The influence of the
correlation can also be seen on the effective phase velocity

140
—— Keller

—+— MuScat

120 .
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100

80
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f (MHz)
1480
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T/\ ¢ = 15%
1440
= o = 20%
© 1420
1400 (b)
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FIG. 9. Effective attenuation and phase velocity as a function
of the frequency for b/2a = 4/0.65/¢ and various concentrations.
Frequency range corresponds to ka € [0.1-1.0].

for a frequency range between 0.3 and 0.5 MHz. There is
a growing gap between the velocities as b increases with a
minimum around f = 0.4 MHz. No matter the value of b
chosen, the transition always appears in the same frequency
window. This study leads to two first conclusions: at low fre-
quency range, increasing the correlation b makes the medium
more transparent, and the transition between the low- and
high-frequency regimes seems independent of the intensity
of the configurational constraint (value of ») imposed on the
microstructure. It might also be noted that MuScat and the
LM model display notable differences even when b — 2a,
indicating that cylinders cannot be fully considered as point
scatterers at these low frequencies (remember that b — 0 for
the LM model).

Now that we have seen the influence of the correlation,
let us look at the effect of the concentration. To this end,
we set b at the value given by Eq. (17), and we choose to
vary ¢ between 10% and 20%. We show in Fig. 9 the Keller
model that takes into account the correlation, but not the FW
model, which gives nonphysical results at very low frequency
with the increase of the concentration, as already noted in
Refs. [44,45]. On this figure, the prevailing phenomenon is
observed for f < 0.2 MHz (ka < 0.3): no matter the con-
centration, the attenuation seems to stay very close to zero.
Increasing the concentration does not increase the attenuation
in this frequency range. Here we can note that MuScat and
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FIG. 10. Scattering mean-free path for heterogeneous media
with different cluster types, with a concentration of ¢ = 10%. Fre-
quency range corresponds to ka € [3.77-5.44].

Keller model display differences even at very low frequency,
and, as previously observed in Fig. 8(b), there is a growing
gap between the velocities for a frequency range between 0.3
and 0.5 MHz.

If we put together the results of this section with those of
the previous ones, we can identify three different frequency
ranges. At very low frequency, ka < 0.3, increasing the cor-
relation makes the medium more transparent regardless of
the concentration. In the intermediate frequency range, 0.3 <
ka < 0.5 in our case, a change of behavior is observed in
the attenuation of waves, which corresponds to a situation
where MuScat disagrees with statistical models by showing
more complex behaviors. At high frequency, the wave atten-
uation increases with the increase of correlation and MuScat
agrees very well with FW and Keller models up to 60% in
concentration.

VI. PROPAGATION IN NONUNIFORM RANDOM MEDIA

A. Random media with clustered aggregates

To go further into the analysis of the impact of the mi-
crostructure in general, we study now two other types of
constraints. The design method can be found in Sec. III B.
The impact of this microstructure is quantified through the
same procedure as before in order to calculate the effective
parameters [, and c.¢. The first is similar to the one presented
in Fig. 2(a). Figure 10 shows the scattering mean-free path for
four different media with the same concentration ¢ = 10%,
constructed with four different step lengths: increasing the
step length in the design procedure decreases the clustering ef-
fect. The most important phenomenon appears clearly around
the resonance frequency: the shorter the step is, the weaker
the resonance is. This shows that the clustering effect has
a stronger impact on the resonance than the modification of
the spatial organization analyzed in previous sections. This
is the most significant result. Out of the resonance frequency,
the predictions are approximately the same, and the clustering
effect is rather smooth. To our knowledge, apart from exper-
imental investigations, MuScat is the best tool to investigate

,,,,,, d/2a=15 --=-= d/2a = 1.65
a
( ) ffffff d/2a = 1.57

1.8 2.0 22 24 2.6 2.8 3.0

1520
—~1510
‘s 1500
= 1490{ Zm
k)

1480

(

1520
—~ 1510
's 1500
< 1490
g
1480

(

FIG. 11. Effective parameters /, and c.r of slabs with crystal-
like geometrical properties (crystal with defects), such as presented
in Fig. 2, plotted as a function of frequency f [(a) and (c)] and a
function of d/A [(b) and (d)]. Frequency range corresponds to ka €
[3.0-5.0].

the propagation in such media, which are beyond the reach of
statistical models considered in previous sections.

B. Random media with periodic aggregates

This last microstructure is the one presented in Fig. 2(b).
We consider here a concentration of ¢ = 15%. As said in
Sec. III B, the design procedure is the same as in Ref. [34]. In
the case of fully crystalline solids, remember that Bragg’s law
that gives the maximum constructive interference condition
for the waves scattered by the crystal is written as

2d cos Oipe = 1A, (18)

with 6y, the incidence angle (6, = 0 corresponds to the
normal incidence), A the wavelength, and n a positive integer.
The question we ask here is: How much is a coherent wave
sensitive to the quasiperiodic organization of the random
microstructure?

The numerical results calculated with MuScat are plotted
in Fig. 11 as a function of frequency [Figs. 11(a) and 11(c)]
and as function of d/A [Figs. 11(b) and 11(d)]. In our case
Oinc = 0, so that interferences may occur for d/A = n/2 as
pointed out by Eq. (18). For the frequency such that /X = 2
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a decreasing of the scattering mean-free path /, and a jump on
the effective phase velocity c.s are observed. This is the more
visible phenomenon which is observed for this kind of mi-
crostructure. The resonance specific to each cylinder does not
emerge clearly as before. The behavior of this microstructure
is very different from the other ones.

According to the point of view, the medium can be consid-
ered as crystal with random defects, but also as a collection
of small clusters, each of them containing a few periodically
spaced cylinders. In line with this last interpretation, with
the idea in mind that the medium is purely random, it is
the resonance due to interferences inside the small periodic
clusters that are observed on effective parameters.

VII. CONCLUSIONS

In this work we have addressed the question of the role
of the microstructure of random heterogeneous media on the
propagation of coherent waves. The first basic idea was to
introduce an exclusion distance b around the particles into the
models and to show that b is in direct relation to the spatial
correlation and the degree of organization of the random
medium. Our study leads to the conclusion that the impact
of this constraint can be understood as a correlation effect.
This correlation appears not to have the same influence on
the propagation according to the frequency: at low frequency,
increasing the configurational constraint of the samples makes
the medium more transparent, whereas in the high-frequency

regime, it leads to an “opacification” of the medium. At very
low frequencies (ka < 0.3), MuScat and Keller models dis-
play differences. The numerical model shows that, no matter
the concentration, the attenuation seems to stay very close
to zero. Increasing the concentration does not increase the
attenuation in this frequency range. As far as we know, these
results are new in the literature and could not be discussed
without an exact method taken here as a reference.

Surprisingly enough, Keller and FW homogenization mod-
els appear to describe very well the propagation of coherent
waves at small wavelength up to very large concentrations
(¢ = 60%), when these models are commonly assumed to be
inefficient for studying such concentrated media.

The impact of nonuniform configurational constraint has
also been studied in the last part of this work, enlightening the
fact that clustering has a local impact around the resonant fre-
quency, and can also lead, when adding a periodic constraint
on the random clusters, to network effects. This last conclu-
sion leads to the idea that the propagation in heterogeneous
media cannot be fully understood without a precise analysis
of its microstructure.
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